• Nem Talált Eredményt

CENTRAL RESEARCH INSTITUTE FOR PHYSICSBUDAPEST

N/A
N/A
Protected

Academic year: 2022

Ossza meg "CENTRAL RESEARCH INSTITUTE FOR PHYSICSBUDAPEST"

Copied!
24
0
0

Teljes szövegt

(1)

KFKI-70-36 HEP

S ^ H i n ß o A i a n S f t c a d e m y ^ o f ( S c i e n c e s

CENTRAL RESEARCH

INSTITUTE FOR PHYSICS

BUDAPEST

A. Sebestyén

ON THE GEODESICS

OF CERTAIN SYMMETRIC SPACES

(2)
(3)

by Á. S e b e s t y é n

C e n t r a l R e s e a r c h I n s t i t u t e f o r P h y s i c s , B u d a p e s t

ABSTRACT

G e o d e s i c s o f R ie m a n n i a n s p a c e s a d m i t t i n g c e r t a i n t y p e s o f K i l l i n g ’ s m o t i o n s a r e c o n s i d e r e d . I t i s s h o w n . t h a t t o t h e g e o d e s i c s t h e r e c o r r e s p o n d c u r v e s i n a l o w e r - d i m e n s i o n a l s p a c e w h ich r e v e a l a s t r i k i n g r e s e m b l a n c e t o t h e f o r c e la w s o f g e n e r a l r e l a t i v i t y . The f o r c e s e m e r g in g a r e o f t h e e l e c ­ t r o m a g n e t i c and o f t h e p o t e n t i a l t y p e . Some c o n n e c t i o n s w i t h K a l u z a ’ s f i v e ­ d i m e n s i o n a l t h e o r y an d w i t h t h e t h e o r y o f d y n a m i c a l g r o u p s a r e d i s c u s s e d . The s o - i c a l l e d t o t a l l y c o v a r i a n t c a l c u l u s f o r s u c h s p a c e s i s a l s o d e v e l o p e d .

INTRODUCTION

I t was shown by K a lu z a s o o n a f t e r t h e d i s c o v e r y o f g e n e r a l r e l a t i v ­ i t y t h a t one c a n r e t a i n t h e g e n e r a l f e a t u r e s o f an e l e c t r o v a c t h e o r y fro m a f i v e - d i m e n s i o n a l f o r m a l i s m [ l ] . I t was e s s e n t i a l l y t h i s w o rk w h ich s t i m u ­

l a t e d t h e num erous u n i f i e d t h e o r i e s i n t h e t w e n t i e s a n d t h e e a r l y t h i r t i e s . The f i v e - d i m e n s i o n a l R i e m a n n i a n s p a c e s i n v o l v e d i n t h e s e t h e o r i e s g e n e r a l l y p o s s e s some sym m etry p r o p e r t i e s . I n K a l u z a ’s t h e o r y , f o r e x a m p le , t h i s sym m etry i s a K i l l i n g m o t i o n , a n d i t i s sh o w n t h a t t h e e q u a t i o n

Ra e - 0

- Ra ß b e i n g t h e f i v e - d i m e n s i o n a l R i c c i t e n s o r - c an b é s p l i t i n t o two e q u a t i o n s

Ri k = Ti k " k q i k т Г г '

H ere Fi k i s t h e e l e c t r o m a g n e t i c te n s " o r , Ti k . i s i t s e n e r g y -momentum, t e n s o r , i s t h e R i c c i t e n s o r i n f o u r d i m e n s i o n s , and Fi k i s r e l a t e d t o t h e K i l l i n g v e c t o r o f t h e f i v e - d i m e n s i o n a l s p a c e .

A t t e n t i o n h a s b e e n m a i n l y d i r e c t e d t o s u c h f i e l d e q u a t i o n s , w h ile t h e f e a t u r e s o f th e g e o d e s i c s o f t h e s e v a r i e t i e s h av e n o t b e e n i n v e s t i g a t e d i nо

(4)

2

d e t a i l . H o w e v er, i t c a n b e shown t h a t t o t h e f i v e - d i m e n s i o n a l g e o d e s i c s t h e r e c o r r e s p o n d c u r v e s i n f o u r d i m e n s i o n s a n d t h a t t h e f i r s t c u r v a t u r e o f t h e s e c u r v e s i s e q u a l t o a n e l e c t r o m a g n e t i c f o r c e .

The a im o f t h i s p a p e r i s t o e x t e n d t h i s r e s u l t a n d show t h a t i n a H ie m a n n ia n s p a c e o f a r b i t r a r y d i m e n s i o n s , a d m i t t i n g s e v e r a l K i l l i n g m o t i o n s , g e o d e s i c s c a n b e p r o j e c t e d o n t o a v a r i e t y o f l o w e r d i m e n s i o n s a n d t h a t t h e f i r s t c u r v a t u r e o f t h e c u r v e s o b r a i n e d i n t h i s m a n n e r i s a n e l e c t r o m a g n e t i c f o r c e . An a d d i t i o n a l t e r m w h ic h may b e p r e s e n t i n t h e c u r v a t u r e i s a f o r c e o f t h e p o t e n t i a l t y p e , b e i n g a g r a d i e n t o f a s c a l a r , a l t h o u g h i t c a n a l w a y s b e re m o v e d b y means o f a c o n f r o m t r a n s f o r m a t i o n o f t h e m e t r i c o f t h e l o w e r d i m e n s i o n a l s p a c e . The v a r i e t y o b t a i n e d i s g e n e r a l l y n o t a s u b s p a c e o f t h e o r i g i n a l o n e , t h o u g h i t i s a R ie m a n n ia n s p a c e w h o se m e t r i c i s f i x e d b y t h a t o f t h e l a r g e s p a c e . T h i s s t r u c t u r e o f t h e g e o d e s i c s i s e a s i l y r e v e a l e d i f t h e K i l l i n g m o t i o n s o f t h e e m b ed d in g s p a c e f o r m a n A b e l i a n g r o u p .

The f i r s t s e c t i o n o f t h e p a p e r r e c a l l s t h e p r o o f o f a th e o r e m w h i c h s t a t e s t h a t t o r e q u i r e a R ie m a n n i a n s p a c e t o a d m it s e v e r a l K i l l i n g m o t i o n s f o r m i n g a n A b e l i a n g r o u p i s n o t h i n g e l s e b u t t o r e q u i r e t h e e x i s t e n c e o f a s p e c i a l c o o r d i n a t e s y s t e m i n w h i c h t h e m e t r i c t e n s o r i s i n d e p e n d e n t o f some v a r i a b l e s .

I n t h e s e c o n d s e c t i o n a g e n e r a l c o v a r i a n t t r e a t m e n t o f s u c h R ie m a n ­ n i a n s p a c e s i s d e v e l o p e d a n d t h e c o n c e p t o f a p a r a m e t e r s p a c e c o r r e s p o n d i n g t o t h e m o t io n s i s i n t r o d u c e d . I n o r d e r t o h a n d l e b o t h t h e p a r a m e t e r a n d t h e c o v a r i a n t I n d i c e s i n a u n i f o r m l y c o v a r i a n t w ay , p a r a - c o v a r i a n t and t o t a l l y c o v a r i a n t d i f f e r e n t a t i o n a r e a l s o d e f i n e d . T h i s f o r m a l i s m i s t h e n a p p l i e d t o t h e s p e c i a l c o o r d i n a t e s y s t e m o f s e c t i o n o n e .

The t h i r d s e c t i o n i s d e v o t e d t o t h e d e c o m p o s i t i o n o f t h e e q u a t i o n s o f g e o d e s i c s ' . The s p e c i a l c o o r d i n a t e s y s t e m i s u s e d h e r e t o show t h a t c u r v e s c o r r e s p o n d i n g t o g e o d e s i c s a r e a c t u a l l y f o r c e la w s i n a l o w e r d i m e n s i o n a l v a r i e t y .

F i n a l l y we c o n c l u d e t h a t t h e p r o c e d u r e i f l o o k e d a t i n t h e o t h e r way r o u n d i s r e l a t e d t o t h e g r o u p t h e o r e t i c a l a p p r o a c h t o t h e e q u a t i o n s o f d y n a m i c s .

I .

We f i r s t r e c a l l a n d g i v e t h e . p r o o f o f a . t h e o r e m a r i s i n g i n t h e t h e o r i e s o f R ie m a n n i a n s p a c e s a n d p a r t i a l d i f f e r e n t i a l e q u a t i o n s . I n a f o r m a d a p t e d t o o u r p r o b l e m , t h i s s t a t e s t h a t s

(5)

The n e c e s s a r y and s u f f i c i e n t c o n d i t i o n s o f t h e e x i s t e n c e o f a c o o r ­ d i n a t e s y s te m / С . З . / i n which t h e m e t r i c t e n s o r g o f an n d i m e n s i o n a l R iem an n ian s p ace Vn i s i n d e p e n d e n t o f t h e c o o r d i n a t e s x 1 , . . . , x ^ ( r < n ) a r e

t h a t t h e r e e x i s t r l i n e a r l y i n d e p e n d e n t K i l l i n g v e c t o r s , Кд“ , and t h a t t h e s e v e c t o r s form an A b e l i a n g ro u p o f m o t i o n s , i . e . th e g e n e r a t o r s

GA | = KA | a 9 a XX / ! /

f u l f i l t h e r e l a t i o n s

ga| gb| - GBl ga| ■ 0 • I 21

By l i n e a r in d e p e n d e n c e o f t h e v e c t o r s Кд |* we mean t h a t th e r e l a t i o n

xR| KRp ■ °

i n any p o i n t o f th e sp a c e ca n o n l y be s a t i s f i e d by t h e t r i v i a l s e t o f t h e

s c a l a r s XAI = О

T h is g u a r a n t e e s , f o r i n s t a n c e , t h a t none o f th e v e c t o r s к “ c a n v a n i s h a t any p a r t i c u l a r p o i n t . Al

B e f o r e p r o v i n g th e th e o re m we r e c a l l t h a t by d e f i n i t i o n a K i l l i n g v e c t o r Кд | а s a t i s f i e s K i l l i n g s e q u a t i o n

KA | « , e + К А | 8 , а “ О ™ ' 3 '

E x p r e s s i n g th e C h r i s t o f f e l s y m b o ls by g О and t h e d e r i v a t i v e s o f q ,

I ар

Сз) c a n be c a s t i n t h e form

К» |P о g A I , ß y p a + К. I p A I , a yg p3 + КAI ga ß , p = О / 4 /

I t s h o u l d a l s o be r e m a r k e d t h a t i n c o n s e q u e n c e o f th e symmetry o f th e C h r i s t o f f e l sym bols i n th e two s u b s c r i p t s , (2) c an be w r i t t e n i n t h e f o l l o w i n g ways

GA| gbI " GBI ga | =

= K. |P K„ P л Э - K„ |p к . ,p э = о . АI в I ; р а В I АI ; р о

X а

The s t r o k e i n кд | means t h a t th e p r e c e e d i n g s u b s c r i p t o r s u p e r c r i p t i s n o t a c o v a r i a n t i n d e x b u t i s sim p ly t h e name o f t h e q u a n t i t y . Such i n d i c e s w i l l a l s o be d e t o n e d by u n d e r l i n i n g .

G re e k i n d i c e s w i l l alw ay s r u n from 1 t o n , w h i l e c a p i t a l L a t i n o n e s fro m 1 t o r . F o r any t y p e s o f i n d e x we a d o p t t h e u s u a l summation c o n v e n t i o n .

XK*The s e m i c o lo n d e n o t e s c o v a r i a n t d i f f e r e n t a t i o n w i t h r e s p e c t t o a v a r i a b l e i n d i c a t e d by a s u b s c r i p t , p r o v i d i n g t h e s u b s c r i p t d o es n o t p r e c e e d a s t r o k e o r i s n o t u n d e r l i n e d ; th e s i g n Эа o r a comma i n s t e a d o f th e s e m i ­ c o l o n d e n o te t h e o r d i n a r y p a r t i a l d e r i v a t i v e .

(6)

- 4 -

T h i s o p e r a t o r e q u a t i o n s t i l l d o e s n o t seem t o be c o v a r i a n t , b e c a u s e th e

• o p e r a t o r K „iP Э i s n o t a c o v a r i a n t v e c t o r . H ow ever, i f we demand (2)

* AI j a P

t o be v a l i d f o r any f u n c t i o n i n a p a r t i c u l a r C . S . , t h e n , a p p l y i n g i t t o t h e f u n c t i o n f = x a , we g e t

( s i s i - s i ga| ) * “ - M * ■ > ? . . - M k4 . -p ' °

w h ich i s c o v a r i a n t a n d w i l l g u a r a n t e e t h a t (2 ) i s f u l f i l l e d i n any C .S . The p r o o f o f t h e t h e o r e m goes a s f o l l o w s . Assume f i r s t t h a t t h e r e e x i s t s a C .S . i n w h ic h ga ^ d e p e n d s o n ly on x r + 1 , . . . » xn , and d e f i n e r l i n e a r l y i n d e p e n d e n t v e c t o r s * by

KAI - 6A

These w i l l s a t i s f y (4 ) a c c o r d i n g t o th e a s s u m p t i o n

/ 5 /

g aß,A = О

U sin g (1 ) and ( 5 ) o n e ca n r e a d i l y v e r i f y t h a t (2 ) i s a l s o s a t i s f i e d .

The p r o o f o f t h e r e v e r s e d s t a t e m e n t i s a b i t more i n v o l v e d . Assume t h a t t h e r e e x i s t r l i n e a r l y i n d e p e n d e n t v e c t o r s Кд “ s a t i s f y i n g (2) and

(3 ) . F i r s t we w i l l show t h a t one can c h o o s e a C .S . i n w hich v Ct _ f ®

KA| ~ 6A *

T here e x i s t s a C .S . i n w hich t h e n o n - v a n i s h i n g v e c t o r к д | а h a s t h e form [4]

v а _ r

KH - 6i /6/

U sin g ( 6 ) , we u t i l i z e (2 ) f o r t h e c a s e A = 1 , В = 2 by a p p l y i n g i t t o t h e f u n c t i o n x a , w h ic h g i v e s

а = 0

К Thus t h e e q u a t i o n

n l P= 2

2 I , 1

C2 | * , P

h a s n - 2 i n d e p e n d e n t s o l u t i o n s , Ф- (x2 , . . . ,x n ) , (k = 3 , . . . , n ) , a l l i n d e p e n d e n t o f x . P e r f o r m i n g a c o o r d i n a t e t r a n s f o r m a t i o nX

x ' 1 = X1 ,

x ' 2 = h (x2 , . . . , x n ) ,

Ф- (x2 , . . . , x n ) ; ( k = 3 , . . . ,n ) , x ' k. =

к By v e c t o r s we n a t u r a l l y mean v e c t o r f i e l d s h a v i n g c o n t i n u o u s d e r i v a t i v e s o f a t l e a s t th e f i r s t o r d e r .

(7)

w h ere h i a c h o s e n s o t o a v o i d th e v a n i s h i n g o f t h e J a c o b i a n , we have к 1 | , а = 01 / i . e . (6 ) i s u n c h a n g e d / and

K2|'k= L K2.|P ^ fP = 0 ; ( k = 3 ... n ) * P

к 2 1 ' 2 c a n n o t be z e r o as i t would n o t t h e n be l i n e a r l y i n d e p e n d e n t o f A t r a n s f o r m a t i o n o f th e k i n d

x ' 2 K- , ' 1

x " 1 = x ' 1 - f ---j - d x ' 2 ,

2 * ^

, - 2 -

Г

,

J v , 9 ^

о K2 |

x ’,k = x ' k ; (k = 3 , . . . , n )

l e a v e s (6 ) u n ch an g e d and l e a d s to t h e d e s i r e d fo rm o f к 2 | " а K2 I - 62 *

By r e p e a t i n g o f t h i s p r o c e d u r e we f i n a l l y end up w i t h a C . S . where

KA | “ = 6A I V

We s t i l l have t o show t h a t i f (7) i s v a l i d g i s i n d e p e n d e n t o f x A.

Ct • ot p

By a s s u m p t i o n Кд | i s a K i l l i n g v e c t o r ; th u s i t f u l f i l s ( 4 ) , w h i c h , „ u s i n g ( 7 ) , w i l l g iv e

ga8,A = 0 ' w h ich was to be p r o v e d .

The C .S . i n which ( 7 ) i s v a l i d i s c a l l e d a s p e c i a l c o o r d i n a t e s y s ­ tem / S . C . S . / . S i m i l a r s y s t e m s p l a y an e s s e n t i a l r o l e i n th e g r o u p t h e o r e t ­ i c a l c l a s s i f i c a t i o n o f t h e s p a c e - t i m e s o f g e n e r a l r e l a t i v i t y [3 ] .

The m o st g e n e r a l " t r a n s f o r m a t i o n s l e a v i n g ( 7 ) u n c h an g e d have t h e fo rm x ' A = xA + f A ( x r + 1 , . . . , xn ) ,

x »j - f j ( xr + 1 , . . . , xn ) t ( j = r + l , . . „ , n ) .

We c a l l s u c h a t r a n s f o r m a t i o n a s p e c i a l c o o r d i n a t e t r a n s f o r m a t i o n / S . C . T . / * The s u b g ro u p

x ' A = xA + f A ( * r + i , . ; , ‘f x n ) , x ' j = x g ; ( j = r + 1 , . . . , n )

o f t h e S « ( I . T .- e c a l l e d th e g r o u p o f g au g e t r a n s f o r m a t i o n s / s e e t h e end o f s e c t . I I / , w h ile a t r a n s f o r m a t i o n o f the fo rm

(8)

- 6 -

, A A

x9 = x ,

x ' 3 = (xr + \ . . . , x n ) ; = r + l , . . . , n ) i s a r e s t r i c t e d c o o r d i n a t e t r a n s f o r m a t i o n .

A R iem an n ian s p a c e a d m i t t i n g r l i n e a r l y i n d e p e n d e n t K i l l i n g v e c t o r s f o r m i n g an A b e l i a n g r o u p o f m o tio n s w i l l be d e n o t e d by Vn

I I .

I n t h i s s e c t i o n we ex am in e th e s t r u c t u r e o f a i n d e t a i l . We s h a l l assume t h a t t h e m a t r i x i l kABjllo f s c a l a r p r o d u c t s

k ABI KA I рКв I P A B I

o f t h e K i l l i n g v e c t o r s i s n o t s i n g u l a r . The i n v e r s e | | k ' | | o f | | kAB| l l can be u s e d t o r a i s e t h e c a p i t a l L a t i n s u b s c r i p t o f a KA | a :

I e kAR| K

r a k KRI a

N ote t h a t KA 1 i s g e n e r a l l y n o t a K i l l i n g v e c t o r . P

I n a t h e r e e x i s t s a s e t o f n - r i n d e p e n d e n t s c a l a r f u n c t i o n s f - ( x 1 , . . . , x n ) s a t i s f y i n g

KA | P ' f - , B - ° * l é l

к к

I n f a c t , t h e r e q u i r e m e n t (8 ) i s f u l f i l l e d by t h e f u n c t i o n s 'P— = x in t h e S . C . S . o f a V^. O b v i o u s l y , g i v e n s u c h a s e t any f u n c t i o n POF . . . , f — ) w i l l a l s o s a t i s f y ( 8 ) . I n t r o d u c t i n g t h e n o t a t i o n

y | = ^ p , 191

we have

KM P y! ■ kA |p ■ 0 •

* к к

Owing t o t h e in d e p e n d e n c e o f t h e f u n c t i o n s f — t h e v e c t o r s y— a r e l i n e a r l y i n d e p e n d e n t . T h u s, a c c o r d i n g t o ( 1 0 ) , th e v e c t o r s

K_, у - /1 1 /

A | p , ' p

-form a s e t o f n l i n e a r l y i n d e p e n d e n t v e c t o r s i n a Vn . We may t h e n i n t r o ­ duce t h e " i n v e r s e ” y - s :

t

KA | p ' ' k " 0 '

y p y Z • 4 > 11 2 '

x Prom now on s m a l l L a t i n i n d i c e s / e x c e p t г a n d jV w i l l r u n from r + 1 t o n ■

(9)

t h e s e n ( n - r ) e q u a t i o n s u n i q u e l y d e f i n e th e n ( n - r ) q u a n t i t i e s y a 3.

To c h a r a c t e r i z e u n a m b ig u o u s ly a v e c t o r Ua we can u s e any one o f t h e f o u r s e t s o f s c a l a r s

_,a a ,,p ,,a a r,p

U_ = y— lr , U- = у - Ü

° A| - ^ p ° P > a| ■ KAI p U° ' / 1 3 /

" a - * a UP ' °p '

4й1 - кА|Р Op > UA| - KA | P Up •

S i m i l a r q u a n t i t i e s f o r t e n s o r s o f h i g h e r o r d e r c a n a l s o be f o r m e d , e . g . AI aß = j ^ l a paß

а p та о

The t e n a o r

E“ = y y| / 1 4 /

i s a p r o j e c t o r , i . e .

a p a

% e ß = e ß

i n a c c o r d a n c e w i t h ( 1 2 ) . E q u a t io n s ( 1 0 ) and ( 1 2 ) g i v e e a К i p = К I = О

p AI a AI p

and

e a YP = Y“ • EP h = /1 5/

e p Yi Yi ' ea p Ya / 'L:>/

We c a n e x p r e s s e“ by means o f t h e v e c t o r s KA ja i n th e f o l l o w i n g ways

a -a „ r| a - _ v , a kRI /1 6 /

e ß = 6 ß - K KR |ß - 5ß KR| K ß • / i b /

T h i s r e l a t i o n i s p ro v e d by m u l t i p l y i n g . i t by an d t h e n c o n t r a c t i n g i t w i t h t h e n l i n e a r l y i n d e p e n d e n t v e c t o r s ( l l ) and f i n a l l y t a k i n g ( 1 5 ) i n t o a c c o u n t .

By means o f ( l 6 ) one can decompose t h e f u n d a m e n t a l form o f a V^s 9 a e d x “ dxS * 9 а р ( Ев + kR| B KR | B) dX“ 3 x 6 "

- V ( EP + К Т |° KT | J e B d x “ dx8 + k R | « KR |6dX“ dxf! ■ / l 7 / - V £ e d x ° dxB + k R | <. kr|b d x “ dxB '

(10)

8

where i n t h e l a s t s t e p (16) h a s b e e n u s e d . I n t r o d u c i n g

g djs

=

Л

v gpo ' ' 1

* '

(17) can be r e w r i t t e n

9 « H X“ d x ® ' 3 r s YS Yt d x “ d x ® * * * ' < . к в | в dx° ^ • •

The q u a n t i t i e s fo rm a n o n s i n g u l a r m a t r i x ! one can r e a d i l y show t h a t i c o n s e q u e n c e o f (TÜ”) and ( 12) we h av e

r k -k g i r g— = 6i

i f i k i к po

^ ' p ' a ^

The - s a r e th e co m p o n en ts o f a m e t r i c t e n s o r o f a v n _r and p l a y an i m p o r t a n t p a r t i n t h e d e r i v a t i o n o f f o r c e la w s i n s e c t i o n I I I .

We t u r n now t o q u e s t i o n s o f t e n s o r a n a l y s i s . From th e p a r t i a l d e r i v a t i v e s o f a q u a n t i t y В one c a n form t h e e x p r e s s i o n s

/ 1 9 / The f i r s t i s c a l l e d t h e i n n e r d e r i v a t i v e o f В i n t h e d i r e c t i o n o f Кд | , w h ile t h e s e c o n d i s t h e " p - d e r i v a t i v e o f в w i t h r e s p e c t t o f - " . В i s s a i d t o be A - c y c l i c i f В д |= 0 .

We w i l l show t h a t g i k i s A - c y c l i c f o r any A . To t h i s e n d we c a l c u l a t e

g i k , A 1 = ( gyv Yi Yk

).P V

=

= ( [yp iv] + [ v p , y ] )

Yi Yk KA| p + / 2 0 /

+ g уУ у У 'К. I p

y yv l i ' k , p A 1 + g у у

y yv 'k 'V v P i , p a| '

where [af?,y] i s t h e C h r i s t o f f e l symbol o f t h e f i r s t k i n d . I n o r d e r to e v a l u a t e g ^ y^ p КД | Р we d i f f e r e n t i a t e t h e s e c o n d r e l a t i o n o f ( 1 2 ) and u se ( 1 4 ) t o g e t-

v T

Yk , p T r v

“Yk YT,P Yr w h ich t o g e t h e r w i t h ( l 6 ) g i v e s

iK .p - kR|V V Y i„ " YI Yf , 0 y£

V

(11)

T h i s , m u l t i p l i e d by кд | p and c o n t r a c t e d f o r p and Yv „ Yv 9yV KA Iv

f k , p ' i

, y i e l d s

/2 1/

S i n c e by d e f i n i t i o n (9 ) Yv „ = Yv T . and t h a t a a a c o n s e q u e n c e o f (10)

L Г P P / 1

K- y— = - К . I

r p , T A|

r YP

V

^k.P ' i

, we may w r i t e (21) i n th e fo rm

p T r v y „ p

y ~ Y“ У r < 9, v ■

уv « Y< g yv KA K,

■ Yk Tp <r ' i *yv “ A I ,T Yk Yi g yp KA IP , T

I f we s u b s t i t u t e i n t o ( 1 9 ) th e l a t t e r e x p r e s s i o n and t h e e x p r e s s i o n o b t a i n e d from i t by i n t e r c h a n g i n g i an d k , we ge t

y i k , A | w h ich on th e a s s u m p tio n t h a t К

<1

V "A I у; v I wA I v ; у

‘A a i s a K i l l i n g v e c t o r g i v e s

?i k , A | = О /2 2/

w h ich was t o be p ro v e d .

A c c o r d in g to t h e r e m a r k s f o l l o w i n g ( 8 ) any f u n c t i o n o f the - s w i l l e q u a l l y s a t i s f y ( 8 ) . Thus as w e l l as the c o o r d i n a t e s we may a l s o t r a n s - fo rm th e p a r a m e t e r f u n c t i o n s f —. A t r a n s f o r m a t i o nk

, r + l

/ • • • / Ч>£ )

i s c a l l e d a p a r a m e t e r o r " p " - t r a n s f o r m a t i o n i f t h e J a c o b i a n

= y ' —

9 f ' ~ 9 f -

i s o f r a n k n - r . The d e f i n i t i o n o f th e p - t e n s o r s i s s t r a i g h t - f o r w a r d ; f o r e x a m p le , we c a l l Vk a c o v a r i a n t p - v e c t o r i f f o r a p - t r a n s f o r m a t i o n i t t r a n s f o r m s l i k e

V, _ af 4 k --- r

ü Э^'— —

N ote t h a t f o r a p - t r a n s f o r m a t i o n t h e o r d i n a r y c o o r d i n a t e s / о - c o o r d i n a t e s / r e m a i n u n c h a n g e d , and t h u s th e o r d i n a r y t e n s o r s / о - t e n s o r s / behave l i k e p - s c a l a r s ; and i n t u r n f o r an o - t r a n s f o r m a t i o n t h e p - t e n s o r s a r e t o be t r e a t e d a s o - s c a l a r s . ^rom d e f i n i t i o n (9) i t can be r e a d i l y shown t h a t y ^ i s a

c o n t r a v a r i a n t p - v e c t o r an d a c o v a r i a n t o - v e c t o r . from (12) i s f o l l o w s t h a t y® i s a c o n t r a v a r i a n t o - and c o v a r L a n t p - v e c t o r . I t c a n a l s o be v e r i f i e d t h a t t h e i n n e r d e r i v a t i o n i n any d i r e c t i o n w i i l n o t a l t e r t h e p - b e h a v i o u r o f a p - t e n s o r . ^he o r d i n a r y p a r t i a l d e r i v a t i v e o f a p - t e n s o r w ith r e s p e c t t o a v a r i a b l e x a , h o w e v e r , i s n o t a p - t e n s o r , and t h e r e f o r e we n e e d a p -

_

I n t h e l a s t s t e p we h a v e u s e d y— y v g e 1p ’r yyv ' i yV = e v g p ^yv ' i yV = g J yp ' i yV , '

, w h ic h i s a r e s u l t o f ( 1 4 ) a n d ( l 6 )

(12)

10

c o v a r i a n t r u l e o f d i f f e r e n t a t i o n . C o n s i d e r th e o - c o v a r i a n t d e r i v a t i v e o f t h e o - v e c t o r Ua = y a l)r , where u - i s an a r b i t r a r y p - v e c t o r

° “ , e ■ Ы . е + * ‘

M u l t i p l y i n g t h i s e q u a t i o n by y~ and summing f o r a , we g e t a p - c o n t r a v a r i a n t and o - c o v a r i a n t v e c t o r , a s Ua . 3 i s a p - s c a l a r ;

{pV ‘ vr i f , e ) / 2 3 ,

We c a l l t h e R .H .S . o f (2 3 ) th e p - c o v a r i a n t d e r i v a t i v e o f U— w i t h r e s p e c t to

О

x . The q u a n t i t y i n b r a c k e t s can be r e g a r d e d a s th e a n a l o g u e o f th e o r d i ­ n a r y C h r i s t o f f e l sym bols o f th e s e c o n d k i n d , an d may be d e n o t e d by

i £ } = v— v p f a > - v a Y— / 2 4 /

V ß' Ya Yb 4 Yb Ya ,$ 1 1

By t h e p - c o v a r i a n t d e r i v a t i v e o f a p - c o v a r i a n t v e c t o r Za w i t h r e s p e c t t o x ß we mean

- { . A J Z.

a , ß a $ r

T h i s can be shown t o be a p - c o v a r i a n t and o - c o v a r i a n t v e c t o r .

We c a n d e f i n e now t h e t o t a l l y c o v a r i a n t d e r i v a t i v e o f a t e n s o r o f a r b i t r a r y p - and o - c o v a r i a n t c h a r a c t e r . w i t h r e s p e c t to x p 5 t h i s i s t h e p a r t i a l d e r i v a t i v e o f t h e t e n s o r p l u s te rm s w i t h a p p r o p r i a t e s i g n s c o n t a i n ­ i n g o - C h r i s t o f f e l ‘sym bols f o r о - i n d i c e s and t h e sym bols (2 4 ) f o r p - i n d i c e s . For exam ple t o t a l l y c o v a r i a n t d e r i v a t i v e o f V— w i t h r e s p e c t t o x^ i s

V -“ = raa 0 + { - Л а 1 „ r aV—a + { “ } V - 1

n; ß ru ß r ß n p ßa * u£P -

- < n V V- a p *

From now .on t h e s e m i c o lo n w i l l alw ays d e n o t e th e t o t a l l y c o v a r i a n t d e r i v a t i v e .

O b v io u s ly t h e t o t a l l y c o v a r i a n t d e r i v a t i v e o f a p - o r a n - o - s c a l a r c o i n c i d e s w i t h i t s 0 - o r p - c o v a r i a n t d e r i v a t i v e , r e s p e c t i v e l y .

The t o t a l l y c o v a r i a n t d e r i v a t i v e o f an a r b i t r a r y t e n s o r can a l s o be " p r o j e c t e d " by means o f t h e у - s . Thus e . g . ,

“- , b - " * , » '< - 4 + 'eV Yb 1,5 '

w h ich i s c a l l e d " t h e t o t a l l y c o v a r i a n t d e r i v a t i v e o f u - w i t h r e s p e c t t o f - " . The q u a n t i t i e s

(13)

{ * } _ Г а , р

1Ь с ' р ' Yc / 2 5 /

a r e c a l l e d p - C h r i s t o f f e l sym bols o f th e s e c o n d k i n d . A s t r a i g h t f o r w a r d b u t l e n g t h y c a l c u l a t i o n shows t h a t

{b ~ c } ~ 2 g ( ^ £ b , c + gr c ,b gb c , r ) '

where g ab c i s d e f i n e d a c c o r d i n g t o th e s e c o n d r e l a t i o n o f (19)* I t can be d e r i v e d t h a t

g ab; c О ,

w h ich a r e th e a n a l o g u e s o f t h e c o r r e s p o n d i n g o - r e l a t i o n s .

We s h a l l now a p p l y t h e f o r m a l is m d e v e l o p e d above t o a S .C . S . o f a

’e / 2 6 / / s e e s e c t i o n I / . Thus we a r e assu m in g ( 7 ) t o h o l d , and t h e r e f o r e

KAI a * g ap KA| g aA and c o n s e q u e n t l y ,

kABI KA |p KB | P ka|b kb|a 9ab '

I n a c c o r d a n c e w i t h t h e r e m a r k s f o l l o w i n g ( 8 ) we may ta k e

„ к к

<p— = x

/ 2 7 /

/ 2 8 / A S . C . S . t o g e t h e r w i t h t h i s c h o i c e o f th e f u n c t i o n s ' ? — i s c a l l e d a n a t u r a l s y ste m / N . S . / o f a V*; .n

We s h a l l work i n a N .S . By d e f i n i t i o n ( 9 ) we have

y; - • / « /

-Taken w i t h (1 2 ) t h i s g i v e s

Yi = 6 i and Yi = '

w hich make p o s s i b l e t h e c a l c u l a t i o n o f g i k by means o f ( 1 8 ) :

* l k - 9 i k : k" 1! KB | k . T h is e q u a t i o n and t h e r e l a t i o n s (2 6 ) and (2 7 ) e n a b l e u s t o e x p r e s s g ae

by means o f gi k , Кд | а and кд в | :

U - * + к Е ' а КЕ |Ь

<>aB - I a ■ ' 3° l

gAB = kAB| * These i n t u r n a l lo w u s t o c a l c u l a t e ga ß :

(14)

- 12

ab a b

g = g—

aB a r

g = - g —

gABi= ( k AB + К к 3 ^ ) . / 3 1 /

A N .S . i s a t th e game tim e a S . C . S . , go g i a i n d e p e n d e n t o f x . Thus aa a co n a e q u e n c e o f (30) and (3 1 ) , kAB | kAB I , кд | an d

t o g e t h e r w i t h g afa a r e a l a o in d e p e n d e n t o f t h e s e v a r i a b l e s . T h i s i n c i d e n t a l ­ l y i s i n a g re e m e n t w ith ( 2 2 ) , w hich due t o ( 7 ) c a n now be w r i t t e n i n th e form

^ ab ,A | ^ a b ,p KA|

I t i s s e e n t h a t i n (30) and ( 3 1 ) p - and о - i n d i c e s a r e mixed u p . I f we p e r f o r m th e S .C .T .

f A(xr + 1 , . . . , xn )

= g , „ = 0

^ab,A

x ' A = xA +

,,k ,Y .( r +1 n )

= x v,x , • . . , x ) / 3 2 /

t h e n ( 7 ) w i l l r e m a in v a l i d . On t h e o t h e r h and ( 2 8 ) , and c o n s e q u e n t l y th e r e l a t i o n s ( 2 9 ) , (3 0 ) and ( 3 1 ) , w i l l become v o i d , i . e . t h e new s y stem w i l l n o t be a N .S . However, i f s i m u l t a n e o u s l y w i t h t h e o - t r a n s f o r r a a t i o n (32) we p e r f o r m a p - t r a n s f o r m a t i o n

if '— = x ,k (f ...<2. )

and t a k e ( 2 8 ) i n t o a c c o u n t , t h e n n o t o n ly ( 7 ) b u t a l s o ( 2 8 ) w i l l be l e f t u n c h a n g e d , and t h e new s y s t e m w i l l be a N .S . a g a i n .

Such a p a i r o f s i m u l t a n e o u s l y p e r f o r m e d t r a n s f o r m a t i o n s i s c a l l e d a n a t u r a l t r a n s f o r m a t i o n / N . T . / . A c c o r d in g l y th e g auge t r a n s f o r m a t i o n

, A A . .А / r+1 n \

x ' = X + f [ x , . . . , x )

, k k

x = x i s a N .T. c a l l i n g f o r t h

KAI a KAI a ~ f , a w h ich e n l i g h t e n s th e d e s i g n a t i o n " g a u g e ” .

I I I .

Now we i n v e s t i g a t e th e n o n m in im al g e o d e s i c s o f a V* . I f we c h o o s e a p a r a m e t e r a s u c h t h a t g po x p x a = e x , where e = - 1 , t h e n ■ t h e e q u a t i o n s o f a g e o d e s i c a r e

xa + {pa 0 ) x p * a = 0 / 3 3 /

x The d o t d e n o t e s th e d e r i v a t i v e w i t h r e s p e c t t o s .

(15)

A cco rd in g t o ( 1 3 ) we i n t r o d u c e n - r p - v e c t o r s

tZ - „Z

and r s c a l a r s

V - = у - k*- P

C.I * K.I A| A I p * p / 3 4 /

We w is h t o show t h a t с д | i s c o n s t a n t a l o n g t h e g e o d e s i c , i . e . dc.

We h a v e

ds = О . /3 5 /

One can i n v e r t th e r e l a t i o n s ( 3 4 ) :

* a = v - y“ + KR la c R , /3 6 /

By means o f (3 4 ) and ( l 6 ) , t h e r e l a t i o n s ( 3 6 ) a r e s e e n t o be f u l f i l l e d i d e n t i c a l l y .

We s u b s t i t u t e xa , o b t a i n e d by d i f f e r e n t i a t i n g ( 3 6 ) i n t o ( 3З) an d use ( 3 6 ) a g a i n t o e x p r e s s e v e r y xa by t h e v - - s a n d C ^ - s . F i n a l l y we m u l t i p l y t h e r e s u l t i n g e x p r e s s i o n by y~ a n d c o n t r a c t a t o g e t

* ( Д ) V i v i - - 2 Yf y°z KRl p . o CR| V i - P £

-Y— ^ P 10 c I C I

y p K ; a K CR | c t I ' /3 7 / w h e r e ( r - t } i s th e C h r i s t o f f e l symbol ( 2 5 ) . The f i r s t te r m on t h e R .H .S . can be r e w r i t t e n

- 2 v f , » K R l p I o c R | v £ . 2Yf X Y^ l 0 ( T c R| V i

y t 9 ~ Tr (kR | « ,t - rB ,t,o) c r | V i , / 3 8 /

b u t i n co n seq u en c e o f ( 3 ) к , i s a n t i s y m m e t r i c i n p and a , and th u s AI p ; o

( 3 5 ) i a in d e e d s a t i s f i e d .

(16)

- 1 4

where

а от т t a

Y - g p - Yt g—

and ( 3 ) , t o g e t h e r w ith t h e o b v i o u s r e l a t i o n

„R| vR l = kr I - kk I

K a?ß 0 ; a а,В ß , a

have b een u s e d .

The s e c o n d te rm o f (3 7 ) i s r e f o r m u l a t e d a s f o l l o w s - v f к * 10, , kT|<’ S i S i - - > f 9 0T( kRQl kq|tL k T | ° S i S i -

Ч -- f ? к*01 " TV| KQ | o . p к ,,,» c R| CT| -

1 a r p ,RQ| .TV| , r r

~ I 9 Yr k k kQv| ,p c r| ctI

- - 1 P k RT| c r

- ~2 9 Yr k , P Cr| CTI • Here we have made use o f ( 3 9 ) and o f

a KRIP = kRQl Ya к , p

Yp K ; a k Yp KQ| ; a

w h ich i s a co n s e q u e n c e o f ( 1 0 ) . The e q u a t i o n AB I . _kAK| k BQ|

, a RQ I , а

which i s a co n s e q u e n c e o f

1 ARI • .A

k k RBI = 6B

h a s a l s o been u s e d . I n s e r t i n g ( 3 8 ) and ( 4 0 ) i n t o ( 3 7 ) , one g e t s V» + ( Д ) v£ v £ - g S t y P Y« ( c R | KR l o _p - CB| KR l p _o ) V - -

- I т | кет|, р CR| ct| • / 4 1 /

The s i g n i f i c a n c e o f t h i s e q u a t i o n becomes e s p e c i a l l y l u c i d i n a N . S . , b e c a u s e a s a r e s u l t o f (29) we t h e n have

V— = x a , wi t h kA| and kAB I in d e p e n d e n t o f x^1, and m o re o v e r

K * L = kARl К,,,,, = kARI

k RBI 6B

В " RIВ

Thus (41) can be c a s t i n t h e form

*a + < A > ** а (si KR|r,t - Si KR|t,t) *r -

1 a t , RT I r r 2 9 k , t c r| ct|

/ 3 9 /

/ 4 0 /

/ 4 2 /

(17)

The f i r s t te r m o f th e R .H .S . o f (4 2 )h a s th e form o f an e l e c t r o ­ m a g n e t i c f o r c e / s i m i l a r te r m s i n c l a s s i c a l m e c h a n ic s a r e so m etim es c a l l e d g y r o s c o p i c f o r c e s / . The s e c o n d f o r c e i s o f t h e p o t e n t i a l t y p e . The " e l e c t r o ­

m a g n e t i c ” f i e l d . .

Fr t ■ CRI K r , t - CR| K t , r i s a r o t a t i o n o f the " v e c t o r p o t e n t i a l " CR К ' aR I

I f we p a s s from one N .S . t o a n o t h e r , th e o - and p - i n d i c e s behave e q u a l l y . Thus (42) i s a c o v a r i a n t e q u a t i o n f o r s u c h s y s t e m s . Our r e s u l t c an be p u t i n y e t a n o t h e r way: T h ere e x i s t s a R ie m a n n ia n s p a c e v n_r w i t h th e m e t r i c g i k i n which f o r a s e t o f c o n s t a n t s Сд a c u r v e d e s c r i b e d th e e q u a t i o n s (42) can be fo u n d t h a t c o r r e s p o n d s t o a g e o d e s i c o f t h e o r i g i n a l

, t h e Сдp a t h e n b e i n g g i v e n by ( 3 4 ) .

One may a s k i f i t i s p o s s i b l e t o f i n d a L a g r a n g i a n w h ic h when u s e d i n a v a r i a t i o n p r i n c i p l e w i l l l e a d t o t h e e q u a t i o n s ( 4 2 ) . The u n sw e r t o t h i s q u e s t i o n i s a f f i r m a t i v e , s i n c e t h e f u n c t i o n

L ■ [ ( * - CR| CT| k M | ) 9 r t i r 4 * ] Ш + CR|

w i l l m eet t h i s r e q u i r e m e n t . We s t r e s s , h o w e v e r , t h a t t h e c h o i c e o f th e p a r a m e t e r s i s s u c h t h a t

• a • ß

q 0 x x = e ,

^ a ß w hich i n a N .S . r e a d s

о I С С I = e

g r t X X k CR| Ct|

T a k in g t h i s i n t o a c c o u n t and u s i n g (43) i n t h e E u l e r - L a g r a n g e e q u a t i o n s , (4 2 ) w i l l r e a d i l l y be r e g a i n e d .

We can a l s o d e f i n e a new m e t r i c t e n s o r

' ’ ab * ( « - CR| CT| kRT| ) 9 ab U s in g a p a r a m e t e r s ' f o r w hich

d x r dxfc

gr t S T - ~ d P ~ “ c o n s t - ' t h e E u l e r - L a g r a n g e e q u a t i o n s

3L d 3L _ л

/ 3 d s ' w i t h t h e L d e f i n e d by ( 4 3 ) , w i l l l e a d to

— \ ■ + { a ,.} — = b a t / „ rr| r1 \ d x r

d a ' 2 ‘ r k d s - a s ' 9 ( *1 r , t CR | k t , t j — where i a formed from g ab i n th e u s u a l way.

(18)

- 16

I t i s s e e n t h a t t h e p o t e n t i a l f o r c e can be rem oved by r e d e f i n i n g t h e m e t r i c t e n s o r o n ly a t t h e p r i c e o f m aking th e new m e t r i c d e p e n d e n t on th e c o n s t a n t s г i .

A I

CONCLUSIONS

L o o k in g a t t h e r e a s o n i n g o f s e c t i o n I I I . fro m t h e o t h e r way r o u n d , we s e e t h a t a p o t e n t i a l - l i k e t e r m o f t h e f i r s t c u r v a t u r e o f a c u r v e i n a can a lw a y s be removed by r e d e f i n i n g t h e m e t r i c o f Vm . The new m e t r i c t e n s o r i s t h e p r o d u c t o f t h e o ld one and t h e s o - c a l l e d co n fo rm f a c t o r [ 4 ] • We f r e q u e n t l y e n c o u n t e r s i m i l a r p r o c e d u r e s i n t h e g r o u p t h e o r e t i c a l a p p r o a c h t o t h e e q u a t i o n s o f d y n am ics. F o r e x a m p le , i n t h e K e p l e r p r o b le m i t c an be shown t h a t t h e t r a j e c t o r i e s a r e th e g e o d e s i c s o f a s p h e r e o f t h r e e d im e n s io n s

P O -

On t h e o t h e r h a n d , and e l e c t r o m a g n e t i c / o r g y r o s c o p i c / f o r c e can o n ly be removed a t t h e e x p e n s e o f i n c r e a s i n g th e d im e n s io n s o f t h e s p a c e . However t h e l a r g e r s p ace o b t a i n e d t h i s way w i l l p o s s e s K i l l i n g s y m m e tr ie s c o n s t i t u t i n g an A b e li a n gro u p m o t i o n s .

ACKNOWLEDGMENTS The a u t h o r i s g r a t e f u l

i n v a l u a b l e a i d and f o r numerous

t o D r . J . K ó t a and D r . Z . P e r j é s f o r t h e i r f r u i t f u l d i s c u s s i o n s on t h i s t o p i c .

(19)

[1] Th. K a lu z a , S i t z u n g a b e r . d . P r e u a a . A k a d .d . W i s a . , 1921, p . 9 6 6 . [2] V . I . S m irn o v , Kúra V y ak ei M a t e m a t i k i ; G o a t e k h i z d a t , Moacow /1 9 5 3 /*

[3 ] A .Z .P e t r o v , Novye Metody v O baeki T e o r i i O t n o s i t e l n o a t i ,

’N a u k a ’ , Moacow / 1 9 6 6 / .

[4] L . P . f i i a e n h a r t , R ie m a n n ia n G eom etry, P r i n c e t o n U n i v . P r e a a . , / 1964/»

[5] G. G y ö r g y i, Nuovo C im ento 53A, 717 / 1 9 6 8 / .

(20)
(21)
(22)
(23)
(24)

/

í

í

«

P r i n t e d i n t h e C e n t r a l R e s e a r c h I n s t i t u t e f o r P h y s i c s , B u d a p e s t , Hungary

K ia d j a a KFKI K ö n y v tá r - K ia d ó i O s z t á l y a 0 . v . D r . F a r k a s I s t v á n n á

Szakmai l e k t o r . : D r. G yörgyi Géza N y e lv i l e k t o r : - P e r j é s Z o l t á n

K é s z ü l t a KFKI h á z i s o k s z o r o s í t ó j á b a n F . v . : Gyenes Imre

P é ld á n y s z á m ; 756 Munkaszám: 5247 B u d a p e s t , 1970 novem ber 12

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The second result follows from our approach too: it is shown that the identification of gravitation with a massless spin 2 gauge field requires the restriction

100 m magas kéménytől 800 m-re szélirányban, 1 m/s szél- sebesség mellett, D stabilitási kategória esetén a csóva gamma-sugárzása által okozott földfelszini

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Lőcs Gyula. Szakmai lektor: Pócs Lajos Nyelvi lektor: Harvey

Mivel a rendszerben a nyomáskülönbségek ekkor más csak néhány század MPa-t tesznek ki, ugyanebben az időpontban vált előjelet a gőzfejlesztők primer és

Both the Curie temperature and the mean magnetic moment of iron and holmium decrease with increasing holmium content.. The temperature dependence of magnetization

characterise different flow regimes. We propose to desc r i b e the propagating two-phase substance by the spatial correlation function of its density

In general we have only a single pair of the exciting and decay curve (or only one exciting curve for a number of different decay curves) therefore we are able to

We report on a new variational method for determining the ground state energy of antiferromagnetic Heisenberg spin chains with nearest neighbour interaction..