• Nem Talált Eredményt

nanowires Room temperature hydrogen sensors based on metal decorated WO Sensors and Actuators B: Chemical

N/A
N/A
Protected

Academic year: 2022

Ossza meg "nanowires Room temperature hydrogen sensors based on metal decorated WO Sensors and Actuators B: Chemical"

Copied!
6
0
0

Teljes szövegt

(1)

ContentslistsavailableatSciVerseScienceDirect

Sensors and Actuators B: Chemical

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m /l o c a t e / s n b

Short communication

Room temperature hydrogen sensors based on metal decorated WO 3

nanowires

Jarmo Kukkola

a,∗

, Melinda Mohl

a

, Anne-Riikka Leino

a

, Jani Mäklin

a

, Niina Halonen

a

, Andrey Shchukarev

b

, Zoltan Konya

c

, Heli Jantunen

a

, Krisztian Kordas

a

aMicroelectronicsandMaterialsPhysicsLaboratories,DepartmentofElectricalEngineering,UniversityofOulu,P.O.Box4500,FI-90014,Finland

bDepartmentofChemistry,Chemical-BiologicalCenter,UmeåUniversity,SE-90187Umeå,Sweden

cDepartmentofAppliedandEnvironmentalChemistryandMTA-SZTEReaction,KineticsandSurfaceChemistryResearchGroup,UniversityofSzeged, Rerrich,B.ter1,H-6720Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received17December2012 Receivedinrevisedform10May2013 Accepted24May2013

Available online xxx

Keywords:

Metaloxide Tungstenoxide Gassensor Hydrogensensor Nanowire

a b s t r a c t

Theemerginghydrogeneconomyhascreatedademandforthedevelopmentofimprovedhydrogen sensorsoperatingatroomtemperature.Inthiswork,wepresenthydrogendetectorsbasedonmetal decoratedWO3nanowiresthatwereabletodetect1000ppmofH2,evenatroomtemperature(30C), withrelativelyshortrecoverytimeandhighsensitivity.Thenanowiresweresynthesizedbyahydro- thermalprocessanddecoratedwithPdOandPtOxnanoparticlesbydecompositionofPd(acac)2 and Pt(acac)2precursors.ThegasresponsesweretestedforH2,NO,H2SandCOanalytegasesinanairbuffer at150,200and250C(H2alsoat30,70and130C).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Commercialhydrogengassensorsarealreadyutilizedinhydro- genpoweredtransport,firealarms,processandfluegasanalyzers, andleakage detectors. Such devices must meetstrictspecifica- tionsrelatedtoperformance,lifetime,reliabilityandcost.Sensing ofhydrogenisbasedonanumberofdifferentphysical/chemical phenomena related to, e.g. the change in thermal/electrical conductivity,workfunction,mechanicalpropertiesbutevenopti- cal/acousticmethodsmaybeapplied[1–5].

Inresistivegassensingdevices,suchastheonesdiscussedin thiswork,gaseousanalytesarecausinglocalpolarizationinthe solid(i.e.redistributingthelocalchargecarriers)uponadsorption [6].Thechangeofthelocalelectricalfieldisscreenedbythecar- riers,andwillvanishaftersomedistance,calledtheDebyelength [7].Ifthediameterorthicknessoftheparticles,wiresorfilmsis sufficientlylow,theadsorbedmoleculesareinfluencingthewhole volumeofthesolidthusinducingsignificantchangeintheelectri- caltransportbehavior[6].Accordingly,smallerparticlessuggest bettergassensing.However,one shouldalsotakeintoaccount theincreasingnumberofcontactsand thesuperpositionofthe

Correspondingauthor.Tel.:+358294487973.

E-mailaddress:jarmo.kukkola@ee.oulu.fi(J.Kukkola).

correspondingcontactresistancesbetweenthenanoparticlesinthe percolationpath[6].Therefore,thereisanoptimalsizeforthepar- ticles.Inordertomaximizethegassensorresponse,atleastone dimensionofthesensingparticlesshouldbeabouttwicetheDebye lengthLD=[ε0εrkBT/(q2n)]1/2,whereε0isthevacuumpermittivity, εristhedielectricpermittivity,kBistheBoltzmannconstant,Tis thetemperature,qistheelementarychargeandnisthecarrier concentration[8].Thecarrierconcentrationisdependentonthe typeandthecrystalstructureofthematerialaswellasonthecon- centrationofdefectsandimpuritiespresentinthelattice.Carrier concentrationintungstenoxideshasbeenevaluatedtobefrom 1023to1025m3[9–13]withacorrespondingDCdielectricper- mittivityof∼20[14].Basedonthesevalues,theoptimumcrystal size2LDisbetween4and40nm(at500K),whichissimilartothe conclusionofapreviousstudy[15].

Tungstenoxidenanowireswerefirstpreparedabout10years ago[16]andsincethenhavebeenconsideredaspromisingfunc- tionalmaterialsforcatalytic/sensing[17–22],photocatalytic[23], electrocatalytic [24], electrochomic [25], gasochromic [26] and field-emissiondevices[27].Duetotheuniquepropertiescaused bythelargesurfacearea/volumeratio,synthesismethodsofone dimensionaltungstenoxidestructureshavebeenstudiedexten- sively.Solvo-/hydrothermal[28,29],sol–gel[22],template-assisted [30],electrospinning[17],andvariousphysical[31–35]andchem- icalvapordeposition[36]methodshavebeenpresented.

0925-4005/$seefrontmatter© 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.snb.2013.05.082

(2)

Inthiswork,thegassensingcharacteristicsofhydrothermally processedWO3nanowiresdecoratedwithPdOorPtOxnanoparti- clesarediscussed.Mostoftheworkisfocusedonevaluatingthe sensitivityofthepreparedsensors:S=(G−G0)/(G0c)×100%,where GandG0 aretheconductanceofthesensorbeforeandaftergas exposure,respectively,andcisthegasconcentration.Gassensors basedonnanowirenetworksareexpectedtodeliverhighersta- bilityoverdevices withnanoparticlesofasimilardiameter.The morepronouncedtendencyforsinteringofnanoparticlesatele- vatedoperating temperatures is favoring the useof nanowires [37].Inaddition,nanowiresenablepercolationbetweenthemetal electrodeswithfewercontactsthaninthecaseofnanoparticles.

Durability over bulk Pd/Pt based sensors is also expected due tothelackofcontinuousPd/Pt filmsthat crackunder repeated hydrogenexposures.Thepreparednanowireshaverelativelysmall crystallitestooptimizetheresponsestogasexposures.Alsoshort responseandrecoverytimesareexpectedduetoshortdiffusion pathsofgasestothesurfacesoflooselypackednanowires.Thepre- paredsensorswereobservedtocompete[19]andevenoutperform previously studied tungsten oxide nanowire sensors decorated withPdorPtintermsofsensitivitytohydrogenatroomtempera- ture[20,21].

2. Experimental

Pristine tungsten oxide nanowires were synthesized by the hydrothermal method described elsewhere [38,39]. In brief, sodium-tungstate(2.5g)andsodium-sulfate(3.0g)weredissolved indistilledwater(80ml),thenhydrochloricacid(4.5ml,3M)was addeddrop-wiseundercontinuousstirring.After10minofstir- ringthemixturewastransferredintoaTeflon-linedstainlesssteel autoclaveandwaskeptat180Cfor48h.Theproduct(i.e.WO3 nanowires)wascollectedbycentrifugation,washedwithdistilled waterand ethanol,and finallydriedat60C inair.To decorate thesurfacewithPdOorPtOxnanoparticles,28.6mgPd(acac)2or 20.2mgPt(acac)2wasdissolvedin100mlacetonefollowedbydis- persionof1.0gofthepreparedWO3by3hofultrasonicagitation and6hofmagneticstirring.Thesolventwasevaporatedat80C inanN2atmosphere,whilestirringthemixture.Theproductwas

annealedat300Cinairfor2h.3.2±0.1mgoftheobtainedWO3, WO3–PdOandWO3–PtOxnanowiresweredispersedindeionized waterof1.0±0.1mlbyultrasonicagitation(5min).Fivedroplets ofthedispersionsweredropcast(∼3␮lofeach)overthePtelec- trodefingersoftheSi/SiO2substrateswhilekeepingthesubstrate temperatureat90Ctoallowforquickdrying.Eachdropletwas driedbeforedepositingthesubsequentone.Asaresult,adense, lightgrayfilmofthenanowiresformedoverandbetweentheelec- trodes.Beforeinsertingintothegaschamber,theprepareddevices wereallowedtodryovernightatroomtemperature.

Themicrostructureofthesampleswasstudiedbyenergyfil- teredtransmissionelectronmicroscopy(EFTEM,Leo912Omega) and field-emission scanning electron microscopy (FESEM, Zeiss ULTRAplus).ThecrystalstructurewasexaminedbyX-raydiffrac- tion(XRD,SiemensD5000,CuK␣radiation).Theanalysisofthe chemical composition and theoxidation states wascarried out byX-rayphotoelectronspectroscopy(XPS,KratosAxisUltraDLD, monochromatedAlK␣source,analysisareaof0.3mm×0.7mm, applyingachargeneutralizer).

Gas response measurements were performed in a Linkam THMS600heatingandfreezingstageconnectedtoanAgilent3458A multimeterandapre-mixinggasblendercontrolledbyacomputer.

Thesensitivitiesofthepreparedgassensorswerestudiedinthefol- lowingorderforNO,H2,CO,andCH4(at150,200and250C)and finallyforH2(at30,70and130C)analytesinadrysyntheticair bufferat5Vofconstantbias.Beforeeachgasmeasurement,a2-h temperaturepulseof250Cinsyntheticairwasappliedtocleanthe sensors’surfaces.Sensorswereheatedandcooledat10C/mindur- ingthegasmeasurements.Note:Inthispaper,30Cisconsidered astheroomtemperature,becauseitcanbeeasilykeptconstantin ourmeasurementsetup.Therealroomtemperatureisfluctuating andcannotbemaintainedwithoutadditionalcooling.

3. Resultsanddiscussion

Particlesofsize4.9±2.1nm(PdO)and2.5±1.9nm(PtOx)were formedonthesurfaceoftheWO3nanowiresafterthedecompo- sitionoftheiracetylacetonateprecursors(Fig.1).Atleastpartly duetotheirsmallerdiameter,PtOxnanoparticleswereobservedto

Fig.1.(a)EFTEMimagesofpristine,PdOandPtOxdecoratedWO3nanowiresusedforactivesensinglayersinthegassensors.Insetsshowthecorrespondingsizedistribution diagramsofthedecoratingnanoparticles.(b)XRDpatternsand(c)X-rayphotoelectronspectraofpristineanddecoratedWO3nanowires.

(3)

Fig.2.FieldemissionscanningelectronimagesofdropcastWO3nanowiresonSi/SiO2substratewithPt-electrodes.Theinsetshowsthemicrostructureofthenanowire networkinthemiddleofthedroplet.

coverthesurfaceoftheWO3nanowiresmoreuniformlythanthe PdOnanoparticles.

BasedonXRDanalysis,thenanowiresarehexagonalWO3with anaveragecrystaldiameterof38±5nmascalculatedfromthe broadeningof(110),(101),(200),(201)and(111)reflections.

AlmostidenticalXRDpatternswereobtainedforthepristineand themetal decoratedsamples(Fig.1b),i.e.theanalysisfailedto uncoverthereduced,ortheoxidephasesofthedecoratingparti- cles(couldbecausedbytheirsmallsize,lowconcentrationand/or amorphousstructure).

ResultsofX-rayphotoelectronspectroscopy(Fig.1c)indicate thenanoparticlesinthePd-modifiedsamplearePdOratherthan metallicPd(bindingenergyofPd3d5/2peakat337.3eV).Inthe caseofthePtmodifiedWO3,boththemetallicandoxidephases arepresent(Pt4f7/2peakpositionsat71.4and72.3eV).

Thepreparedgassensorsarebasedonmodulationoftheresis- tanceoftheWO3nanowiresthatfillthegapsandpercolatebetween thePtelectrodes.DriedWO3nanowiredropletshaveathickouter bordercausedbyacommoncoffeeringeffect[40,41],whileinthe middlesection,atangledbutthinnerlayerofthenanowiresforms (Fig.2).BasedonFESEMandEFTEMmicrographs,thediameterof thenanowireshasrelativelylargevariationfrom∼20to∼200nm.

Relatingthis totheXRDpeak broadeningresults,weconcluded

thatinthedriedpowders,notonlyindividualcrystallitesbutalso bundlesofnanowiresarepresent.

Atalltemperaturesandconcentrations,theresponseofthepris- tinenanowirestohydrogenwasrelativelylowcomparedtothe decoratedsamples(Fig.3),whiletheresponseofallsamplesto NO,COandCH4 wasmoderate(seesupplementarymaterial).At theoptimaloperationtemperatureofthePdOandthePtOxdec- oratednanowirebasedsensors,thesensitivityvaluesafter5min of1000ppmH2exposureareashighas140±70%/ppm(at200C) and24±5%/ppm(at250C)respectively,asseeninFig.5.Forthe pristinenanowires,thisfigureis0.3±0.3%/ppm(at250C),which isconsistentwiththeresultsinourearlierarticleonnanoparticle basedsensors[42].ThehighresponseofthePdOandthePtOxdec- oratedsensorsisrelatedtothepartialreductionoftheparticles andthedissociationofH2 onmetalnanoparticlesfollowedbya spill-overontotheWO3surface[43].Thesupposedsurfacereduc- tionofthePdOandthePtOxnanoparticles,alongwiththeinitial pulsesofH2,seemstobesupportedbythelowersensitivityofthe devicesupontheveryfirstinjectionsof10ppmH2comparedtothe subsequent10ppmH2pulses.

SincethesensorresponsetowardH2wasstillverylarge,even at150C,wehaveperformedfurthermeasurementsat30,70and 130Ctoseewhetherthedevicescouldbeusedwithoutexternal

Fig.3.Theconductanceofthesensorsasafunctionofhydrogenconcentrationat150,200,and250C.Theblackandgraycurvesrepresenttwoidenticallypreparedgas sensingdevices.Pleasenotethecurvesarepartiallyoverlappingthustheotherwisesimilarnoiselevelsarenotclearlyvisiblefortheblackcurves.

(4)

Fig.4.Theconductanceofthesensorsasafunctionofhydrogenconcentrationat30,70,and130C.Theblackandgraycurvesrepresenttwoidenticallypreparedgassensing devices.Pleasenotethecurvesarepartiallyoverlappingthustheotherwisesimilarnoiselevelsarenotclearlyvisiblefortheblackcurves.

Fig.5.Thesensitivityofthesensorsasafunctionoftemperatureat(a)10ppm,(b)100ppm,and(c)1000ppmconcentrations.Thesevaluesarecalculatedafter5minofgas exposure.Itshouldbenotedthattheconductanceisfurtherincreasing,evenafter1hofgasexposure,asseeninFig.B1ofthesupplementarymaterial.

heating.AlthoughthepristineWO3nanowiresfailedtodetectH2 atroomtemperature(30C),boththePdOandthePtOxdecorated samplesshowedexcellentresponsefor1000ppmH2(Fig.4)com- paredtosol–gelprocessedWO3/Pd[44]orWO3/Pt[45]thinfilm hydrogensensorsreportedbyothergroups.Whilsta significant responsecausedbytheH2gaswasseen,theconductancedidnot stabilizeevenduringverylong,(upto1h),gaspulsesat30and 70C(Fig.B1).Theconductancewasincreasingalmostlinearlyasa functionoftimeduringthegasexposure.Asconcludedearlierfor porousWO3films[46]hydrogenmoleculesdissociatetohydrogen atomsthatspill-overtoWO3surfaceandbindtosurfaceoxygen ofthelatticethusformingwatermolecules.Desorptionofthese watermoleculesremoveoxygenandhencecreateoxygenvacan- cies,whichdiffusetotheinteriorofthecrystal.Accordingly,the slowresponse time ofoursensors(similar togasochromiccol- orationof WO3 describedinRef. [46])isexplainedbytheslow diffusionofoxygenvacanciesandalsoslowdesorptionofwater fromthetungstenoxidesurface.Therecoverytimeconstantofthe PtandPddecoratedsampleswasobservedtobelessthan10and 15min,respectively,at30C.

Even though, many of the nanowires used in this work (Figs.1and2)appeartohavelargerdiameter(20–200nm)thanthe optimum(4–40nm)forresistivegassensingapplications,thesen- sorsshowanextraordinaryincreaseofconductanceuponexposure toH2.Onereasoncanbeagoodpercolationofthinnanowires(i.e.

thosethatareideal)betweentheelectrodes.Inarandomnetwork

ofthin(ideal)andthick(lessideal)nanowires,thechangeofcon- ductanceinthethickernanowiresisnotexpectedtoinfluencethe gassensitivityasmuchasthethinnanowiresprovidedtheselat- teronesarepercolated.Ontheotherhand,accordingtotheEFTEM micrographs(Fig.1),thelargernanowiresseemtobeconsistingof smallercrystals,whichcouldpossiblyalsocontributetothelarge conductivitymodulationcausedbyH2.

4. Conclusions

Hexagonaltungstenoxidenanowiresdecorated withPdOor PtOxnanoparticlesprovedtobeexcellentmaterialsfordetecting H2 gaswithveryhighsensitivityandgoodselectivityincontrast totheNO,COand CH4 analytes.Bothdecoration typesresulted inverysimilarsensorperformances.Theconductanceofthedec- orated nanowiresensordevices wasfound toincreasewithup tofiveordersofmagnitudewhenexposedto1000ppmofH2in air,even atroomtemperature.Bothtypesofdecorated sensors had long response times (conductance is almost a linear func- tionoftime),thoughtherecoveryslopescouldbefittedwellwith exponentialdecaycurvesofa∼10mintimeconstant.Theover- allpowerconsumption of thedevices isvery low.Without the presenceofH2,thereispracticallynocurrentthroughthedevice and thereforethepowerconsumption isalmostzero.WhenH2 moleculesare present,thepeak powerconsumptionat 30C is P=U2S=(5V)2×10␮S=250␮W.Accordingly,thedevicecouldbe

(5)

operatedreasonably well froman ordinary battery-typepower source, and thus the decorated WO3 nanowires reported here areattractivematerialsforgassensingelementsinanumberof differentdevices,suchasportablelowpowerconsumptionhydro- genleakagedetectors,autonomoussensorassembliesandinfire alarms.

Acknowledgements

MariaSzabó(UniversityofSzeged)isacknowledgedforthesyn- thesisofthepristinenanowires.Thefinancial supportofTEKES (Autosys, Prindemo-POC, Imphona projects) and the Academy of Finland (Rocaname) are acknowledged. J.K. acknowledges INFOTECHOuluGraduateSchool,RiittaandJormaJ.Takanen,Tauno TönningandtheEmilAaltonenFoundationforfinancialsupport forthework.Z.K.acknowledgesthesupportoftheTÁMOP-4.2.2.A- 11/1/KONV-2012-0047project.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.snb.2013.05.082.

References

[1]T.Hübert,L.Boon-Brett,G.Black,U.Banach,Hydrogensensorsareview, SensorsandActuatorsB:Chemical157(2011)329–352.

[2]W.J.Buttner,M.B.Post,R.Burgess,C.Rivkin,Anoverviewofhydrogensafety sensorsandrequirements,InternationalJournalofHydrogenEnergy36(2011) 2462–2470.

[3]C.Christofides,A.Mandelis,Solidstatesensorsfortracehydrogengasdetection, JournalofAppliedPhysics68(1990)R1–R30.

[4]H.Gu,Z.Wang,Y.Hu,Hydrogengassensorsbasedonsemiconductoroxide nanostructures,Sensors12(2012)5517–5550.

[5]K.Gleeson,E.Lewis,Responsechangesofthinfilmpalladiumbasedopticalfibre hydrogensensorsovertime,JournalofPhysics:ConferenceSeries76(2007), 012004(1–6).

[6]N.Barsan,U.Weimar,Conductionmodelofmetaloxidegassensors,Journalof Electroceramics7(2001)143–167.

[7]R.L.Murray,NuclearEnergy:AnIntroductiontotheConcepts,Systems,and ApplicationsofNuclearProcesses,6thed.,ElsevierInc.,Burlington,2009,pp.

201.

[8]H.Czichos,T.Saito,L.Smith(Eds.),SpringerHandbookofMetrologyandTesting, Springer,Heidelberg,Dordrecht,London,NewYork,2001.

[9]K.J.Patel,C.J.Panchal,V.A.Kheral,M.S.Desai,Growth,structural,electricaland opticalpropertiesofthethermallyevaporatedtungstentrioxide(WO3)thin films,MaterialsChemistryandPhysics114(2009)475–478.

[10]P.S.Patil,P.R.Patil,E.A.Ennaoui,Characterizationofultrasonicspraypyrolyzed tungstenoxidethinfilms,ThinSolidFilms370(2000)38–44.

[11]H.Rui,Z.Jing,Y.Rong,Synthesisandelectricalcharacterizationoftungsten oxidenanowires,ChinesePhysicsB18(2009)3024–3030.

[12]M.Regragui,V.Jousseaume,M.Addou,A.Outzourhit,J.C.Bernéde,B.ElIdrissi, ElectricalandopticalpropertiesofWO3thinfilms,ThinSolidFilms397(2001) 238–243.

[13]K.H.Yoon,C.W.Shin,D.H.Kang,PhotoelectrochemicalconversioninaWO3

coatedp-Siphotoelectrode:effectofannealingtemperature,JournalofApplied Physics81(1997)7024–7029.

[14]J.B.Goodenough,A.Hamnett,G.Huber,F.Hulliger,M.Leib,S.K.Ramasesha, H.Werheit,Landolt-Bornstein:NumericalDataandFunctionalRelationships inScienceandTechnology,NewseriesGroupIII,Volume17,Semiconductors Subvolumeg,PhysicsofNon-TetrahedrallyBondedBinaryCompoundsIII, Springer-Verlag,Heidelberg,1984,pp.289.

[15]J.Tamaki,Z.Zhang,K.Fujimori,M.Akiyama,T.Harada,N.Miura,N.Yamazoe, Grain-sizeeffectsintungstenoxide-basedsensorfornitrogenoxides,Journal oftheElectrochemicalSociety141(1994)2207–2210.

[16]G.Gu,B.Zheng,W.Q.Han,S.Roth,J.Liu,Tungstenoxidenanowiresontungsten substrates,NanoLetters8(2002)849–851.

[17]K.M.Sawicka,A.K.Prasad,P.I.Gouma,Metaloxidenanowiresforuseinchem- icalsensingapplications,SensorLetters3(2005)31–35.

[18]D.Meng,N.M.Shaalan,T.Yamazaki,T.Kikuta,Preparationoftungstenoxide nanowiresandtheirapplicationtoNO2sensing,SensorsandActuatorsB:

Chemical169(2012)113–120.

[19]J.Choi,J.Kim,Highlysensitivehydrogensensorbasedonsuspended,function- alizedsingletungstennanowirebridge,SensorsandActuatorsB:Chemical136 (2009)92–98.

[20]O.Garcia-Serrano,O.Goiz,F.Chavez,G.Romero-Parades,R.Pena-Sierra,Pd- decoratedZnOandWO3nanowiresforsensingapplications,in:Proceedingsof theIEEESensorsConference,2011,pp.998–1001.

[21]L.F.Zhu,J.C.She,J.Y.Luo,S.Z.Deng,J.Chen,N.S.Xu,Studyofphysicaland chemicalprocessesofH2sensingofPt-coatedWO3nanowirefilms,Journalof PhysicalChemistryC114(2010)15504–15509.

[22]C.-L.Dai,M.-C.Liu,F.-S.Chen,C.-C.Wu,M.-W.Chang,AnanowireWO3humid- itysensorintegratedwithmicro-heaterandinvertingamplifiercircuitonchip manufacturedusingCMOS-MEMStechnique,SensorsandActuatorsB:Chem- ical123(2007)896–901.

[23]X.Z.Li,F.B.Li,C.L.Yang,W.K.Ge,PhotocatalyticactivityofWOx–TiO2undervis- iblelightirradiation,JournalofPhotochemistryandPhotobiologyA:Chemistry 141(2001)209–217.

[24]X.Cui,L.Guo,F.Cui,Q.He,J.Shi,ElectrocatalyticactivityandCOtoleranceprop- ertiesofmesostructuredPt/WO3compositeasananodecatalystforPEMFCs, JournalofPhysicalChemistryC113(2009)4134–4138.

[25]C.-C.Liao,F.-R.Chen,J.-J.Kai,WO3−xnanowiresbasedelectrochromicdevices, SolarEnergyMaterialsandSolarCells90(2006)1147–1155.

[26]J.Y.Luo,S.Z.Deng,Y.T.Tao,F.L.Zhao,L.F.Zhu,L.Gong,J.Chen,N.S.Xu,Evidence oflocalizedwatermoleculesandtheirroleinthegasochromiceffectofWO3

nanowirefilms,JournalofPhysicalChemistryC113(2009)15877–15881.

[27]Y.Li,Y.Bando,D.Goldberg,Quasi-alignedsingle-crystallineW18O49nanotubes andnanowires,AdvancedMaterials15(2003)1294–1296.

[28]S.J.Yoo,J.W.Lim,Y.-E.Sung,Y.H.Jung,H.G.Choi,D.K.Kim,Fastswitchable electrochromicpropertiesoftungstenoxidenanowirebundles,AppliedPhysics Letters90(2007),173126(1–3).

[29]J.Su,X.Feng,J.D.Sloppy,L.Guo,C.A.Grimes,VerticallyalignedWO3nanowire arraysgrowndirectlyontransparentconductingoxidecoatedglass:synthesis andphotoelectrochemicalproperties,NanoLetters11(2011)203–208.

[30]K.Zhu, H.He, S.Xie, X.Zhang,W.Zhou,S.Jin,B. Yue,CrystallineWO3

nanowiressynthesizedbytemplatingmethod,ChemicalPhysicsLetters377 (2003)317–321.

[31]J.Zhou,Y.Ding,S.Z.Deng,L.Gong,N.S.Xu,Z.L.Wang,Three-dimensionaltung- stenoxidenanowirenetworks,AdvancedMaterials17(2005)2107–2110.

[32]A.Ponzoni,V.Russo,A.Bailini,C.S.Casari,M.Ferroni,A.LiBassi,A.Migliori, V.Morandi,L.Ortolani,G.Sberveglieri,C.E.Bottani,Structuralandgas-sensing characterizationoftungstenoxidenanorodsandnanoparticles,Sensorsand ActuatorsB:Chemical153(2011)340–346.

[33]L.-J.Chou,M.-T.Chang,Y.-L.Chueh,J.J.Kim,H.S.Park,D.Shindo,Electronholog- raphyforimprovedmeasurementofmicrofieldsinnanoelectrodeassemblies, AppliedPhysicsLetters89(2006),023112(1–3).

[34]K.Q. Hong,M.H. Xie, H.S.Wu,Tungsten oxide nanowiressynthesized by a catalyst-free method at low temperature, Nanotechnology 17 (2006) 4830–4833.

[35]Y.B.Li,Y.Bando,D.Goldberg,K.Kurashima,WO3nanorods/nanobeltssyn- thesizedviaphysicalvapordepositionprocess,ChemicalPhysicsLetters367 (2003)214–218.

[36]C.Klinke,J.B.Hannon,L.Gignac,K.Reuter,P.Avouris,Tungstenoxidenanowire growthbychemicallyinducedstrain,JournalofPhysicalChemistryB109 (2005)17787–17790.

[37]G.Korotcenkov,B.K.Cho,Instabilityofmetaloxide-basedconductometricgas sensorsandapproachestostabilityimprovement(shortsurvey),Sensorsand ActuatorsB:Chemical156(2011)527–538.

[38]X.C.Song,Y.F.Zheng,E.Yang,Y.Wang,Large-scalehydrothermalsynthe- sisofWO3nanowiresinthepresenceofK2SO4,MaterialsLetters61(2007) 3904–3908.

[39]M.Szabó,Diplomathesis,UniversityofSzeged,Hungary,2011.

[40]D.Soltman,V.Subramanian,Inkjet-printedlinemorphologiesandtemperature controlofthecoffeeringeffect,Langmuir24(2008)2224–2231.

[41]X.Shen,C.-M.Ho,T.-S.Wong,Minimalsizeofcoffeeringstructure,Journalof PhysicalChemistryB114(2010)5269–5274.

[42]J.Kukkola,etal.,Inkjet-printedgassensors:metaldecoratedWO3nanoparti- clesandtheirgassensingproperties,JournalofMaterialsChemistry22(2012) 17878–17886.

[43]S.J.Ippolito,S.Kandasamy,K.Kalantar-Zadeh,W.Wlodarski,LayeredSAW hydrogensensorwithmodifiedtungstentrioxideselectivelayer,Sensorsand ActuatorsB:Chemical108(2005)553–557.

[44]S.Fardindoost,A.Irajizad,F.Rahimi,R.Ghasempour,PddopedWO3films preparedbysol–gelprocessforhydrogensensing,InternationalJournalof HydrogenEnergy35(2010)854–860.

[45]H.Nakagawa,N.Yamamoto,S.Okazaki,T.Chinzei,S.Asakura,Aroomtemper- atureoperatedhydrogenleaksensor,SensorsandActuatorsB:Chemical93 (2003)468–474.

[46]A.Georg,W.Graf,N.V.Wittwer,Mechanismofthegasochromiccolorationof porousWO3films,SolidStateIonics127(2000)319–328.

Biographies

JarmoKukkolareceivedhisM.Sc.intheoreticalphysicsfromtheUniversityofOulu, Finland,in2008.HeiscurrentlyaPh.D.studentattheMicroelectronicsandMate- rialsPhysicsLaboratories,UniversityofOulu.Hisresearchinterestistheelectrical propertiesofnanostructuredmaterials.

MelindaMohlbornin1982,graduatedwithanM.Sc.inenvironmentalchemistry (2006,UniversityofSzeged,Hungary)andaPh.D.innanotechnology(2011,Univ.

Szeged).SheundertookherinternshipatTheFacultésUniversitairesNotre-Dame delaPaixinNamur(Belgium)in2005–2006.Inautumn2011,shecommencedas

(6)

apostdoctoralresearchfellowattheUniversityofOulu,Finland.Previously,she hasalsoworkedonporousmetalnanostructuresandcarbonnanotubebasedsen- sorsatRiceUniversity,USA.Hercurrentresearchinterestisfocusedondeveloping nanostructuresfor(photo)catalysis,sensorsandelectronicdevices.

Anne-RiikkaLeinobornin1985,graduatedwithanM.Sc.inOrganicChemistry (2010,UniversityofOulu,Finland).In2009,shejoinedtheMicroelectronicsand MaterialsPhysicsLaboratoriesasaresearchassistant.Since2010,sheispursuing studiestowardherPh.D.withthetopicofnanoparticleformationandagglomeration overnanostructuredsurfaces.

JaniMäklingraduatedasanelectricalengineerattheDepartmentofElectricaland InformationEngineering,UniversityofOulu,Finland,in2010.Since2006,hehas beenworkingasaresearchassistantinEUandTekesprojectsaimingatsensor applicationsofnanostructuredmaterials.Currently,heispursuingresearchtoward hisdoctoraldegreeinmicroelectronicswithemphasisongassensors.

NiinaHalonenreceivedherM.Sc.inorganicchemistryfromtheUniversityofOulu, Finland,in2006.Inthesameyear,shejoinedtheMicroelectronicsandMaterials PhysicsLaboratories,UniversityofOulu,andstartedpostgraduatestudies.Since 2007,sheisalsoamemberoftheNationalGraduateSchoolinNanoscience.Her expertiseisinthinandthickfilmtechnologies,opticallithographyandcarbon nanotubesynthesis/applications.

AndreyShchukarev,M.Sc.inchemistry(LeningradStateUniversity,Russia,1979), Ph.D.ininorganicchemistry(LeningradStateUniversity,Russia,1983)andDocentin chemistry(UmeåUniversity,Sweden,2009),isworkingasaresearcherandassis- tantprofessorattheEnvironmentalandBiogeochemistryGroup,Departmentof Chemistry,UniversityofUmeå.Hisresearchinterestisthedevelopmentofsurface analysistechniques,inparticularXPS,andtheirapplicationtorealenvironmental, biologicalandbiomedicalobjects.

ZoltanKonyawasborninHungaryin1971,graduatedwithanM.Sc.inchemistry (1994,University of Szeged, Hungary)and Ph.D. inchemistry (1998,Univer- sityofSzeged, Hungary).Heisprofessor ofchemistryand since2010, he is headoftheAppliedandEnvironmentalChemistryDepartmentoftheUniversity ofSzeged,Hungary.Dr.Kónyahaspublished200+papersinrefereedscientific

journalsandco-authored10bookchapters.Heholds10nationalandinternational patents.Hisresearchinterestisthedevelopmentofnewnanostructuredmateri- alsandtheirapplicationtorealchemical,environmental,biologicalandbiomedical objects.

HeliJantunenreceivedherM.Sc.inastronomyandphysics,FacultyofSciences in1982,theDiplomaineducationin1985,andanM.Sc.inelectricalengineering, FacultyofTechnologyin1989,UniversityofOulu,Finland.Afterbeinginindustry for10years,shejoinedtheMicroelectronicsandMaterialsPhysicsLaboratories, DepartmentofElectricalEngineeringin1999andreceivedtheDr.Tech.degreein microelectronics(withhonors)in2001.Sheisprofessoroftechnicalphysicsatthe UniversityofOulu,andheadofthelaboratoryandthedepartment.Sheischairof theScientificAdvisoryBoardofDefence(ElectronicsGroup),theResearchCouncil forNaturalSciencesandEngineering,AcademyofFinland,andtheESFStanding CommitteeforPESC.HerresearchisfocusedonnovelsensorandRFapplicationsby implementationofadvancedmicrowaveandfunctionalmaterials,structuresand nanotechnologyintomultifunctionalmicromodulesandprintedelectronicsdevices.

Shehasbeenaninvitedspeaker,sessionchairand/orscientificcommitteemember of40internationalscientificconferences,andholdsover13nationalandinterna- tionalpatents.Shehas140+scientificjournalpublications(>1100citations).Her currentfocusismainlydevotedtoherERC(EuropeanResearchCouncil)Advanced Grantproject.

Krisztian Kordaswas borninHungary in 1975, graduatedwithan M.Sc.in physicsandchemistry(1998,UniversityofSzeged,Hungary),Dr.Tech.Micro- electronics (2002) and Docent of Nanotechnology (2004, University of Oulu, Finland).Between2004and2009, hewasappointedasanacademyresearch fellow,bytheAcademyofFinland.From2011until2012,hewasanassistant professorattheDepartmentofChemistryoftheUmeåUniverity.Currently,he isaresearchprofessorattheMicroelectronicsandMaterialsPhysicsLaborato- ries,UniversityofOulusupervisingresearchprojects(EU,TEKESandAcademy ofFinland)aswellasdiplomaworksofstudents andpostgraduatestudiesof young researchers.Dr.Kordashaspublished 90+papersinrefereedscientific journalsandco-authored4bookchapters.Hisresearchisfocusedonsynthesis, structuralandelectricalcharacterization,andimplementationofnanostructured materialsforelectronics,sensorsand(photo)catalystapplications.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A wide range of sensors and actuators can be connected to the units with minimal effort; the units support analogue and digital input and output, timers, counters

The primary mission of the institute is conducting basic research in the fields of theoretical and experimental solid state physics and materials science including metal

The main profile of the institute is to do basic research in the fields of theoretical and experimental solid state physics and materials science including metal physics and liquid

The main profile of the institute is basic research in the fields of theoretical and experimental solid state physics and materials science including metal physics, crystal physics

The main profile of the institute is basic research in the fields of theoretical and experimental solid state physics and materials science including metal physics and liquid

The primary mission of the institute is conducting basic research in the fields of theoretical and experimental solid state physics and materials science including metal

The main profile of the institute is basic research in the fields of theoretical and experimental solid state physics and materials science including metal physics, crystal physics

Valéria Kozma-Blázsik, responsible for EU projects at the Wigner Research Centre for Physics of the Hungarian Academy of Sciences participated in this six-week stay in