• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
19
0
0

Teljes szövegt

(1)

volume 5, issue 2, article 39, 2004.

Received 18 August, 2003;

accepted 11 April, 2004.

Communicated by:F. Qi

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON CERTAIN INEQUALITIES RELATED TO THE SEITZ INEQUALITY

LIANG-CHENG WANG AND JIA-GUI LUO

Department of Mathematics Daxian Teacher’s College Dazhou 635000, Sichuan Province The People’s Republic of China.

EMail:wangliangcheng@163.com Department of Mathematics Zhongshan University Guangzhou 510275 People’s Republic of China.

c

2000Victoria University ISSN (electronic): 1443-5756 112-03

(2)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

Abstract

In this paper, we investigate the monotonicity of difference results from the G.

Seitz inequality. An application is given, with some resulting inequalities.

2000 Mathematics Subject Classification:26D15

Key words: G. Seitz inequality, Convex function, Difference, Monotonicity, Exponen- tial convex.

The first author is partially supported by the Key Research Foundation of the Daxian Teacher’s College under Grant 2003–81.

Contents

1 Introduction. . . 3 2 Proof of Theorem 1.1 . . . 7 3 Applications. . . 14

References

(3)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

1. Introduction

For a given positive integern≥2, letX = (x1, x2, . . . , xn),Y = (y1, y2, . . . , yn), U = (u1, u2, . . . , un) and Z = (z1, z2, . . . , zn) be known sequences of real numbers, and letti > 0 (i = 1,2, . . . , n),Tj = Pj

i=1ti (j = 1,2, . . . , n) and aij (i, j = 1,2, . . . , n)be known real numbers. Define the functionsA, J, C, W andGby

A(n)=4

n

X

i=1

xi−n

n

Y

i=1

xi

!n1

(xi >0, i= 1,2, . . . , n),

J(n)=4

n

X

i=1

tif(vi)−Tnf 1 Tn

n

X

i=1

tivi

! ,

wheref is convex function on the intervalI andvi ∈I(i= 1,2, . . . , n), C(n)=4

" n X

i=1

x2i

! n X

i=1

yi2

!#12

n

X

i=1

xiyi,

W(n)=4 Tn

n

X

i=1

tixizi

n

X

i=1

tixi

! n X

i=1

tizi

! ,

and G(n)=4

n

X

i,j=1

aijxizj

! n X

i,j=1

aijyiuj

!

n

X

i,j=1

aijxiuj

! n X

i,j=1

aijyizj

! .

(4)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

Rade investigated the monotonicity of difference forA−Gmean inequality, and obtained the following inequality [2]

(1.1) A(n)≥A(n−1).

P. M. Vasi´c and J. E. Peˇcari´c generalized inequality (1.1) to convex functions, and obtained the following inequality [4,6]

(1.2) J(n)≥J(n−1).

Recently the first author and Xu Zhang studied inequality (1.2) in depth, and obtained some inequalities. L.-C. Wang also obtained some applications, one of them is the following inequality [8]

(1.3) C(n)≥C(n−1).

Inequality (1.3) resulted from the Cauchy inequality (1.4)

n

X

i=1

x2i

! n X

i=1

yi2

!

n

X

i=1

xiyi

!2

.

In [7], L.-C. Wang proved the following inequality

(1.5) W(n)≥W(n−1),

withXandZboth increasing or both decreasing. If one ofXorZis increasing and the other decreasing, then the inequality (1.5) reverses.

(5)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

Inequality (1.5) resulted from the following Chebyshev inequality

(1.6) Tn

n

X

i=1

tixizi

n

X

i=1

tixi

! n X

i=1

tizi

! ,

withXandZboth increasing or both decreasing. If one ofXorZis increasing and the other decreasing, then the inequality (1.6) reverses.

Assume thati, j, r, s ∈Nsuch that1 ≤ i < j ≤n and1 ≤r < s ≤ n, we have

(1.7)

xi xj yi yj

zr zs ur us

≥0

and (1.8)

air ais ajr ajs

≥0.

When both (1.7) and (1.8) are true, the following inequality by G. Seitz [1]

holds:

(1.9)

n

P

i,j=1

aijxizj

n

P

i,j=1

aijxiuj

n

P

i,j=1

aijyizj

n

P

i,j=1

aijyiuj .

If

(1.10) X =Z, Y =U and aij =

( 1 i=j

0 i6=j (i, j = 1,2, . . . , n),

(6)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

then inequality (1.9) changes into (1.4). If (1.11) Y =U = (1,1, . . . ,1) and aij =

( ti i=j

0 i6=j (i, j = 1,2, . . . , n), then inequality (1.9) changes into (1.6).

In this paper, we investigate inequality (1.9) in depth, obtaining the following main result.

Theorem 1.1. If both inequalities (1.7) and (1.8) are true, then we have

(1.12) G(n)≥G(n−1).

Remark 1.1. If we put (1.10) and (1.11) into (1.12), then (1.12) becomes (1.3) and (1.5), respectively. Hence, (1.12) is an extension of (1.3) and (1.5).

(7)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

2. Proof of Theorem 1.1

Using

aijxizj

ainyiun

=

aijyizj

ainxiun

(i, j = 1,2, . . . , n−1),

aijyiuj

ainxizn

=

aijxiuj

ainyizn

(i, j = 1,2, . . . , n−1), and (1.7) – (1.8), we have

n−1

X

i,j=1

aijxizj

n−1

X

i=1

ainyiun

n−1

X

i,j=1

aijyizj

n−1

X

i=1

ainxiun (2.1)

+

n−1

X

i,j=1

aijyiuj

n−1

X

i=1

ainxizn

n−1

X

i,j=1

aijxiuj

n−1

X

i=1

ainyizn

=

n−1

X

i=1 n−1

X

j=1

aijxizj

n−1

X

k=1

aknykun

n−1

X

i=1 n−1

X

j=1

aijyizj

n−1

X

k=1

aknxkun

+

n−1

X

i=1 n−1

X

j=1

aijyiuj

n−1

X

k=1

aknxkzn

n−1

X

i=1 n−1

X

j=1

aijxiuj

n−1

X

k=1

aknykzn

=

n−1

X

i=1 n−1

X

j=1 n−1

X

k=1,k6=i

aijakn

×

xizjykun+xkznyiuj−yizjxkun−xiujykzn

(8)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

=

n−1

X

j=1 n−2

X

i=1 n−1

X

k=2,i<k

+

n−1

X

i=2 n−2

X

k=1,i>k

! aijakn

×

xizjykun+xkznyiuj−yizjxkun−xiujykzn

=

n−1

X

j=1 n−2

X

i=1 n−1

X

k=2,i<k

aijakn

xizjykun+xkznyiuj −yizjxkun−xiujykzn

+

n−1

X

j=1 n−1

X

k=2 n−2

X

i=1,k>i

akjain

xkzjyiun+xiznykuj −ykzjxiun−xkujyizn

=

n−1

X

j=1

X

1≤i<k<n

aijakn−akjain

×

xizjykun+xkznyiuj−yizjxkun−xiujykzn

=

n−1

X

j=1

X

1≤i<k<n

aij ain akj akn

xi xk yi yk

zj zn uj un

≥0.

Using

aijxizj

anjynuj

=

aijxiuj

anjynzj

(i, j = 1,2, . . . , n−1),

aijyiuj

anjxnzj

=

aijyizj

anjxnuj

(i, j = 1,2, . . . , n−1),

(9)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

(1.7) – (1.8) and the same method as in the proof of (2.1), we obtain

n−1

X

i,j=1

aijxizj

n−1

X

j=1

anjynuj

n−1

X

i,j=1

aijxiuj

n−1

X

j=1

anjynzj (2.2)

+

n−1

X

i,j=1

aijyiuj n−1

X

j=1

anjxnzj

n−1

X

i,j=1

aijyizj n−1

X

j=1

anjxnuj

=

n−1

X

i=1 n−1

X

j=1 n−1

X

k=1,k6=j

aijank

×

xizjynuk+yiujxnzk−xiujynzk−yizjxnuk

=

n−1

X

i=1

X

1≤j<k<n

aij aik anj ank

xi xn yi yn

zj zk uj uk

≥0.

Using

ainyiun

ajnxjzn

=

ainyizn

ajnxjun

(i, j = 1,2, . . . , n) and

aniynui

anjxnzj

=

aniynzi

anjxnuj

(i, j = 1,2, . . . , n−1),

we obtain (2.3)

n

X

i=1

ainyiun

n

X

j=1

ajnxjzn

n

X

i=1

ainyizn

n

X

j=1

ajnxjun= 0

(10)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

and (2.4)

n−1

X

i=1

aniynui

n−1

X

j=1

anjxnzj

n−1

X

i=1

aniynzi

n−1

X

j=1

anjxnuj = 0,

respectively.

Using

annynun

anjxnzj

=

anjynzj

annxnun

(j = 1,2, . . . , n−1),

anjynuj

annxnzn

=

annynzn

anjxnuj

(j = 1,2, . . . , n−1), and (1.7) – (1.8), we have

n

X

i=1

ainyiun

n−1

X

j=1

anjxnzj

n−1

X

j=1

anjynzj

n

X

i=1

ainxiun

! (2.5)

+

n−1

X

j=1

anjynuj

n

X

i=1

ainxizn

n

X

i=1

ainyizn

n−1

X

j=1

anjxnuj

!

+

n−1

X

i,j=1

aijannxizjynun

n−1

X

i,j=1

aijannyizjxnun

!

+

n−1

X

i,j=1

aijannyiujxnzn

n−1

X

i,j=1

aijannxiujynzn

!

(11)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

=

n−1

X

i=1

ainyiun

n−1

X

j=1

anjxnzj

n−1

X

j=1

anjynzj

n−1

X

i=1

ainxiun

!

+

n−1

X

j=1

anjynuj n−1

X

i=1

ainxizn

n−1

X

i=1

ainyizn n−1

X

j=1

anjxnuj

!

+

n−1

X

i=1 n−1

X

j=1

aijannxizjynun

n−1

X

i=1 n−1

X

j=1

aijannyizjxnun

!

+

n−1

X

i=1 n−1

X

j=1

aijannyiujxnzn

n−1

X

i=1 n−1

X

j=1

aijannxiujynzn

!

=

n−1

X

i=1 n−1

X

j=1

ainanj

yiunxnzj+xiznynuj−xiunynzj−yiznxnuj

+

n−1

X

i=1 n−1

X

j=1

aijann

xizjynun+xnznyiuj−yizjxnun−xiujynzn

=

n−1

X

i=1 n−1

X

j=1

aijann−ainanj

×

xizjynun+xnznyiuj −yizjxnun−xiujynzn

=

n−1

X

i=1 n−1

X

j=1

aij ain anj ann

xi xn yi yn

zj zn uj un

≥0.

(12)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

By (2.1)-(2.5) and definition ofG(n), we have G(n)−G(n−1) =

n−1

X

i,j=1

aijxizj +

n

X

i=1

ainxizn+

n−1

X

j=1

anjxnzj

!

×

n−1

X

i,j=1

aijyiuj +

n

X

i=1

ainyiun+

n−1

X

j=1

anjynuj

!

n−1

X

i,j=1

aijxiuj +

n

X

i=1

ainxiun+

n−1

X

j=1

anjxnuj

!

×

n−1

X

i,j=1

aijyizj+

n

X

i=1

ainyizn+

n−1

X

j=1

anjynzj

!

n−1

X

i,j=1

aijxizj

n−1

X

i,j=1

aijyiuj

n−1

X

i,j=1

aijxiuj

n−1

X

i,j=1

aijyizj

!

=

n−1

X

i,j=1

aijxizj n−1

X

i=1

ainyiun

n−1

X

i,j=1

aijyizj n−1

X

i=1

ainxiun

!

+

n−1

X

i,j=1

aijannxizjynun

n−1

X

i,j=1

aijannyizjxnun

!

+

n−1

X

i,j=1

aijyiuj

n−1

X

i=1

ainxizn

n−1

X

i,j=1

aijxiuj

n−1

X

i=1

ainyizn

!

(13)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

+

n−1

X

i,j=1

aijannyiujxnzn

n−1

X

i,j=1

aijannxiujynzn

!

+

n−1

X

i,j=1

aijxizj n−1

X

j=1

anjynuj

n−1

X

i,j=1

aijxiuj n−1

X

j=1

anjynzj

!

+

n−1

X

i,j=1

aijyiuj

n−1

X

j=1

anjxnzj

n−1

X

i,j=1

aijyizj

n−1

X

j=1

anjxnuj

!

+

n

X

i=1

ainyiun n

X

j=1

ajnxjzn

n

X

i=1

ainyizn n

X

j=1

ajnxjun

!

+

n−1

X

i=1

aniynui

n−1

X

j=1

anjxnzj

n−1

X

i=1

aniynzi

n−1

X

j=1

anjxnuj

!

+

n

X

i=1

ainyiun

n−1

X

j=1

anjxnzj

n−1

X

j=1

anjynzj

n

X

i=1

ainxiun

!

+

n−1

X

j=1

anjynuj

n

X

i=1

ainxizn

n

X

i=1

ainyizn

n−1

X

j=1

anjxnuj

!

≥0,

i.e., inequality (1.12) is true. This completes the proof of theorem .

(14)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

3. Applications

Let E be a convex subset of an arbitrary real linear spaceK, and letf : E 7→

(0,+∞). f is an exponential convex function onE, if and only if

(3.1) f

tu+ (1−t)v

≤ft(u)f1−t(v)

for anyu, v ∈E and anyt ∈[0,1]. f is an exponential concave function onE, if and only if the inequality (3.1) reverses (see [4]).

For anyu, v ∈E(u6=v)andαki, βki ∈[0,1], we letxkikiu+ (1−αki)v and yki = βkiu+ (1−βki)v (k = 1,2;i = 1,2, . . . , n;n > 2). Define a functionLby

L(n) =

n

X

i,j=1

aijf(x1i)f(x2j)

n

X

i,j=1

aijf(y1i)f(y2j)

n

X

i,j=1

aijf(x1i)f(y2j)

n

X

i,j=1

aijf(y1i)f(x2j).

Proposition 3.1. Let f be an exponential convex (or concave) function on E and inequality (1.8) be true. Fork = 1,2and every pair of positive integersi andj such that1≤i < j ≤n, if

(3.2) αki ≤βki ≤αkj and αkj −αkikj−βki, then we have

(3.3) L(n)≥L(n−1).

(15)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

Proof. 1. Supposef is an exponential convex function onE. Fork = 1,2 and1≤i < j ≤n, from (3.2), we haveβkjkjki−αki ≥αkj. Case 1. Whenαki < βki ≤αkj < βkj, we taket = ββki−αki

kj−αki, then1−t =

βkj−βki

βkj−αki. Hence, we have

(3.4) tykj + (1−t)xkikiu+ (1−βki)v =yki. From (3.1) and (3.4), we have

(3.5) f(yki)≤ft(ykj)f1−t(xki).

From (3.2), we get the other form oftand1−t: t = ββkj−αkj

kj−αki and1−t =

αkj−αki

βkj−αki. Then we have

(3.6) (1−t)ykj +txkikju+ (1−αkj)v =xkj. From (3.1) and (3.6), we have

(3.7) f(xkj)≤f1−t(ykj)ft(xki).

From (3.5) and (3.7), we obtain (3.8)

f(xki) f(xkj) f(yki) f(ykj)

≥0.

Case 2. Whenαkiki (orαkjkj), by (3.2), then we haveαkjkj (orαkiki). Hence, the equality of (3.8) holds.

(16)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

For any1≤i < j ≤nand any1≤r < s≤n, by (3.8), we obtain (3.9)

f(x1i) f(x1j) f(y1i) f(y1j)

f(x2r) f(x2s) f(y2r) f(y2s)

≥0.

2. Letfbe an exponential concave function onE. Then (3.5), (3.7) and (3.8) reverse. Hence, (3.9) is still valid.

Replacingxi, yi,ziandui in Theorem1.1withf(x1i), f(y1i),f(x2i)and f(y2i)(i = 1,2, . . . , n), respectively, we obtain (3.3). This completes the proof of Proposition3.1.

Remark 3.1. In Proposition3.1, whenEis a real intervalI, we only need

xki ≤yki ≤xkj and xkj−xki =ykj−yki,

wherek = 1,2,i, j are every pair of positive integers such that1≤i < j ≤n, xki, xkj, yki, ykj ∈I.

In order to verify Proposition3.3, the following lemma is necessary.

Lemma 3.2. Let c, d : [a, b] 7→ R(b > a) be the monotonic functions, both increasing or both decreasing. Furthermore, let q : [a, b] 7→ (0,+∞)be an integrable function. Then

(3.10) Z b

a

q(x)c(x)dx Z b

a

q(x)d(x)dx≤ Z b

a

q(x)dx Z b

a

q(x)c(x)d(x)dx.

If one of the functions ofcordis increasing and the other decreasing, then the inequality (3.10) reverses. (see [2,3]).

(17)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

Letp : [a, b]7→ (0,+∞)be continuous,g : [a, b]7→(1,+∞)be monotonic continuous. Define a functionM by

M(n) =

n

X

i,j

aijh(k+i)(x)h(m+j)(x)

n

X

i,j

aijh(l+i)(x)h(w+j)(x)

n

X

i,j

aijh(k+i)(x)h(w+j)(x)

n

X

i,j

aijh(l+i)(x)h(m+j)(x),

wherek, l, m, w∈N,i, j = 1,2, . . . , nand (3.11) h:R7→R+, h(x) =

Z b a

p(t) g(t)x

dt (see [5]).

Proposition 3.3. Let the inequalities in (1.8) hold. Ifk < l,m < w ork > l, m > w, then we have

(3.12) M(n)≥M(n−1).

Proof. For (3.11), by continuity ofpandg,we may change the order of deriva- tion and integration. By direct computation, we get

(3.13) h(n)(x) =

Z b a

p(t) (g(t))x(lng(t))ndt.

For every pair of integersi, j such that1≤ i < j ≤ n, when k < l, replaceq, canddin Lemma3.2byp(t) (g(t))x(lng(t))k+i,(lng(t))j−i and(lng(t))l−k, respectively. Using (3.13), we get

(3.14) h(k+i)(x)h(l+j)(x)≥h(k+j)(x)h(l+i)(x).

(18)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

By (3.14), we have (3.15)

h(k+i)(x) h(k+j)(x) h(l+i)(x) h(l+j)(x)

≥0.

Similarly we obtain (3.16)

h(m+r)(x) h(m+s)(x) h(w+r)(x) h(w+s)(x)

≥0,

wherer,sare pair of integer such that1≤r < s ≤nandm < w.

Replacingxi,yi,zianduiin Theorem1.1byh(k+i)(x),h(l+i)(x),h(m+i)(x) andh(w+i)(x)(i= 1,2, . . . , n), respectively, we obtain (3.12).

By Lemma 3.2, when k > l and m > w, both (3.15) and (3.16) reverse.

Hence, the product on the left for both (3.15) and (3.16) is still nonnegative, hence, by Theorem1.1, (3.12) is also satisfied.

This completes the proof of Proposition3.3.

(19)

On Certain Inequalities Related to the Seitz Inequality

Liang-Cheng Wang and Jia-Gui Luo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of19

J. Ineq. Pure and Appl. Math. 5(2) Art. 39, 2004

http://jipam.vu.edu.au

References

[1] G. SEITZ, Une remarque aux inégalités, Aktuarské Vˇedy, 6 (1936), 167–

171.

[2] D.S. MITRINOVI ´C, Analytic Inequalities, Springer-Verlag, Berlin/New York, 1970.

[3] BAI-NI GUO AND FENG QI, Inequalities for generalized weighted mean values of convex function, Math. Ineq. Appl., 4(2) (2001), 195–202.

[4] CHUNG-LIE WANG, Inequalities of the Rado-Popoviciu type for functions and their applications, J. Math. Anal. Appl., 100 (1984), 436–446.

[5] FENG QI, Generalized weighted mean values with two parameters , Proc.

R. Soc. Lond. A., 454 (1998), 2723–2732.

[6] P.M. VASI ´CANDJ.E. PE ˇCARI ´C, On the Jensen inequality, Univ. Beograd.

Publ. Elektrotehn. Fak. Ser. Math. Fiz., 634–677 (1979), 50–54.

[7] L.-C. WANG, On the monotonicity of difference generated by the inequal- ity of Chebyshev type, J. Sichuan University (Natural Science Edition), 39 (2002), 338–403.

[8] L.-C. WANG, Convex Functions and Their Inequalities, Sichuan University Press, Chengdu, China, 2001. (In Chinese).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

1 Brno University of Technology, Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, 602 00 Brno, Czech Republic, and Brno University of

SATORU MURAKAMI † and TOSHIKI NAITO, NGUYEN VAN MINH ‡ Department of Applied Mathematics, Okayama University of Science,.. Okayama 700-0005, Japan

A large series of well-documented, naturally mummified individuals came to light during reconstruction work at the Dominican Church in Vác, Hungary in 1994-95.. 265 individuals

Department of Mathematics Department of Mathematics Zhejiang Xinchang High School Zhejiang Normal University Shaoxing 312500, Zhejiang Jinhua 321004, Zhejiang People’s Republic

Department of Mathematics Department of Mathematics Central University of Rajasthan Government Dungar College 16, Nav Durga Colony, Opposite Hotel Clarks Amer, Bikaner-334001,..

Education Faculty University of Zagreb Department of Mathematics Prilaz Baruna Filipovi´ca 30 25240 Kampüs, Erzurum, Turkey 10000 Zagreb, Croatia EMail: emos@atauni.edu.tr

Department of Mathematics, Kinki University Higashi-Osaka, Osaka 577-8502, Japan.. EMail: owa@math.kindai.ac.jp yayoi@math.kindai.ac.jp ha_ya_to112@hotmail.com Received: 18

Research Institute of Mathematical Inequality Theory Henan Polytechnic University.. Jiaozuo City, Henan Province, 454010, China