• Nem Talált Eredményt

photoactivity issues problematic of enhancementfactors Novel synthesis for WO approaches -TiO /MWCNT compositephotocatalysts- Catalysis Today

N/A
N/A
Protected

Academic year: 2022

Ossza meg "photoactivity issues problematic of enhancementfactors Novel synthesis for WO approaches -TiO /MWCNT compositephotocatalysts- Catalysis Today"

Copied!
11
0
0

Teljes szövegt

(1)

factors

Enik ˝o Bárdos

a

, Gábor Kovács

a,b,c

, Tamás Gyulavári

a

, Krisztián Németh

a

, Egon Kecsenovity

a

, Péter Berki

a

, Lucian Baia

b,c

, Zsolt Pap

b,c,d

, Klára Hernádi

a,∗

aDepartmentofAppliedandEnvironmentalChemistryUniversityofSzeged,RerrichBélatér1,HU-6720,Szeged,Hungary

bFacultyofPhysics,Babes¸–BolyaiUniversity,M.Kog˘alniceanu1,RO-400084Cluj–Napoca,Romania

cInstituteforInterdisciplinaryResearchonBio-Nano-Sciences,Babes¸–BolyaiUniversity,TreboniuLaurian42,RO-400271Cluj-Napoca,Romania

dInstituteofEnvironmentalScienceandTechnology,UniversityofSzeged,TiszaLajoskrt.103,HU-6720Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received30September2016

Receivedinrevisedform25February2017 Accepted15March2017

Availableonline22March2017

Keywords:

WO3nanocrystallites WO3-TiO2nanocomposites Photocatalyticactivity Carbonnanotubes Photocatalysis

a b s t r a c t

The “build-up” methodology, the importance of the order of the semiconductor layers in WO3- TiO2/MWCNT composite materials was studied in terms of the applied synthesis pathway, morpho-structuralparameters(meancrystallitesize,crystalphasecomposition,morphology)andpho- tocatalyticefficiency(usingoxalicacidasmodelpollutant).Theappearance ofTiWOxphaseinthe compositescontributedtotheenhancementofthephotocatalyticefficiencies,asdifferentsynthesis approachesledtodifferentcrystalphasecompositions.Although,itwasproventhatabeneficialphase’s presencecanbehinderedifanexcessofMWCNTorWO3wasapplied.Astheratioofthementioned materialswasreduced,activecompositeswereobtained,butthepreviouslynoticedTiWOxdisappeared.

Therefore,itwasproven,thatinthecaseofWO3-TiO2/MWCNTnanocompositesystemseveralphoto- catalyticactivityenhancementfactorscanbeintroduced,butnotsimultaneously(thedisappearanceof TiWOxatlowMWCNTandWO3contentsandtheappearanceofhighlycrystallineanatase).

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Catalysts are of great importance in the synthesis of petro- chemicals, plastics, medical agents or fuelcell materials. Their applicability extends also for environmental applications, for examplethereduction ofemissionsand degradationof various organicpollutants[1].Thecatalyticactivityandselectivitydepend stronglyonseveralparameters, suchascrystal phase and stoi- chiometriccomposition,particlesizeandmorphology,crystallinity gradeofthecatalystortheshapeofthecatalystnanocrystals[2,3].

Amongthecatalyticprocesses,photocatalysisisaveryimportant alternativeinthedegradationoforganicpollutants,anditisbased ontheirradiationofasemiconductorwithphotonsofgreateror equalenergythanitsbandgap.Titaniumdioxide(TiO2)isasemi- conductormetaloxide,whichhasmanyadvantageousproperties thatmakesitalmostidealforphotocatalyticapplications[4,5],itis photostable,biocompatible,non-toxic,relativelycheapandavail- ableinlargequantity[6].UnderUVirradiation,itisanexcellent

Correspondingauthor.

E-mailaddress:hernadi@chem.u-szeged.hu(K.Hernádi).

materialforthedegradationofvariousinorganicandorganiccom- pounds[7].However,becauseofitslargebandgapenergy,TiO2 absorbslightonlyintheUV-A,nearvisibleregion.Thisisthemain drawbackofitswiderapplicationsinceonly4–5%ofthesolaremis- sionspectrumfallsinthisrange[8,9].Toovercomethisproblem there aremany differentapproaches inthe scientificliterature.

Themostimportantmethodstoincreasethephotocatalyticactivity containcatalystmodificationbydoping,metaldecoration,surface sensitization,orbydesigningmoreefficientcomposites(e.g.mixed semiconductoroxides)[10],thelatterpossibilityseemstoberather promising.Efficientchargeseparationcanbeobtainedbythecom- binationoftwosemiconductorparticlesthathavedifferentenergy levels[11]. Byproperly tailoringtheproperties ofthe compos- itecomponents,metaloxideheterojunctionscancertainlybean interestingapproachtomodifythephotocatalyticperformancesof individualoxides[12].Everyoxidecomponentcandisplaydifferent chemicalinteractionwiththecontaminanttodecompose.Surpris- ingly,inmanycasesoxidesystemsusedforcatalysisshowmany similaritieswiththeonesinvestigatedforsensing[13].

In the last few years, tungsten trioxide − titanium dioxide (WO3/TiO2) composite photocatalysts have drawn researchers’

attention since they possess interesting and unique photocat- http://dx.doi.org/10.1016/j.cattod.2017.03.019

0920-5861/©2017ElsevierB.V.Allrightsreserved.

(2)

alyticfeatures[14–16].WO3showsamoderatelysmallbandgap energy,strongabsorptionwithinthevisiblespectrum,long-term performanceand highchemical stabilityin a widepHrange of aqueoussolutionsunderoxidativecircumstances[17,18].Itiswell- knownin theliteraturethat theconnectionbetweenWO3 and TiO2enablesimprovedchargeseparationandvisiblelightresponse [14–16,18–22]. Furthermore, WO3 based composites possess a strongabsorptioninvisiblelight,buttheirphotocatalyticactivities areverylow.

Comparingbandgapsofthetwocomponents(whilerelatively small−2.4–2.8eV−forWO3andhigh−3.0–3.2eV−forTiO2)itis obviousthatthetransferofelectronsfrombulkTiO2toWO3might furtherminimizetherecombinationlosses.

Besides theabove-mentioned composite formation of semi- conductoroxides,theadditionofcarbonnanotubes(CNT)canbe alsoa feasible methodto elongate thelifetime of photogener- atede/h+ pairs and preventtheirrecombination [23].Because oftheiruniquechemical,physicalandelectronicproperties,CNTs arewidelyinvestigated[24,25]inordertopromoteapplications inthefieldofcompositematerialsandphotocatalysts[23].Since CNTs canact as anelectron reservoir tostore temporarily and transferthephotogeneratedelectronsfromTiO2[25],withadding CNTstotheoxide,thephotocatalyticactivityofTiO2canbefur- therimproved[26–28]and possiblyconfervisible lightactivity [29].The combinationof thebeneficialproperties ofWO3 with theadvantagesofmultiwalledcarbonnanotubes(MWCNTs)can also result in a synergic effect tocreate materialswith differ- entproperties for targetedapplications.Thus, researchers have studiedWO3/MWCNTcompositesinpreviousworksinorderto investigatetheirgassensing [30,31]andelectrochromic perfor- mances[32].Differentimpregnationmethodswerealsopresented toprepareWO3/MWCNTcomposites:eitherasimpleone-stepfab- ricationmethodorcombinedwithprecipitationbasedsynthesis techniques[33]. Accordingtoourknowledge, just a few publi- cationscanbefoundregarding thephotocatalytic propertiesof ternarycompositescontainingtitaniumandtungstenoxideswith MWCNT. Literaturedata are rather inconsistentconcerningthe build-upmethodology(synthesisapproachesandoxidelayercom- position)oftheabove-discussednanocomposites.

Moresynthesis approaches werealready developedin order toinvestigatetheavailablepossibilitiestoobtaindifferentcon- tactorderofthecompositecomponents.Twopotentialmethods wereidentified:modified/slowhydrolysis(MSH)byRétietal.[26], andimpregnation(I)methodwhichwasinvestigatedbyVassetal.

[33].Thesetwoapproaches(combinedaMSHI)providedreliable resultsconcerningtheuniformcoverageofMWCNTswithdifferent semiconductoroxides(In2O3,SnO2,Al2O3,ZnO,SnO2-In2O3).The advantagesanddrawbacksofthesesynthesismethodsaresumma- rizedinFig.1.

Inthispaper,ourinterestistoclarifytheeffectoftheheattreat- mentonthecrystallinityandmorphologyofcompositematerials thatwere obtainedby themethodslistedabove, whilevarying

Fig.1.Thedifferentpreparation methodadvantagesand disadvantages(slow hydrolysisandimpregnation(SHI),amodifiedslowhydrolysisandimpregnation, (MSHI)andasimultaneoussynthesis(SS)).

theorderofthedifferentsemiconductorlayersandattemptingto depositsimultaneouslythetwooxides(simultaneousslowhydrol- ysisandimpregnation−denotedasSSmethod).

2. Materialsandmethods 2.1. Chemicals

Allchemicalsusedwereofanalyticalgrade.TheMWCNTsfrom Nanothinx(NTX1type)titaniumisopropoxideTi(iPrO)4andtung- sten(VI)hexachloride(WCl6)fromSigma-Aldrich,P25fromEvonik Aeroxide(Germany)wereusedwithoutfurtherpurificationforthe preparationofthecompositematerials(secondarycomposites,for detailspleaseconsultSections2.2and2.3)

2.2. Characterizationmethods

FormeasuringtheDRS(DiffuseReflectanceSpectroscopy)spec- tra of the samples, a JASCO-V650 spectrophotometer with an integrationsphere(ILV-724)wasused(␭=250–800nm).

Theoxidelayerthicknessandcoverageratiooftheoxidesonthe MWCNTwereverifiedwithFEITechnaiG2X-TWINTEM(200kV).

Thesampleswerepreparedasfollows:asmallamountoftheexam- inedcompositewassonicatedin1.25cm3ofethanol.Afewdrops fromthissuspensionweredepositedanddriedontothesurfaceof thegrid(CF200CuTEMgrid).

TheSEMmicrographswererecordedonaHitachiS-4700Type IIFE-SEMscanningelectronmicroscopeequippedwithacoldfield emissionsourceoperatingintherangeof5–15kV.Thesamples weremountedonaconductivecarbontape.

PowderXRDanalysiswascarriedoutonaRigakuMini-flex- IIDiffractometer(angle-range:2␪=20–80,␭=0,15418nm)using characteristicX-ray(CuK)radiation.

TheRamanspectroscopymeasurementswerecarried outon aThermoScientificDXRRamanmicroscopewitha532nmlaser (5mW).

A photoreactor system with 2 LighTech 40W fluorescent lamps (␭max≈365nm, irradiation distance=5cm, irradiation time=2h) was used to measure the photocatalytic activities.

ThenanocompositesweregrindedtogetherwithP25(secondary composites)in ordertodifferentiatetheirimpactonthephoto- catalyticactivity.Thephotocatalystsuspensioncontainingoxalic- acid (initial concentration of oxalic-acid c0,oxalic-acid=0.5mM;

csuspension=20mg/20cm3=1.0gL1;total volumeofthesuspen- sion Vsuspension=20cm3) was continuously stirred during the experiments.Theconcentrationdecrease oftheoxalicacidwas followed using a Merck-Hitachi L-4250 system with Merck- Hitachi L-7100 pump. The eluent wasH2SO4 (concentration of H2SO4=19.3mM),theappliedflowratewas0.8cm3min−1andthe detectionwavelengthwas205nm.

2.3. Preparationofnanocomposites

The TiO2-WO3/MWCNT composites were prepared by slow hydrolysisandimpregnation(SHI),amodifiedslowhydrolysisand impregnation,(MSHI)andasimultaneoussynthesis(SS)method.

Thenomenclature ofthecomposites containstheused method abbreviation (listedabove)− firstoxide−calcinationtempera- ture− second oxide− calcination temperatureweight ratioof thecomponents(justforthosesamplesinwhichtheratioofthe componentswaschanged).Ifnoheattreatmentwasappliedfor thespecific oxide,thecalcination temperatureis denoted with 0. Examples:MSHI-TiO2-400-WO3-450, MSHI-TiO2-0-WO3-450.

In thecase ofSSseriesthejointheattreatmenttemperatureis includedinthenomenclature−e.g.SS-TiO2-WO3-700.

(3)

Fig.2.TheXRDpatternsoftheobtainedcompositematerials(TiWOx,-monoclinicWO3,AnataseTiO2,RutileTiO2).

Theadditionofcarbonnanotubeswasdecidedasinthepho- tocatalytic degradation process is presumably responsible for enhancedchargeseparation,ascarbonnanotubesareefficientelec- tronconductingmaterials,whichcanseparatetheelectronsfrom thesemiconductor,minimizingthechanceofrecombination.The compositesmadebySHIwerepreparedusinganalkoxideprecur- sor,titaniumisopropoxideTi(iPrO)4 andethanol assolvent.The weightratioof thereactantswas1:10:15(MWCNT/TiO2/WO3).

The dispersion of 100mg MWCNTs and 150cm3 ethanol was stirredvigorouslyunderinertatmosphere(Ar)whiletheprecur- sor(3.71cm3)wasaddedfollowedbyahomogenizationperiodof 1h.Thesampleswerekeptatroomtemperatureforaweekuntil thesolventevaporatedcompletely.Thesampleswereseparated intotwoparts:thefirstpartwasannealedat400Cfor3hinair andgrindedintofinepowderinanagatemortar.Thesecondpart wasnotheattreated.Fortheimpregnationmethod,TiO2/MWCNT wasappliedastherawmaterial(bothinannealedandnotannealed forms)andWCl6astheprecursor.Initially,160mgTiO2/MWCNT

wasaddedin200cm3acetoneandasuspensionwaspreparedvia sonicationfor45min.Duringthistime,thecalculatedamountof precursor(257mg)wasdissolvedinanotherportionofacetone (20cm3).Finally,thesolutionoftheprecursor wasaddeddrop- wiseintotheTiO2/MWCNT-suspensionandthenthemixturewas heatedto55–60Ctoevaporatethesolventonaheatedmagnetic stirrer.Whenthesolventwascompletelyremoved,ablackpowder wasobtained.Thispowderwasdriedfurtherat90Cfor24h.The sampleswereannealedat450Cfor3hinair.Compositeswerealso preparedwhenthedepositionorderoftheoxideswasreversed.

The other TiO2-WO3/MWCNTcomposites were prepared by MSHImethod.Theweightratioforthepreparationwas1:10:15.

2.65cm3Ti(EtO)4 wasaddedinto14.74cm3ethanolandhomog- enized using ultrasonication for 15min to form the precursor solution.ThedispersionofMWCNTswasstirredvigorouslywhile theprecursorsolutionwasaddeddropwise.Themolarratioswere n(TiO2):n(H2O):n(ethanol)=1:3:30.Aftertheadditionofthepre-

(4)

cursorsolution,thebeakerwascoveredwithplasticparaffinfilm andwasstirredforanadditional1h. Afterstirring,thesamples werekeptat80Cuntilallthesolventevaporated.Sampleswere annealedat400Cfor4hinairandgrindedintofinepowderinan agatemortar.Theimpregnationprocesswasthesamelikeinthe caseofSHImethod,butthesampleswereannealedat700Cfor 3hininertatmosphere(Ar).

ThecompositeswerepreparedalsobytheSSmethod:100mg MWCNTwasaddedinto150cm3acetonehomogenizedbyultra- sonication for 45min. The dispersion of MWCNTs was stirred vigorouslyunderinertatmosphere(Ar)whiletheTi(iPrO)4precur- sor(3.71cm3)wasadded.WCl6precursor(257mg)wasdissolved inanotherportionofacetone(20cm3)andwasaddeddropwiseto theMWCNTdispersion.Then,thesuspensionwaslefttobestirred for1h.Afterstirring,thesampleswerekeptat23Cforaweek untilallthesolventevaporated.Sampleswereannealedat700C for3hininertatmosphere.

For the photodegradation of oxalic acid, the previously described MWCNT-based composites and Evonik Aeroxide P25 wereusedforthepreparationofthephotocatalyst(secondarycom- posites).Ineachcase,aspecificratiowasestablishedbetweenthe composite components,30%MWCNT-based composite and 70%

TiO2 (EvonikAeroxideP25).Thenanocompositeswereprepared viamechanicalmixinginanagatemortarfor3×5min.

3. Resultsanddiscussion

3.1. Crystallinestructureofnanocomposites

TheXRDanalysisoftheobtainedcompositematerialsstarted withthesamplesSHI-TiO2-400-WO3-0and SHI-TiO2-400-WO3- 450. Both of them were obtained starting from heat treated TiO2/MWCNT,whichcanbeobservedbythepresenceofthemain anatase(JCPDS21-1272)peakat25(2␪).InthecaseofSHI-TiO2- 400-WO3-0,besidestheanatasepeak,onlyabaselinedistorting wasobserved,behaviorthatindicatesthatWO3isclearlypresent asamorphousphase.Whenasupplementaryheattreatmentwas appliedat450CthesignalsofmonoclinicWO3emerged(JCPDS 43-1035,themeancrystallitesizewasof20.2nm).Byapplyingthis supplementaryheattreatment,aslightincreaseofthemeancrys- tallitessizeofanataseTiO2,from25nmto27nm,wasobserved (Fig.2).

Theabove-mentionedobservationschangeddrastically,when theobtained TiO2/MWCNTwas not calcinated. Therefore, after impregnationwithWO3precursornosignofanycrystallinemate- rialwasdetected(thecaseofsampleSHI-TiO2-0-WO3-0).However, ifapostcalcinationwasapplied,bothsignaturesofanataseTiO2and monoclinicWO3appearedintheXRDpattern(SHI-TiO2-0-WO3- 450),althoughasmalleramountofamorphousmaterialremained asthepatternshowsaslightincreaseinthemainbaseline.The meancrystallitesizeofTiO2 andWO3 was29.9nmand74.0nm, respectively.

Reversingthedepositionorder,anotherinterestingaspectof thesematerialsisrevealed.IftheWO3/MWCNTinitialcomposite wasnotcalcined(compositeSHI-WO3-0-TiO2-0)andtheprecur- sorofTiO2wasdeposited,acompletelyamorphousmaterialwas obtained (although there are signs of really small amounts of crystallinematerial).Whenapostheattreatment(compositeSHI- WO3-0-TiO2-400)wasapplied,asmallanatasesignalappeared, whiletherestofthematerialremainedamorphous.Nocrystallite sizecalculationwaspossibleinthecaseofthesetwosamples.

ToinvestigatethebehaviorofTiO2,whichwassubsequently deposited,apriorheat-treatmenttotheWO3/MWCNTcomposite wasapplied.After theimpregnation process,the material con- tainedonlycrystallinemonoclinicWO3,whilenosignofanyTiO2

Fig.3.TheRamanspectraofthecompositematerials(*WO3relatedbands, AnataseTiO2,RutileTiO2).

diffractionpeakswasdetected(sampleSHI-WO3-450-TiO2-0).The mean crystal size of WO3 was28.4nm. Whenthe supplemen- taryheattreatmentwasapplied(sampleSHI-WO3-450-TiO2-400), theanatasepeakemerged,andthemeancrystallitesizeofWO3 increasedslightlyto33.4nmandthenewlyformedanatasecrys- tals’sizewas34.6nm.

WhenTiO2wasthefirstoxidedepositedonthesurfaceofMWC- NTs,crystallinematerialswereobtainedinthreecases.WhenWO3 wasthefirstone,thefinalmaterialwascrystallineonlyintwocases.

Itseemslikethepre-depositionofWO3inhibitsthecrystallization ofthesecondoxide.Thisphenomenonwaspreviouslyobservedin literature[34,35].Hence,thefirststrategywasfurtherdeveloped.

Asitwasalreadydetailedinthesectionfocusingonthesynthe- sisofthesematerials,themodifiedsol-gelandthesimultaneous precursorhydrolysisstrategieswereapplied.

ThecompositedenotedasMSHI-TiO2-400-WO3-0possessthe samecrystallineproperties asthesampleSHI-TiO2-400-WO3-0, namely theycontain anatasephase withthe same mean crys- tallite size. However, if a supplementary heat treatment was applied(thistimeat700C,inordertofurtherincreasethecrys- tallinityofthesample),newdiffractionpeaksappearedat23.4and 33.1(2␪).Thesepeaksreappearedinthecaseofthecomposite (SS-TiO2-WO3-700,whileSS-TiO2-WO3-0wascompletelyamor- phous),togetherwiththealreadymentionedanatasereflections andthenewonesattributedtorutilephase(themaindiffraction peakat27(2␪),JCPDS21-1276).NeitherTiO2 norWO3 crystal phaseswereidentifiablebythepeaksmentionedearlier.Apossible explanationcouldbefoundintheworkofQureshietal.[36],who shownthepossibleformationofTiWOx,arathersurprisingcom- poundobservedrarelyinthelastdecade.TiWOxappearedonlyin the1:10:15weightratiosamples.Thismeansthatarelativelyhigh amountofWO3andMWCNTisneededtofavortheformationof TiWOx,Wheretheamountofthementionedtwocomponentswas loweredTiWOxwasnotpresentatall.Itshouldbealsonotedthat

(5)

Fig.4. Scanning(a,c)andtransmission(b,d)EMsofTiO2/MWCNT-basedcomposites(SHI-TiO2-0-WO3-450)andSHI-TiO2-400-WO3-450(c,d)).

Fig.5. Scanning(a,c)andtransmission(b,d)EMsofWO3/MWCNT-basedcompositesSHI-WO3-0-TiO2-400(a,b)andSHI-WO3-450-TiO2-400(c,d)).

(6)

Fig.6.Scanning(a,c)andtransmission(b,d)EMsofcompositesMSHI-TiO2-400-WO3-700(a,b)andSS-TiO2-WO3-700(c,d).

theheattreatmentwasalsocrucialtoobtaintheabovementioned compoundasitwasobtainedonlywhenacalcinationwasapplied at700C.

Thephotocatalytic testsdidnotshow anypromising results asitwillbedetailedinSection2.4,althoughtwomethodswere involved(SSandSHImethods),whichafterfurtheroptimization couldleadtophotoactivecomposites.Thestrategyadoptedwas basedonthefact thattheCNTand theWO3 ‘s relativecontent wasratherhighcomparedtoTiO2.Thus,theWO3 andCNTcon- tentswerelowered(newcomponentweightratios1:18:1,1:16:3).

WhentheXRDpatternswereanalyzedforthesecompositesitwas foundthatjustanatasecrystallizedfromthetwooxides,whilethe non-heattreatedsampleswerecompletelyamorphous.

Bycomparingthemeancrystallitesizeofthesecompositestwo importantaspectscanbepointedout.Thus,whentheratioofWO3 decreased(relativetoTiO2)itwasfoundthatthecrystallitesizeof theformedanataseslightlyincreased(from16.3to17.4nm−sam- plesSHI-TiO2-0-WO3-4501:16:3vs.SHI-TiO2-0-WO3-4501:18:1), inthecaseofsampleseriesSHIandmoreintensively(from22.4nm to47.5nm−samplesSS-TiO2-WO3-7001:16:3vs.SS-TiO2-WO3- 7001:18:1) whentheSSmethodwasapplied.Thisobservation emphasizesagainthatthepresenceofWO3inhibitsthecrystalliza- tionofTiO2.Furthermore,atthisratiovalues,WO3doesnotappear atallintheXRDpatternsindicatingitspotentialdopantrole.

ItshouldbementionedthatinallthecaseswhereWO3wasnot observableintheXRD,amorphousW(OH)x ismostprobablythe primaryhydrolysisproduct,thereforenoXRDpeakswereexpected andsubsequentlyobtained.

TheFT-Ramanspectrarevealthepresenceofbandscharacter- isticforTiO2 anataselocatedaround144, 197(these twowere notincludedintheFigure),394,512,638andrutilephaseat445, 610cm−1(bothofthemoverlappedwithanatase),respectively.The

DandGbandsoftheMWCNTdidnotsufferanymodification,and thereforetheywerenotincludedinFig.3.

TheWO3crystallinestructures(includingtungstates)giverise tocharacteristicRamanbands around710and 800cm1,while O W O bending modes are located at≈260cm1 and W O stretchingmodesat950–960cm−1 [34,35].Mostoftheidentifi- cationsmadeabovecoincidewiththefindingsdeterminedfrom the XRD results, therefore the observations made for samples SHI-TiO2-400-WO3-0,SHI-TiO2-400-WO3-450andthosewithsim- ilarstructurescanbeconsideredvalid.However,itisinteresting that thebandassociatedwiththepresence ofW O unitsdoes not appear in thespectraof theinvestigated samplesmeaning thatcompletehydration(duringhydrolysis)ornon-stoichiometric specieswereformed.Thebandat330cm1,whichcorrespondsto W-OH2 stretchingvibrations,suggestedthepreviouslyenounced possibility,asthesespeciesappearwhendefectiveWOxspeciesare present[34,35].ThiswasalsoconfirmedbytheformationofTiWOx

identifiedbyXRD.

Furthermore,iftheratioofthecompositecomponentsisshifted in the favor of titania (while lowering the MWCNT and WO3 content−sampleSS-TiO2-WO3-7001:18:1)thepreviouslymen- tionedRamanbands,specifictoWO3,aremissing,whiletheones attributedtothepresenceofanataseTiO2intensifiedsignificantly.

Thisinformationpointsoutincreasedcrystallinity,highermean crystallitesizeandpossibledopingofanatase/amorphousWO3.

3.2. Morphologicalinvestigationsusingscanningand transmissionelectronmicroscopy

BothSEMandTEMinvestigationsrevealedthatcarbonnano- tubeswerehomogeneouslycoveredbythebinaryoxideandthe thicknessofthelayerwasapproximately20–40nm(Fig.4a,b−

(7)

Fig.7. Scanning(a)andtransmission(b)EMsofchangedweightratiocompositesSS-TiO2-WO3-7001:18:1.

sampleSHI-TiO2-0-WO3-450).WhenTiO2washeattreatedprior WO3deposition(Fig.4c,d),theSEMandTEMmicrographsshowed thattitaniumdioxideandtungstenoxideevenlycoveredthesur- faceof MWCNT,however,in manyregions both oxidesformed separateaggregatesaswell.Fromthemicrographsitcanbeseen thatthethicknessofthelayerwasabout20–40nmagainandthe sizeofdetachedoxideparticleswereintherangeof50–200nm.

ChangingthedepositionorderoftheoxidesontheMWCNT, itcanbeclearlyseenfromSEMandTEMmicrographsthatcarbon nanotubeswerenotcoveredhomogeneouslywithtitaniumdioxide andtungstenoxide(Fig.5a,b),asmentionedpreviously,butlarger aggregatesof100–500nmsizewereformedandattachedtothe surfaceofMWCNT.However,whenWO3receivedaheattreatment at450CbothSEMandTEMmicrographsconfirmedthatcarbon nanotubeswerehomogeneouslyandthicklycoveredbythebinary oxidelayerofapproximately100nm(Fig.5c,d).

Inthe case ofthe compositessynthesized bymodified slow hydrolysisandimpregnation(MSHI),SEMandTEMmeasurements provedthecoverageonthesurfaceofcarbonnanotubes(Fig.6a,b) Whilethehomogeneousregionofthelayerwascomposedoftung- stenoxide,thetitaniumdioxideformscrystallinenanoparticles insidethecoverage.Theaveragethicknessofthelayerwasofabout 50nm.

Whenthesampleswerepreparedwithsimultaneoussynthesis (SS)methodFig.6(c,d)itcannotbeseenhomogeneouslayeronthe surfaceofMWCNT.SEMandTEMimagesshowlargeroxideparti- clesofapproximately100nm,randomlyattachedontothecarbon nanotubes.Whentheweightratiowaschanged,thesurfaceofcar- bonnanotubewascoveredhomogeneouslywithtitaniumdioxide andtungstentrioxide.Theaveragethicknessofthelayerwasof 50–100nm(Fig.7a,b).

3.3. OpticalpropertiesoftheindividualWO3andcomposites

Inordertoevaluatetheopticalpropertiesofthenanomaterials, diffusereflectancemeasurementswereperformedonthecompos- iteswiththebestphotocatalyticefficiencies.ItcanbeseeninFig.8, thatthematerialsabsorbvisiblelightinrelativelyhighratio(more than80%).ThisbehaviorcanbeattributedtothehigherMWCNT contentinthecomposites(5%).

Duetothesmalllight absorptionedge,theband-gapvalues cannotbeevaluatedinthetypicalway,namelybytheKubelka- Munkequation,becausethevalues obtaineddo not reflect the reality(values4.0–5.0eV).Therefore,thefirstorderderivativeof theDRSspectra(Fig.9)wascalculatedinordertogaininformation abouttheelectrontransitionsoccurringduringtheirradiationof thenanomaterials,resultingrealisticband-gapvalues.

Fig.8.ThereflectancespectraofselectedWO3-TiO2/MWCNTcomposites.

Analyzing the first order derivative of the reflectance data, mainlythreeelectrontransitionbandscanbeseen,bothrespon- siblefor theUV light absorptionof thecatalysts, at≈362, 392 and≈400nm,respectively.Thesepeaks,intermsofenergy,arecor- respondingtotheband-gapvaluesofanatase,inthefirstcase,to TiWOxat392nm,andtomonoclinicWO3for400nm.Inadditionto thequalitativepresenceofthesetransitionsitisclearlyvisiblethat thedifferentlysynthetizedcompositeshaveachangeintheratioof thesepeaks.Anotheraspect,whichcanbeobservedwhenWO3is depositedonthesurfaceofthenon-calcinatedTiO2/MWCNTsam- ples,consistsinthatthepeakofWO3cannotbeobservedonthe firstorderderivativeoftheDRSspectra.Thisabsenceofthesignal ismostprobablyduetothepresenceofnon-crystalline/amorphous WO3,which“delays”thecrystallizationprocessofbothsemicon- ductorsinthenanocompositesandmaysuggestapossibledoping.

WhenWO3wasdepositedonthethermallythreatedTiO2-based material,thecharacteristicderivativepeakofWO3appearsaround 400nm,whichmeansthatthecrystallizationprocessissuccess- fulinthiscase,thesemiconductor-oxideis“transformed”intoits monoclinicform(resultswereprovenalsobyXRDandRamanmea- surements,asdiscussedinSection3.1).

Astheratioofthecomponentswaschangedto1:18:1(sam- pleSS-TiO2-WO3-7001:18:1) anatasecrystallized(a clearlight absorptionedgewasvisibleintheDRSspectrum−Fig.8),while nosignsof WO3 wasdetectedintheXRD patternsand Raman spectra.AsitcanbeseeninFig.9thederivativespectrumdoes notshowanyadditionalbands,exceptthecharacteristicbandof

(8)

Fig.9.FirstorderderivativespectraoftheWO3-TiO2/MWCNTcomposites.

anataseat365nm.ThisexplicitlypointsoutthattheWO3present inthatsamplemustbeamorphous[35].

3.4. PhotocatalyticactivityofWO3-TiO2/MWCNT-based nanocomposites

Theinitialcompositeswere notactiveunder UVirradiation.

ThisresultcanbeattributedtotherelativelyhighamountofWO3 presentinthecomposite,and,asitisknownfromtheliterature, WO3haslowphotocatalyticactivityunderUVirradiation[37].In ordertogainfurtherinformationaboutthephotocatalyticpotential ofthecompositesawell-knowncommercialphotocatalyst(P25)in aratioof70%P25−30%compositewasprepared.

Aftertwohoursof photodegradation(Fig.10)of oxalicacid, itcanbeconcludedthatthebestperformingcompositewasthe

SHI-TiO2-0-WO3–450+P25,withadegradationyieldof83.3%and the composite made bysimultaneous synthesis (+P25) (75.1%).

TheSHI-WO3-450-TiO2-400andSHI-WO3-0-TiO2-400composites had a similarphotocatalytic efficiency toward oxalicacid, both degradinglessthan60%ofthemodelcontaminant(58.4and59.2%, respectively).Thelowestefficiencywasshownbythecomposite madebymodifiedsol-gelsynthesis,havingayieldlessthan40%.

Thecommercialcatalyst(P25)hadthehighestefficiency,decom- posing96.8%oftheoxalicacid.Thisexperimentpointedoutclearly whichoftheinvolvedsynthesismethodscouldleadtothecom- positematerialsthatmaypossessphotocatalyticactivity.Although theobtainedcompositesdeterioratedtheactivityofP25,theper- formedresearchpointedoutwhichofthemethodshaspotentialto yieldphotoactivenanocomposites.Thetwomostpromisingmeth- odswerechosen,SHI-TiO2-0-WO3-450andSS−TiO2−WO3-700

(9)

Fig.10.PhotocatalyticactivitiesofvariousTiO2-WO3/MWCNTcomposites(compositesobtainedbythefirstsynthesisapproachandmixedwithP25bluecolumns;

compositesobtainedinthesecondoptimizationstagewithoutP25–redcolumns).(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

andtheircomponent contents furtheroptimized:from1:10:15 (MWCNT:TiO2:WO3)to1:16:3an1:18:1.

ThemostefficientsamplewastheSS-TiO2-WO3–700C1:18:1 weight ratio with a degradation yield of 67.3%. The other composites showed low photocatalytic performances, the SHI- TiO2-0-WO3–450C 1:16:3 degraded 19.7%, while the sample SHI-TiO2-0-WO3–450C1:18:1removedonly11.9%,andfinallythe sampleTiO2-WO3–700C1:16:3wasnearlyinefficient(Fig.10).

3.4.1. Searchingfortheoriginofthephotocatalyticactivityof WO3-TiO2/MWCNT-basednanocomposites

Mostofthesamplesshowedverylowphotocatalyticactivity, inwhichacrucialrolewasassignedtothecompositecomponents ratio.Oneofthechosenweightratiosofthecompositecomponents was1:10:15(MWCNT:TiO2:WO3),whichshowedarelativelyhigh amountofWO3andMWCNT.AsWO3hasverylowindividualpho- tocatalyticactivityunderUVirradiation[37],therefore,theactivity deteriorationcouldbeascribedwiththehighestpossibilitytothe relativelyhighcarboncontent.

In order toenlighten the possible reasons for theobtained photocatalyticactivitytrenditwasnecessarytocarryoutaddi- tional investigations. One of the key structural features which might beresponsible for theactivity is thesize of thespecific surfacearea.We expectedthatahighvalueofthespecificsur- face area resultshigh photocatalytic activity, but theobtained resultsdidnotsupportthisstatement.TheSHI-TiO2-0-WO3-450 (1:16:3)samplehadarelativelyhighsurfacearea(112.0m2g−1) however,thementionedsampledegradedonly19.7%oftheoxalic acidcomparedtosampleSS-TiO2-WO3-700(1:18:1)whichpos- sessed88.5m2g1surfaceareaandshowedasignificantlyhigher degradationefficiencyof67.3%.AlsosampleSHI-WO3-0-TiO2-400 (1:10:15)shouldbepointed out,asit wasthesample withthe highestspecificsurfacearea,butnophotocatalyticactivityatall.

Therefore,weconcludedthat,thephotocatalyticactivitywasinde- pendentfrom thespecific surfaceareainourcase. Thespecific surfaceareavaluesofallsamplescanbefoundinthesupporting information(notallthevalueswereintroducedanddiscussedin detailasmostofthemshowedlowphotocatalyticactivity).

ThefourkeysampleswereexaminedwithXPSinordertoinves- tigatethesourceofthephotocatalyticactivity,asitwasevidentthat

thesurfacequalitywasthekeyfeatureinourcase.TheXPSspectra ofthesamplesrevealedthesamespeciesineachofthecomposites.

Themaindifferencewasintheirconcentration.

TheX-rayphotoelectronspectra(Ti2p,O1s,W4f)ofsampleSS- TiO2-WO3-7001:18:1arepresented inFig.11.In theTi2pXPS spectrumTi4+andaverysmallamountofTi3+(0.96at.%−peaks at457.3eVand463.4eV)alongwithTi4+(90.04at.%− peaksat 459.1eVand464.8eV)[38]wasdetected,whileintheO1sspec- trum,theusualcomponentsinusualratiowereidentified:oxide oxygenfromTiO2(530.3eV−74.82at.%),surfaceOHgroupoxy- gen(531.3eV− 21.78at.%), and oxygenfromH2O(532.8eV − 3.40at.%).Furthermore,intheO1sspectrumofthematerialsno low binding energy oxygenspecies (528.8eV) appeared. Based onourrecent publications [38,39] this interesting oxygentype couldbeattributedtothepresenceofoxygendefects,ortooxy- genatomswhichareneighbouringtoreducedTisites(i.e.Ti3+).

InthesamplesSHI-TiO2-0-WO3-4501:16:3,SHI-TiO2-0-WO3-450 1:18:1, SS-TiO2-WO3-700 1:16:3 the amount of Ti3+ increased graduallyfrom0.96at.%(SS-TiO2-WO3-7001:18:1)to3.21at.%(SS- TiO2-WO3-7001:16:3),whiletheoxygenformsshowedthesame ratio.ThismeansthattheTi3+actedasrecombinationcenters,con- sumingmostprobablytheavailableholes,inhibitingtheoxalicacid degradationbydirectholeoxidation.

The W4f XPS spectrum of sample SS-TiO2-WO3-700 1:18:1 revealedtwosignificantWspecies(W6+andW4+−36.0/38.2eV and 35.8/37.8eV). W4+ presenceconferred ourmaterialsa pale bluishcolor,asitwaspresentin21.2at.%fromthetotalamountof W.AsWO3wasnotpresentintheXRDpatternsofthesesamples, themostpossibleformofthisoxideisamorphouswithdangling, reducedW4+sites,similarwiththestructurereportedbyAkurati etal.[40].Astheratioofthesespecieswereunchangedintheother samples,emphasizingthatinthecaseofthesecompositesTi3+plays theactivitydefiningrole.

4. Conclusions

Itiswellknownthatduetoitscomplexityphotocatalysiscanbe influencedbymanydifferentparameters.Ourinvestigationwith aternarycompositesystem(WO3-TiO2/MWCNT)describedhere demonstratedthisstatementexemplarily.Itwasprovedthatnot

(10)

Fig.11.XPSspectra(Ti2p,O1sandW4f)ofsampleSS-TiO2-WO3-7001:18:1.

onlythesynthesismethodbutalsothesequenceofdepositingthe components(TiO2followedbyWO3),affectsignificantlythefinal propertiesofthenanocomposites.Wehavelearntthattheproper- tiesoftheoxidedepositedinthefirstinstancehasastronginfluence onthecrystallinityofthesecondphase (e.g.differentcrystallite sizeoftheindividualoxideparticles).Atthesametime,thehigher degreeofcrystallinitydoesnotnecessarilycoincideswiththehigh photocatalyticactivity(theexampleofSHI-TiO2-0-WO3-450).The appearanceofTiWOxcrystalphaseathighertemperatureisalso aninterestingandsomewhatunusualphenomenonandmightbe worthconsidering,sincesample SS-TiO2-WO3-700alsoshowed promisingphotocatalyticactivity.However,itcannotbestatedthat thisnewphaseisexclusivelyresponsiblefortheobservedphoto- catalyticperformances(seeMSHIsamples).Thiswasproven,when theratioofthecompositecomponentswaschanged,becausein thosesamplesTiWOxdisappearedandanatasecrystallizedwitha highcrystallitesize,makingitthemaindeterminingfactorforthe

photoactivity.Also,itisimportantthatatlowWO3 andMWCNT contentWO3doesnotappearatallsuggestingapossiblepresence onlyasamorphousWO3.Concerningthesequenceofdepositing theoxidesitcanbeconcludedthattheexistenceofMWCNT-TiO2- WO3 junctionismoreadvantageous.Thephotocatalystshowing thehighestactivityshowedthelowestamountofTi3+,emphasizing theroleofrecombinationcenterofthisspeciesinthesecompos- ites.Basedonliteraturedata[26]itcannotbeexcludedthatthe morphologyofthecompositecomponentsisalsoimportant.

Acknowledgments

ThisworkwassupportedbyagrantfromSwitzerlandthrough Swiss Contribution(SH/7/2/20). G.K.wantsto acknowledgethe financialsupportofHungarianAcademyofSciences,whileZs.P acknowledgesthePremiumPost-Docprojectprovidedalsobythe HungarianAcademyofSciences.Theauthorsarealsoverygrate-

(11)

[6]A.Mills,S.J.LeHunte,Photochem.Photobiol.A108(1997)1–35.

[7]M.A.Fox,M.T.Dulay,Chem.Rev.93(1993)341–357.

[8]S.Banerjee,S.K.Mohapatra,P.P.Das,M.Misra,Chem.Mater.20(2008) 6784–6791.

[9]Q.Li,L.Chen,G.J.Lu,Phys.Chem.C111(2007)11494–11499.

[10]N.A.Ramos-Delgado,M.A.Gracia-Pinilla,L.Maya-Trevi ˜no,L.Hinojosa-Reyes, J.L.Guzman-Mar,A.J.Hernández-Ramírez,Hazard.Mater.263(Pt.1)(2013) 36–44.

[11]S.Malato,P.Fernández-Ibá ˜nez,M.I.Maldonado,J.Blanco,W.Gernjak,Catal.

Today147(2009)1–59.

[12]K.Zakrzewska,ThinSolidFilms391(2001)229–238.

[13]M.Epifani,E.Comini,R.Díaz,T.Andreu,A.Genc¸,J.Arbiol,P.Siciliano,G.

Faglia,J.R.Morante,ProcediaEng.87(2014)803–806.

[14]S.Higashimoto,Y.Ushiroda,M.Azuma,Top.Catal.47(2008)148–154.

[15]C.W.Lai,S.Sreekantan,Int.J.HydrogenEnergy38(2013)2156–2166.

[16]A.K.L.Sajjad,S.Shamaila,B.Tian,F.Chen,J.Zhang,J.Hazard.Mater.177 (2010)781–791.

[17]É.Karácsonyi,L.Baia,A.Dombi,V.Danciu,K.Mogyorósi,L.C.Pop,G.Kovács,V.

Cos¸oveanu,A.Vulpoi,S.Simon,ZsPap,Catal.Today208(2013)19–27.

[18]Y.-C.Nah,A.Ghicov,D.Kim,S.Berger,P.Schmuki,J.Am.Chem.Soc.130 (2008)16154–16155.

[29]L.Tian,L.Ye,K.Deng,L.J.Zan,SolidStateChem.184(2011)1465–1471.

[30]C.Balázsi,K.Sedlácková,E.Llobet,R.Ionescu,Sens.ActuatorsB133(2008) 151–155.

[31]C.Bittencourt,A.Felten,E.H.Espinosa,R.Ionescu,E.Llobet,X.Correig,J.J.

Pireaux,Sens.ActuatorsB115(2006)33–41.

[32]P.M.Kadam,N.L.Tarwal,S.S.Mali,H.P.Deshmukh,P.S.Patil,Electrochim.Acta 58(2011)556–561.

[33]A.Vass,P.Berki,Z.Nemeth,B.Reti,K.Hernadi,Phys.StatusSolidiB250 (2013)2554–2558.

[34]G.Kovács,ZsPap,C.Cotet,V.Cos¸oveanu,L.Baia,V.Danciu,Materials8(2015) 1059–1073.

[35]G.Kovács,L.Baia,A.Vulpoi,T.Radu,É.Karácsonyi,A.Dombi,K.Hernádi,V.

Danciu,S.Simon,ZsPap,Appl.Catal.B147(2014)508–517.

[36]M.Qureshi,PrakashGupta,J.Chromatogr.A62(1971)439–448.

[37]I.Székely,G.Kovács,L.Baia,V.Danciu,ZsPap,Materials9(2016)258.

[38]Zs.Pap,É.Karácsonyi,Zs.Cegléd,A.Dombi,V.Danciu,I.C.Popescu,L.Baia,A.

Oszkó,K.Mogyorósi,Appl.Catal.B111(2012)595–604.

[39]Zs.Pap,V.Danciu,Zs.Cegléd,Á.Kukovecz,A.Oszkó,A.Dombi,K.Mogyorósi, Appl.Catal.B101(2011)461–470.

[40]K.K.Akurati,A.Vital,J.-P.Dellemann,K.Michalow,T.Graule,D.Ferri,A.

Baiker,Appl.Catal.B79(2008)53–62.

Ábra

Fig. 1. The different preparation method advantages and disadvantages (slow hydrolysis and impregnation (SHI), a modified slow hydrolysis and impregnation, (MSHI) and a simultaneous synthesis (SS)).
Fig. 2. The XRD patterns of the obtained composite materials ( − TiWO x , - monoclinic WO 3, 䊏 − Anatase TiO 2 , 䊐 − Rutile TiO 2 ).
Fig. 3. The Raman spectra of the composite materials (* − WO 3 related bands, 䊏 − Anatase TiO 2 , 䊐 − Rutile TiO 2 ).
Fig. 4. Scanning (a,c) and transmission (b,d) EMs of TiO 2 /MWCNT-based composites (SHI-TiO 2 -0-WO 3 -450) and SHI-TiO 2 -400-WO 3 -450 (c,d)).
+6

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Keywords: folk music recordings, instrumental folk music, folklore collection, phonograph, Béla Bartók, Zoltán Kodály, László Lajtha, Gyula Ortutay, the Budapest School of

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

The method discussed is for a standard diver, gas volume 0-5 μ,Ι, liquid charge 0· 6 μ,Ι. I t is easy to charge divers with less than 0· 6 μΐ of liquid, and indeed in most of

Usually hormones that increase cyclic AMP levels in the cell interact with their receptor protein in the plasma membrane and activate adenyl cyclase.. Substantial amounts of

At the center of Aristotle's discussion of mimesis therefore, and it is important in our current theoretical debate about postmodern implications of linguistic and