• Nem Talált Eredményt

Machine learning and portfolio selections. II.

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Machine learning and portfolio selections. II."

Copied!
103
0
0

Teljes szövegt

(1)

Machine learning and portfolio selections. II.

aszl´o (Laci) Gy¨orfi1

1Department of Computer Science and Information Theory Budapest University of Technology and Economics

Budapest, Hungary

September 22, 2007

e-mail: gyorfi@szit.bme.hu www.szit.bme.hu/˜gyorfi www.szit.bme.hu/˜oti/portfolio

(2)

Dynamic portfolio selection: general case

xi = (xi(1), . . .xi(d)) the return vector on day i b=b1 is the portfolio vector for the first day initial capitalS0

S1=S0· hb1,x1i

for the second day,S1 new initial capital, the portfolio vector b2=b(x1)

S2 =S0· hb1,x1i · hb(x1),x2i.

nth day a portfolio strategy bn=b(x1, . . . ,xn−1) =b(xn−11 ) Sn=S0

n

Y

i=1

D

b(xi−11 ),xi E

=S0enWn(B) with the average growth rate

Wn(B) = 1 n

n

X

i=1

ln D

b(xi−11 ),xi

E .

(3)

Dynamic portfolio selection: general case

xi = (xi(1), . . .xi(d)) the return vector on day i b=b1 is the portfolio vector for the first day initial capitalS0

S1=S0· hb1,x1i

for the second day,S1 new initial capital, the portfolio vector b2=b(x1)

S2 =S0· hb1,x1i · hb(x1),x2i.

nth day a portfolio strategy bn=b(x1, . . . ,xn−1) =b(xn−11 ) Sn=S0

n

Y

i=1

D

b(xi−11 ),xi E

=S0enWn(B) with the average growth rate

Wn(B) = 1 n

n

X

i=1

ln D

b(xi−11 ),xi

E .

(4)

Dynamic portfolio selection: general case

xi = (xi(1), . . .xi(d)) the return vector on day i b=b1 is the portfolio vector for the first day initial capitalS0

S1=S0· hb1,x1i

for the second day,S1 new initial capital, the portfolio vector b2=b(x1)

S2 =S0· hb1,x1i · hb(x1),x2i.

nth day a portfolio strategy bn=b(x1, . . . ,xn−1) =b(xn−11 ) Sn=S0

n

Y

i=1

D

b(xi−11 ),xi E

=S0enWn(B) with the average growth rate

n

(5)

log-optimum portfolio

X1,X2, . . . drawn from the vector valued stationary and ergodic process

log-optimum portfolioB ={b(·)}

E{ln

b(Xn−11 ),Xn

|Xn−11 }= max

b(·) E{ln

b(Xn−11 ),Xn

|Xn−11 }

Xn−11 =X1, . . . ,Xn−1

(6)

Optimality

Algoet and Cover (1988): IfSn =Sn(B) denotes the capital after dayn achieved by a log-optimum portfolio strategyB, then for any portfolio strategyBwith capital Sn=Sn(B) and for any process{Xn}−∞,

lim sup

n→∞

1

n lnSn−1 nlnSn

≤0 almost surely

for stationary ergodic process{Xn}−∞,

n→∞lim 1

n lnSn =W almost surely, where

W=E

maxb(·) E{ln

b(X−1−∞),X0

|X−1−∞}

is the maximal growth rate of any portfolio.

(7)

Optimality

Algoet and Cover (1988): IfSn =Sn(B) denotes the capital after dayn achieved by a log-optimum portfolio strategyB, then for any portfolio strategyBwith capital Sn=Sn(B) and for any process{Xn}−∞,

lim sup

n→∞

1

n lnSn−1 nlnSn

≤0 almost surely for stationary ergodic process{Xn}−∞,

n→∞lim 1

n lnSn =W almost surely, where

W=E

maxb(·) E{ln

b(X−1−∞),X0

|X−1−∞}

is the maximal growth rate of any portfolio.

(8)

Martingale difference sequences

for the proof of optimality we use the concept of martingale differences:

Definition

there are two sequences of random variables:

{Zn} {Xn}

Zn is a function of X1, . . . ,Xn,

E{Zn|X1, . . . ,Xn−1}= 0 almost surely.

Then{Zn} is called martingale difference sequence with respect to {Xn}.

(9)

A strong law of large numbers

Chow Theorem: If{Zn}is a martingale difference sequence with respect to{Xn}and

X

n=1

E{Zn2} n2 <∞ then

n→∞lim 1 n

n

X

i=1

Zi = 0 a.s.

(10)

A weak law of large numbers

Lemma: If{Zn} is a martingale difference sequence with respect to{Xn}then {Zn}are uncorrelated.

Proof. Put i <j.

E{ZiZj} = E{E{ZiZj |X1, . . . ,Xj−1}}

= E{ZiE{Zj |X1, . . . ,Xj−1}}

= E{Zi ·0}= 0 Corollary

E

 1 n

n

X

i=1

Zi

!2

= 1

n2

n

X

i=1 n

X

j=1

E{ZiZj}

= 1

n2

n

X

i=1

E{Zi2}

→ 0

if, for example,E{Zi2} is a bounded sequence.

(11)

A weak law of large numbers

Lemma: If{Zn} is a martingale difference sequence with respect to{Xn}then {Zn}are uncorrelated.

Proof. Put i <j. E{ZiZj}

= E{E{ZiZj |X1, . . . ,Xj−1}}

= E{ZiE{Zj |X1, . . . ,Xj−1}}

= E{Zi ·0}= 0 Corollary

E

 1 n

n

X

i=1

Zi

!2

= 1

n2

n

X

i=1 n

X

j=1

E{ZiZj}

= 1

n2

n

X

i=1

E{Zi2}

→ 0

if, for example,E{Zi2} is a bounded sequence.

(12)

A weak law of large numbers

Lemma: If{Zn} is a martingale difference sequence with respect to{Xn}then {Zn}are uncorrelated.

Proof. Put i <j.

E{ZiZj} = E{E{ZiZj |X1, . . . ,Xj−1}}

= E{ZiE{Zj |X1, . . . ,Xj−1}}

= E{Zi ·0}= 0 Corollary

E

 1 n

n

X

i=1

Zi

!2

= 1

n2

n

X

i=1 n

X

j=1

E{ZiZj}

= 1

n2

n

X

i=1

E{Zi2}

→ 0

if, for example,E{Zi2} is a bounded sequence.

(13)

A weak law of large numbers

Lemma: If{Zn} is a martingale difference sequence with respect to{Xn}then {Zn}are uncorrelated.

Proof. Put i <j.

E{ZiZj} = E{E{ZiZj |X1, . . . ,Xj−1}}

= E{ZiE{Zj |X1, . . . ,Xj−1}}

= E{Zi ·0}= 0 Corollary

E

 1 n

n

X

i=1

Zi

!2

= 1

n2

n

X

i=1 n

X

j=1

E{ZiZj}

= 1

n2

n

X

i=1

E{Zi2}

→ 0

if, for example,E{Zi2} is a bounded sequence.

(14)

A weak law of large numbers

Lemma: If{Zn} is a martingale difference sequence with respect to{Xn}then {Zn}are uncorrelated.

Proof. Put i <j.

E{ZiZj} = E{E{ZiZj |X1, . . . ,Xj−1}}

= E{ZiE{Zj |X1, . . . ,Xj−1}}

= E{Zi ·0}

= 0 Corollary

E

 1 n

n

X

i=1

Zi

!2

= 1

n2

n

X

i=1 n

X

j=1

E{ZiZj}

= 1

n2

n

X

i=1

E{Zi2}

→ 0

if, for example,E{Zi2} is a bounded sequence.

(15)

A weak law of large numbers

Lemma: If{Zn} is a martingale difference sequence with respect to{Xn}then {Zn}are uncorrelated.

Proof. Put i <j.

E{ZiZj} = E{E{ZiZj |X1, . . . ,Xj−1}}

= E{ZiE{Zj |X1, . . . ,Xj−1}}

= E{Zi ·0}= 0

Corollary E

 1 n

n

X

i=1

Zi

!2

= 1

n2

n

X

i=1 n

X

j=1

E{ZiZj}

= 1

n2

n

X

i=1

E{Zi2}

→ 0

if, for example,E{Zi2} is a bounded sequence.

(16)

A weak law of large numbers

Lemma: If{Zn} is a martingale difference sequence with respect to{Xn}then {Zn}are uncorrelated.

Proof. Put i <j.

E{ZiZj} = E{E{ZiZj |X1, . . . ,Xj−1}}

= E{ZiE{Zj |X1, . . . ,Xj−1}}

= E{Zi ·0}= 0 Corollary

E

 1 n

n

X

i=1

Zi

!2

= 1

n2

n

X

i=1 n

X

j=1

E{ZiZj}

= 1

n2

n

X

i=1

E{Zi2}

→ 0

if, for example,E{Zi2} is a bounded sequence.

(17)

A weak law of large numbers

Lemma: If{Zn} is a martingale difference sequence with respect to{Xn}then {Zn}are uncorrelated.

Proof. Put i <j.

E{ZiZj} = E{E{ZiZj |X1, . . . ,Xj−1}}

= E{ZiE{Zj |X1, . . . ,Xj−1}}

= E{Zi ·0}= 0 Corollary

E

 1 n

n

X

i=1

Zi

!2

= 1

n2

n

X

i=1 n

X

j=1

E{ZiZj}

= 1

n2

n

X

i=1

E{Zi2}

→ 0

if, for example,E{Zi2} is a bounded sequence.

(18)

A weak law of large numbers

Lemma: If{Zn} is a martingale difference sequence with respect to{Xn}then {Zn}are uncorrelated.

Proof. Put i <j.

E{ZiZj} = E{E{ZiZj |X1, . . . ,Xj−1}}

= E{ZiE{Zj |X1, . . . ,Xj−1}}

= E{Zi ·0}= 0 Corollary

E

 1 n

n

X

i=1

Zi

!2

= 1

n2

n

X

i=1 n

X

j=1

E{ZiZj}

= 1

n2

n

X

i=1

E{Zi2}

→ 0

if, for example,E{Zi2} is a bounded sequence.

(19)

A weak law of large numbers

Lemma: If{Zn} is a martingale difference sequence with respect to{Xn}then {Zn}are uncorrelated.

Proof. Put i <j.

E{ZiZj} = E{E{ZiZj |X1, . . . ,Xj−1}}

= E{ZiE{Zj |X1, . . . ,Xj−1}}

= E{Zi ·0}= 0 Corollary

E

 1 n

n

X

i=1

Zi

!2

= 1

n2

n

X

i=1 n

X

j=1

E{ZiZj}

= 1

n2

n

X

i=1

E{Zi2}

→ 0

if, for example,E{Zi2} is a bounded sequence.

(20)

Constructing martingale difference sequence

{Yn} is an arbitrary sequence such that Yn is a function of X1, . . . ,Xn

Put

Zn=Yn−E{Yn|X1, . . . ,Xn−1} Then{Zn} is a martingale difference sequence:

Zn is a function of X1, . . . ,Xn,

E{Zn|X1, . . . ,Xn−1}

= E{Yn−E{Yn|X1, . . . ,Xn−1} |X1, . . . ,Xn−1}

= 0

almost surely.

(21)

Constructing martingale difference sequence

{Yn} is an arbitrary sequence such that Yn is a function of X1, . . . ,Xn

Put

Zn=Yn−E{Yn|X1, . . . ,Xn−1} Then{Zn} is a martingale difference sequence:

Zn is a function of X1, . . . ,Xn,

E{Zn|X1, . . . ,Xn−1}

= E{Yn−E{Yn|X1, . . . ,Xn−1} |X1, . . . ,Xn−1}

= 0

almost surely.

(22)

Constructing martingale difference sequence

{Yn} is an arbitrary sequence such that Yn is a function of X1, . . . ,Xn

Put

Zn=Yn−E{Yn|X1, . . . ,Xn−1} Then{Zn} is a martingale difference sequence:

Zn is a function of X1, . . . ,Xn,

E{Zn|X1, . . . ,Xn−1}

= E{Yn−E{Yn|X1, . . . ,Xn−1} |X1, . . . ,Xn−1}

= 0

almost surely.

(23)

Constructing martingale difference sequence

{Yn} is an arbitrary sequence such that Yn is a function of X1, . . . ,Xn

Put

Zn=Yn−E{Yn|X1, . . . ,Xn−1} Then{Zn} is a martingale difference sequence:

Zn is a function of X1, . . . ,Xn,

E{Zn|X1, . . . ,Xn−1}

= E{Yn−E{Yn|X1, . . . ,Xn−1} |X1, . . . ,Xn−1}

= 0

almost surely.

(24)

Constructing martingale difference sequence

{Yn} is an arbitrary sequence such that Yn is a function of X1, . . . ,Xn

Put

Zn=Yn−E{Yn|X1, . . . ,Xn−1} Then{Zn} is a martingale difference sequence:

Zn is a function of X1, . . . ,Xn,

E{Zn|X1, . . . ,Xn−1}

= E{Yn−E{Yn|X1, . . . ,Xn−1} |X1, . . . ,Xn−1}

= 0

(25)

Optimality

log-optimum portfolioB ={b(·)}

E{ln

b(Xn−11 ),Xn

|Xn−11 }= max

b(·) E{ln

b(Xn−11 ),Xn

|Xn−11 }

IfSn =Sn(B) denotes the capital after day n achieved by a log-optimum portfolio strategyB, then for any portfolio strategy Bwith capital Sn=Sn(B) and for any process {Xn}−∞,

lim sup

n→∞

1

n lnSn−1 nlnSn

≤0 almost surely

(26)

Optimality

log-optimum portfolioB ={b(·)}

E{ln

b(Xn−11 ),Xn

|Xn−11 }= max

b(·) E{ln

b(Xn−11 ),Xn

|Xn−11 }

IfSn =Sn(B) denotes the capital after day n achieved by a log-optimum portfolio strategyB, then for any portfolio strategy Bwith capital Sn=Sn(B) and for any process {Xn}−∞,

lim sup

n→∞

1

n lnSn−1 nlnSn

≤0 almost surely

(27)

Proof of optimality

1

n lnSn = 1 n

n

X

i=1

ln D

b(Xi−11 ),Xi

E

= 1

n

n

X

i=1

E{lnD

b(Xi−11 ),Xi

E

|Xi1−1}

+ 1

n

n

X

i=1

lnD

b(Xi−11 ),XiE

−E{lnD

b(Xi−11 ),XiE

|Xi−11 }

and 1

n lnSn = 1 n

n

X

i=1

E{lnD

b(Xi−11 ),XiE

|Xi−11 }

+ 1

n

n

X

i=1

lnD

b(Xi−11 ),XiE

−E{lnD

b(Xi−11 ),XiE

|Xi1−1}

(28)

Proof of optimality

1

n lnSn = 1 n

n

X

i=1

ln D

b(Xi−11 ),Xi

E

= 1

n

n

X

i=1

E{lnD

b(Xi−11 ),Xi

E

|Xi1−1}

+ 1

n

n

X

i=1

lnD

b(Xi−11 ),XiE

−E{lnD

b(Xi−11 ),XiE

|Xi−11 }

and 1

n lnSn = 1 n

n

X

i=1

E{lnD

b(Xi−11 ),XiE

|Xi−11 }

+ 1

n

n

X

i=1

lnD

b(Xi−11 ),XiE

−E{lnD

b(Xi−11 ),XiE

|Xi1−1}

(29)

Proof of optimality

1

n lnSn = 1 n

n

X

i=1

ln D

b(Xi−11 ),Xi

E

= 1

n

n

X

i=1

E{lnD

b(Xi−11 ),Xi

E

|Xi1−1}

+ 1

n

n

X

i=1

lnD

b(Xi−11 ),XiE

−E{lnD

b(Xi−11 ),XiE

|Xi−11 }

and 1

n lnSn = 1 n

n

X

i=1

E{lnD

b(Xi−11 ),XiE

|Xi−11 }

+ 1

n

n

X

i=1

lnD

b(Xi−11 ),XiE

−E{lnD

b(Xi−11 ),XiE

|Xi1−1}

(30)

Universally consistent portfolio

These limit relations give rise to the following definition:

Definition

An empirical (data driven) portfolio strategyBis called

universally consistent with respect to a class C of stationary and ergodic processes{Xn}−∞,if for each process in the class,

n→∞lim 1

nlnSn(B) =W almost surely.

(31)

Empirical portfolio selection

E{ln

b(Xn−11 ),Xn

|Xn−11 }= max

b(·) E{ln

b(Xn−11 ),Xn

|Xn−11 }

fixed integerk >0 E{ln

b(Xn−11 ),Xn

|Xn−11 } ≈E{ln

b(Xn−1n−k),Xn

|Xn−1n−k} and

b(Xn−11 )≈bk(Xn−1n−k) =arg max

b(·)

E{ln

b(Xn−1n−k),Xn

|Xn−1n−k} because of stationarity

bk(xk1) = arg max

b(·)

E{lnD

b(xk1),Xk+1 E

|Xk1 =xk1}

= arg max

b

E{lnhb,Xk+1i |Xk1 =xk1}, which is the maximization of the regression function

mb(xk1) =E{lnhb,Xk+1i |Xk1 =xk1}

(32)

Empirical portfolio selection

E{ln

b(Xn−11 ),Xn

|Xn−11 }= max

b(·) E{ln

b(Xn−11 ),Xn

|Xn−11 } fixed integerk >0

E{ln

b(Xn−11 ),Xn

|Xn−11 } ≈E{ln

b(Xn−1n−k),Xn

|Xn−1n−k}

and

b(Xn−11 )≈bk(Xn−1n−k) =arg max

b(·)

E{ln

b(Xn−1n−k),Xn

|Xn−1n−k} because of stationarity

bk(xk1) = arg max

b(·)

E{lnD

b(xk1),Xk+1 E

|Xk1 =xk1}

= arg max

b

E{lnhb,Xk+1i |Xk1 =xk1}, which is the maximization of the regression function

mb(xk1) =E{lnhb,Xk+1i |Xk1 =xk1}

(33)

Empirical portfolio selection

E{ln

b(Xn−11 ),Xn

|Xn−11 }= max

b(·) E{ln

b(Xn−11 ),Xn

|Xn−11 } fixed integerk >0

E{ln

b(Xn−11 ),Xn

|Xn−11 } ≈E{ln

b(Xn−1n−k),Xn

|Xn−1n−k} and

b(Xn−11 )≈bk(Xn−1n−k) =arg max

b(·)

E{ln

b(Xn−1n−k),Xn

|Xn−1n−k}

because of stationarity bk(xk1) = arg max

b(·)

E{lnD

b(xk1),Xk+1 E

|Xk1 =xk1}

= arg max

b

E{lnhb,Xk+1i |Xk1 =xk1}, which is the maximization of the regression function

mb(xk1) =E{lnhb,Xk+1i |Xk1 =xk1}

(34)

Empirical portfolio selection

E{ln

b(Xn−11 ),Xn

|Xn−11 }= max

b(·) E{ln

b(Xn−11 ),Xn

|Xn−11 } fixed integerk >0

E{ln

b(Xn−11 ),Xn

|Xn−11 } ≈E{ln

b(Xn−1n−k),Xn

|Xn−1n−k} and

b(Xn−11 )≈bk(Xn−1n−k) =arg max

b(·)

E{ln

b(Xn−1n−k),Xn

|Xn−1n−k} because of stationarity

bk(xk1) = arg max

b(·)

E{lnD

b(xk1),Xk+1 E

|Xk1 =xk1}

= arg max

b

E{lnhb,Xk+1i |Xk1 =xk1},

which is the maximization of the regression function mb(xk1) =E{lnhb,Xk+1i |Xk1 =xk1}

(35)

Empirical portfolio selection

E{ln

b(Xn−11 ),Xn

|Xn−11 }= max

b(·) E{ln

b(Xn−11 ),Xn

|Xn−11 } fixed integerk >0

E{ln

b(Xn−11 ),Xn

|Xn−11 } ≈E{ln

b(Xn−1n−k),Xn

|Xn−1n−k} and

b(Xn−11 )≈bk(Xn−1n−k) =arg max

b(·)

E{ln

b(Xn−1n−k),Xn

|Xn−1n−k} because of stationarity

bk(xk1) = arg max

b(·)

E{lnD

b(xk1),Xk+1 E

|Xk1 =xk1}

= arg max

b

E{lnhb,Xk+1i |Xk1 =xk1}, which is the maximization of the regression function

mb(xk1) =E{lnhb,Xk+1i |Xk1 =xk1}

(36)

Regression function

Y real valued X observation vector

Regression function

m(x) =E{Y |X =x} i.i.d. data: Dn={(X1,Y1), . . . ,(Xn,Yn)} Regression function estimate

mn(x) =mn(x,Dn) local averaging estimates

mn(x) =

n

X

i=1

Wni(x;X1, . . . ,Xn)Yi L. Gy¨orfi, M. Kohler, A. Krzyzak, H. Walk (2002) A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York.

(37)

Regression function

Y real valued X observation vector Regression function

m(x) =E{Y |X =x}

i.i.d. data: Dn={(X1,Y1), . . . ,(Xn,Yn)}

Regression function estimate

mn(x) =mn(x,Dn) local averaging estimates

mn(x) =

n

X

i=1

Wni(x;X1, . . . ,Xn)Yi L. Gy¨orfi, M. Kohler, A. Krzyzak, H. Walk (2002) A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York.

(38)

Regression function

Y real valued X observation vector Regression function

m(x) =E{Y |X =x}

i.i.d. data: Dn={(X1,Y1), . . . ,(Xn,Yn)}

Regression function estimate

mn(x) =mn(x,Dn)

local averaging estimates mn(x) =

n

X

i=1

Wni(x;X1, . . . ,Xn)Yi L. Gy¨orfi, M. Kohler, A. Krzyzak, H. Walk (2002) A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York.

(39)

Regression function

Y real valued X observation vector Regression function

m(x) =E{Y |X =x}

i.i.d. data: Dn={(X1,Y1), . . . ,(Xn,Yn)}

Regression function estimate

mn(x) =mn(x,Dn) local averaging estimates

mn(x) =

n

X

i=1

Wni(x;X1, . . . ,Xn)Yi

L. Gy¨orfi, M. Kohler, A. Krzyzak, H. Walk (2002) A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York.

(40)

Regression function

Y real valued X observation vector Regression function

m(x) =E{Y |X =x}

i.i.d. data: Dn={(X1,Y1), . . . ,(Xn,Yn)}

Regression function estimate

mn(x) =mn(x,Dn) local averaging estimates

mn(x) =

n

X

i=1

Wni(x;X1, . . . ,Xn)Yi L. Gy¨orfi, M. Kohler, A. Krzyzak, H. Walk (2002) A

(41)

Correspondence

X ∼ Xk1

Y ∼ lnhb,Xk+1i

m(x) =E{Y |X =x} ∼ mb(xk1) =E{lnhb,Xk+1i |Xk1 =xk1}

(42)

Correspondence

X ∼ Xk1

Y ∼ lnhb,Xk+1i

m(x) =E{Y |X =x} ∼ mb(xk1) =E{lnhb,Xk+1i |Xk1 =xk1}

(43)

Correspondence

X ∼ Xk1

Y ∼ lnhb,Xk+1i

m(x) =E{Y |X =x} ∼ mb(xk1) =E{lnhb,Xk+1i |Xk1 =xk1}

(44)

Partitioning regression estimate

PartitionPn={An,1,An,2. . .}

An(x) is the cell of the partition Pn into which x falls mn(x) =

Pn

i=1YiI[Xi∈An(x)] Pn

i=1I[Xi∈An(x)]

LetGn be the quantizer corresponding to the partition Pn: Gn(x) =j ifx ∈An,j.

the set of matches

In(x) ={i ≤n: Gn(x) =Gn(Xi)} Then

mn(x) = P

i∈In(x)Yi

|In(x)| .

(45)

Partitioning regression estimate

PartitionPn={An,1,An,2. . .}

An(x) is the cell of the partition Pn into which x falls

mn(x) = Pn

i=1YiI[Xi∈An(x)] Pn

i=1I[Xi∈An(x)]

LetGn be the quantizer corresponding to the partition Pn: Gn(x) =j ifx ∈An,j.

the set of matches

In(x) ={i ≤n: Gn(x) =Gn(Xi)} Then

mn(x) = P

i∈In(x)Yi

|In(x)| .

(46)

Partitioning regression estimate

PartitionPn={An,1,An,2. . .}

An(x) is the cell of the partition Pn into which x falls mn(x) =

Pn

i=1YiI[Xi∈An(x)]

Pn

i=1I[Xi∈An(x)]

LetGn be the quantizer corresponding to the partition Pn: Gn(x) =j ifx ∈An,j.

the set of matches

In(x) ={i ≤n: Gn(x) =Gn(Xi)} Then

mn(x) = P

i∈In(x)Yi

|In(x)| .

(47)

Partitioning regression estimate

PartitionPn={An,1,An,2. . .}

An(x) is the cell of the partition Pn into which x falls mn(x) =

Pn

i=1YiI[Xi∈An(x)]

Pn

i=1I[Xi∈An(x)]

LetGn be the quantizer corresponding to the partition Pn: Gn(x) =j ifx ∈An,j.

the set of matches

In(x) ={i ≤n: Gn(x) =Gn(Xi)} Then

mn(x) = P

i∈In(x)Yi

|In(x)| .

(48)

Partitioning regression estimate

PartitionPn={An,1,An,2. . .}

An(x) is the cell of the partition Pn into which x falls mn(x) =

Pn

i=1YiI[Xi∈An(x)]

Pn

i=1I[Xi∈An(x)]

LetGn be the quantizer corresponding to the partition Pn: Gn(x) =j ifx ∈An,j.

the set of matches

In(x) ={i ≤n: Gn(x) =Gn(Xi)}

Then

mn(x) = P

i∈In(x)Yi

.

(49)

Partitioning-based portfolio selection

fixk, `= 1,2, . . .

P`={A`,j,j = 1,2, . . . ,m`}finite partitions of Rd,

G` be the corresponding quantizer: G`(x) =j, if x∈A`,j. G`(xn1) =G`(x1), . . . ,G`(xn),

the set of matches:

Jn={k <i <n:G`(xi−1i−k) =G`(xn−1n−k)}

b(k,`)(xn−11 ) =arg max

b

X

i∈Jn

lnhb,xii

if the setIn is non-void, and b0 = (1/d, . . . ,1/d) otherwise.

(50)

Partitioning-based portfolio selection

fixk, `= 1,2, . . .

P`={A`,j,j = 1,2, . . . ,m`}finite partitions of Rd, G` be the corresponding quantizer: G`(x) =j, if x∈A`,j.

G`(xn1) =G`(x1), . . . ,G`(xn), the set of matches:

Jn={k <i <n:G`(xi−1i−k) =G`(xn−1n−k)}

b(k,`)(xn−11 ) =arg max

b

X

i∈Jn

lnhb,xii

if the setIn is non-void, and b0 = (1/d, . . . ,1/d) otherwise.

(51)

Partitioning-based portfolio selection

fixk, `= 1,2, . . .

P`={A`,j,j = 1,2, . . . ,m`}finite partitions of Rd, G` be the corresponding quantizer: G`(x) =j, if x∈A`,j. G`(xn1) =G`(x1), . . . ,G`(xn),

the set of matches:

Jn={k <i <n:G`(xi−1i−k) =G`(xn−1n−k)}

b(k,`)(xn−11 ) =arg max

b

X

i∈Jn

lnhb,xii

if the setIn is non-void, and b0 = (1/d, . . . ,1/d) otherwise.

(52)

Partitioning-based portfolio selection

fixk, `= 1,2, . . .

P`={A`,j,j = 1,2, . . . ,m`}finite partitions of Rd, G` be the corresponding quantizer: G`(x) =j, if x∈A`,j. G`(xn1) =G`(x1), . . . ,G`(xn),

the set of matches:

Jn={k <i <n:G`(xi−1i−k) =G`(xn−1n−k)}

b(k,`)(xn−11 ) =arg max

b

X

i∈Jn

lnhb,xii

if the setIn is non-void, and b0 = (1/d, . . . ,1/d) otherwise.

(53)

Partitioning-based portfolio selection

fixk, `= 1,2, . . .

P`={A`,j,j = 1,2, . . . ,m`}finite partitions of Rd, G` be the corresponding quantizer: G`(x) =j, if x∈A`,j. G`(xn1) =G`(x1), . . . ,G`(xn),

the set of matches:

Jn={k <i <n:G`(xi−1i−k) =G`(xn−1n−k)}

b(k,`)(xn−11 ) =arg max

b

X

i∈Jn

lnhb,xii

if the setIn is non-void, and b0 = (1/d, . . . ,1/d) otherwise.

(54)

Elementary portfolios

for fixedk, `= 1,2, . . .,

B(k,`) ={b(k,`)(·)}, are called elementary portfolios

That is,b(k,`)n quantizes the sequencexn−11 according to the partitionP`, and browses through all past appearances of the last seen quantized stringG`(xn−1n−k) of lengthk.

Then it designs a fixed portfolio vector according to the returns on the days following the occurence of the string.

(55)

Elementary portfolios

for fixedk, `= 1,2, . . .,

B(k,`) ={b(k,`)(·)}, are called elementary portfolios

That is,b(k,`)n quantizes the sequencexn−11 according to the partitionP`, and browses through all past appearances of the last seen quantized stringG`(xn−1n−k) of lengthk.

Then it designs a fixed portfolio vector according to the returns on the days following the occurence of the string.

(56)

Combining elementary portfolios

How to choosek, `

small k or small `: large bias

large k and large`: few matching, large variance

Machine learning: combination of experts

N. Cesa-Bianchi and G. Lugosi,Prediction, Learning, and Games. Cambridge University Press, 2006.

(57)

Combining elementary portfolios

How to choosek, `

small k or small `: large bias

large k and large`: few matching, large variance Machine learning: combination of experts

N. Cesa-Bianchi and G. Lugosi,Prediction, Learning, and Games.

Cambridge University Press, 2006.

(58)

Exponential weighing

combine the elementary portfolio strategiesB(k,`)={b(k,`)n }

let{qk,`} be a probability distribution on the set of all pairs (k, `) such that for allk, `,qk,`>0.

forη >0 put

wn,k,`=qk,`eηlnSn−1(B(k,`)) forη = 1,

wn,k,`=qk,`elnSn−1(B(k,`))=qk,`Sn−1(B(k,`)) and

vn,k,`= wn,k,`

P

i,jwn,i,j. the combined portfoliob:

bn(xn−11 ) =X

k,`

vn,k,`b(k,`)n (xn−11 ).

(59)

Exponential weighing

combine the elementary portfolio strategiesB(k,`)={b(k,`)n } let{qk,`} be a probability distribution on the set of all pairs (k, `) such that for allk, `,qk,`>0.

forη >0 put

wn,k,`=qk,`eηlnSn−1(B(k,`)) forη = 1,

wn,k,`=qk,`elnSn−1(B(k,`))=qk,`Sn−1(B(k,`)) and

vn,k,`= wn,k,`

P

i,jwn,i,j. the combined portfoliob:

bn(xn−11 ) =X

k,`

vn,k,`b(k,`)n (xn−11 ).

(60)

Exponential weighing

combine the elementary portfolio strategiesB(k,`)={b(k,`)n } let{qk,`} be a probability distribution on the set of all pairs (k, `) such that for allk, `,qk,`>0.

forη >0 put

wn,k,`=qk,`eηlnSn−1(B(k,`))

forη = 1,

wn,k,`=qk,`elnSn−1(B(k,`))=qk,`Sn−1(B(k,`)) and

vn,k,`= wn,k,`

P

i,jwn,i,j. the combined portfoliob:

bn(xn−11 ) =X

k,`

vn,k,`b(k,`)n (xn−11 ).

(61)

Exponential weighing

combine the elementary portfolio strategiesB(k,`)={b(k,`)n } let{qk,`} be a probability distribution on the set of all pairs (k, `) such that for allk, `,qk,`>0.

forη >0 put

wn,k,`=qk,`eηlnSn−1(B(k,`)) forη = 1,

wn,k,`=qk,`elnSn−1(B(k,`))=qk,`Sn−1(B(k,`))

and

vn,k,`= wn,k,`

P

i,jwn,i,j. the combined portfoliob:

bn(xn−11 ) =X

k,`

vn,k,`b(k,`)n (xn−11 ).

(62)

Exponential weighing

combine the elementary portfolio strategiesB(k,`)={b(k,`)n } let{qk,`} be a probability distribution on the set of all pairs (k, `) such that for allk, `,qk,`>0.

forη >0 put

wn,k,`=qk,`eηlnSn−1(B(k,`)) forη = 1,

wn,k,`=qk,`elnSn−1(B(k,`))=qk,`Sn−1(B(k,`)) and

vn,k,`= wn,k,`

P

i,jwn,i,j.

the combined portfoliob: bn(xn−11 ) =X

k,`

vn,k,`b(k,`)n (xn−11 ).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this section we give a lower bound for the nearest neighbor and the k-nearest neighbor complex- ities of a specific function. For an input vector x ∈ {0, 1} n , the function

the kNN classifier is frequently used for time series classification, the k-nearest neighbor approach is also well suited for learning under class imbalance [21, 16, 20],

Chi square test, Two-samples Kolmogorov-Smirnov, Wilcoxon, Mann-Whitney U, Kruskal-Wallis H, Friedmann, Levene etc.... Chi

Under memoryless assumption on the underlying process generating the asset prices, the log-optimal portfolio achieves the maximal asymptotic average growth rate, that is the

Theoretical results show the rate of underperformance of the risk aware Markowitz-type portfolio strategy in growth rate compared to the log-optimal portfolio strategy, which does

Under memoryless as- sumption on the underlying process generating the asset prices the Best Constantly Rebalanced Portfolio is studied, called log-optimal portfolio, which achieves

Gy¨ orfi, Ottucs´ ak, Vajda Growth Optimal Port. Strategies with Transaction Cost.. dynamic programming problem.. Strategies with Transaction Cost.. Strategies with Transaction

Ottucs´ ak, Gy¨ orfi Principal component and constantly re-balanced portfolio.. Kernel-based portfolio selection. fix integers k, ` = 1, 2,.. Kernel-based