• Nem Talált Eredményt

alkaloid analogs and enantioseparation of natural and synthetic Cinchona Polysaccharide-based stationary chiral phases as efficient tools fordiastereo- Journal of Pharmaceutical and Biomedical Analysis

N/A
N/A
Protected

Academic year: 2022

Ossza meg "alkaloid analogs and enantioseparation of natural and synthetic Cinchona Polysaccharide-based stationary chiral phases as efficient tools fordiastereo- Journal of Pharmaceutical and Biomedical Analysis"

Copied!
11
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Polysaccharide-based chiral stationary phases as efficient tools for diastereo- and enantioseparation of natural and synthetic Cinchona alkaloid analogs

Attila Bajtai

a

, István Ilisz

a,∗

, Róbert Berkecz

a

, Ferenc Fülöp

b

, Wolfgang Lindner

c,∗

, Antal Péter

a

aInstituteofPharmaceuticalAnalysis,InterdisciplinaryExcellenceCentre,UniversityofSzeged,H-6720,Szeged,Somogyiutca4,Hungary

bInstituteofPharmaceuticalChemistry,InterdisciplinaryExcellenceCentre,UniversityofSzeged,H-6720,Szeged,Eötvösutca6,Hungary

cDepartmentofAnalyticalChemistry,UniversityofVienna,Währingerstrasse38,1090,Vienna,Austria

a rt i c l e i nf o

Articlehistory:

Received14September2020

Receivedinrevisedform19October2020 Accepted20October2020

Availableonline29October2020

Keywords:

HPLC

Cinchonaalkaloids Diastereoseparation Enantioseparation

Polysaccharide-basedchiralstationary phases

a b s t ra c t

Inthisstudy,wepresentresultsobtainedonthediastereo-andenantioseparationofsomebasicnatural andsyntheticCinchonaalkaloidanalogsbyapplyingliquidchromatographic(LC)andsubcriticalfluid chromatographic(SFC)modalitiesonamyloseandcellulosetris-(phenylcarbamate)-basedstationary phasesusingn-hexane/alcohol/DEAorCO2/alcohol/DEAmobilephasesystems.Sevenchiralstationary phasesintheirimmobilizedformwereemployedtoexploretheirstereoselectivityforaseriesofclosely relatedgroupofanalytes.ThemostimportantcharacteristicsofLCandSFCsystemswereevaluated throughthevariationoftheappliedchromatographicconditions(e.g.,thenatureandcontentofthealco- holmodifier,theconcentrationofadditives,temperature).ThecolumnsChiralpakICandIGturnedoutto bethebestinbothLCandSFCmodalities.Temperature-dependencestudyindicatedenthalpy-controlled separationinmostcases;however,separationcontrolledbyentropywasalsoregistered.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Both natural and synthetic Cinchonaalkaloids have a rather complexstructuralpatternwithmorethanthirtyrepresentatives, amongthesequinine(QN),quinidine(QD),cinchonidine(CD),and cinchonine(CN)representthemaincomponents[1].Inadditionto thepharmaceuticalrelevanceofthemainalkaloidsandderivatives thereof,theymayalsoserveascatalystsinstereo-directedorganic synthesis[2],andaschiralselectorsinthecourseofthedevelop- mentofchiralstationaryphases(CSPs)forhigh-performanceliquid chromatography(HPLC)[3].Besides,quininehasalongtradition tobeappliedasaflavorcomponentinbitterbeverages.InTable1 thechemicalstructuresofnaturalandsyntheticCinchonaalkaloids appliedinthisstudyaredepicted.Withtheexceptionofracemic quinine,theotheranalytepairsQN/QD,DHQN/DHQD,CD/CN,and epi-QN/epi-QD arediastereomers toeach other,although often termedpseudo-enantiomers(Table1).QNandQDaswellasCDand CNarediastereoisomerictoeachotherwhich,inprinciple,eases

Correspondingauthors.

E-mailaddresses:ilisz@pharm.u-szeged.hu(I.Ilisz), wolfgang.lindner@univie.ac.at(W.Lindner).

their separation. Analytically, HPLC methods are often applied forthispurposeusingpreferentiallynon-chiralstationaryphases, assummarized earlierbyMcCalley [4]. Recently, capillaryelec- trophoretic[5]andHPLC-based[1,6]methodshavebeendescribed fortheseparationofthefourmajorCinchonaalkaloidsQN,QD,CD, andCNaswellasdihydroquinine(DHQN)anddihydroquinidine (DHQD).Alongthisline,thequantitativedeterminationofsixmajor alkaloidsimplementingsupercriticalfluidchromatography(SFC) hasrecentlyalsobeenreported[7].

Inprinciple,itisnotnecessarytouseCSPstoresolvethegiven fourpairsofdiastereoisomers(seeTable1).Nevertheless,itisstill ofinteresttoexaminetheirstereoselectivemolecularrecognition patterninthecontextoftheresolution oftheseanalytes.How- ever,fortheresolutionofenantiomericanalytes,theapplication ofaCSPismandatory.Aswehavehadaccesstoracemicquinine (rac.QN)producedthrougha novel,fullysyntheticway[8], we hadtheopportunitytoinvestigatethechromatographicresolu- tionofrac.QNversusthediastereomericpairQN/QDandoftheir epimers(9-epi-QN,9-epi-QD).Therefore,theimpactofthechiral environmentofthediversepolysaccharide-typeCSPsontheoverall stereoselectivityparameterscouldbeexplored.

https://doi.org/10.1016/j.jpba.2020.113724

0731-7085/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

Table1

StructureofnaturalandsyntheticCinchonaalkaloids.

Name Abbreviation Configuration Structure

(+)Quinine (+)QN (+)(1R,3S,4R,8R,9S)

(-)Quinine (-)QN (-)(1S,3R,4S,8S,9R)

(+)Quinidine (+)QD (+)(1S,3R,4S,8R,9S)

(-)9-epi-Quinine (-)9-epi-QN (-)(1S,3R,4S,8S,9S)

(+)9-epi-Quinidine (+)9-epi-QD (+)(1S,3R,4S,8R,9R)

(-)Dihydroquinine (-)DHQN (-)(1S,3R,4S,8S,9R)

(+)Dihydroquinidine (+)DHQD (+)(1S,3R,4S,8R,9S)

(-)Cinchonidine (-)CD (-)(1S,3R,4S,8S,9R)

(+)Cinchonine (+)CD (+)(1S,3R,4S,8R,9S)

InanearlierpaperHoffmannetal.[9]studiedthestereoselective resolutionofQN/QDandCD/CNonachiralcationexchangerfol- lowedbyanotherrecentinvestigationbyBajtaietal.[10]applying chiralzwitterionicCSPs.Intermsofintermolecularlydriveninter- actionmechanismbetweenthechiralselector(SO)motifsofthe CSPsandthechiralanalytes(selectands,SAs),theionexchanger- type CSPs investigated previously and the polysaccharide-type CSPs examined in the present study (see Fig. S1) belong to structurallyentirelydifferentCSPswithrespecttoretentionand stereoselectivitycharacteristics.Inthisstudy,weaimedtotrace thespecificsofthepolysaccharideCSPsusedinnormal-phaseliquid chromatography(NP LC)andinSFCmodalitiesfortheseparation ofacloselyrelatedgroupofCinchonaalkaloids(seeTable1).

Polysaccharide-based PS-CSPs usually displaya great variety ofenantio-,diastereo-,andchemoselectivity[11–17].Avarietyof robustCSPswithverywidespectraofapplicationswereobtained viatheimmobilizationofsubstitutedamylose-andcellulose-based selectors[14,12–17].However,nodatawerefoundintheliter- aturefor theseparationofsomenaturalandsyntheticCinchona alkaloidsandtheirderivativesonPS-CSPs.Themainobjectiveof thepresentpaperistorevealsomegeneraltendenciesofasetof prominentPS-CSPs (Fig.S1)forthediastereo-andenantiosepa- rationofthesetofchiralanalytes(Table1)underNP-LCandSFC conditions.TheinvestigationofstereoselectivitycriteriaofSOsand SAswasinthefocusofthisstudy.Morespecifically,ofthethree isobaricpairsofstereoisomers,QN/QDand9-epi-QN/9-epi-QDare diastereomerictoeachother,characterizedbythechangeofonly thestereogeniccentersofC-8and C-9,whilethe1S,3R,and4S stereogeniccentersofthequinuclidineringresidueremaincon- stant. Forthetruly racemicQN, allfivestereogeniccenters are oppositetoeachother.ForthetwodiastereomericDHQN/DHQD andCD/CNpairs,thediastereomericbehavioroftheanalytesisthe sameasforQN/QD.SeeTable1formoredetails.

Methodological andexperimentalfactors,suchasthenature and theconcentrationofthedifferentmodifiers(alcohol,water, acidorbase)andmobilephasecompositionsinNP-LCandSFC,as

wellasthestructureofPS-CSPsandSAsandthetemperaturewere evaluatedonretention,selectivity,andresolutionofstereoisomers withspecialattentionwithrespecttoelutionsequences.

2. Materialsandmethods 2.1. Chemicalsandreagents

(–)QN, (+)QD, and (–)-1011-(–)DHQN were purchased from Buchler(Braunschweig, Germany). (+)-1011-DHQD, (+)-CN, and (–)-CDwere fromSigma-Aldrich(Vienna,Austria). RacemicQN [1:1 mixtureof (–)QN and (+)QN]wasa generous giftfrom N.

Maulidesynthesizedasdescribedin[8].C9-Epiquinine(–)epi-QN andC9-epiquinidine(+)epi-QDweresynthesizedasdescribedin [18](Table1).

Methanol(MeOH),ethanol(EtOH),andn-hexaneofHPLCgrade werepurchased fromVWRInternational(Radnor,PA,USA).The alcoholadditives1-propanol(1-PrOH),2-propanol(2-PrOH),the base additivediethylamine (DEA), and the acid additive acetic acid(AcOH)allanalyticalreagentgrades,werefromVWR.Liquid CO2 wasfromMesser(Budapest,Hungary).Ultrapurewaterwas obtainedfromUltrapureWaterSystem,PuranityTUUV/UF(VWR International).

2.2. Apparatusandchromatography

Threechromatographic systems were applied in this study.

ThefirstonewasaWatersBreezeapparatusconsistingofa1525 binary pump, a 487 dual-channel absorbance detector, a 717 plusautosampler,and acolumn thermostat.For datacollection Empower2datamanagersoftware(WatersCorporation,Milford, MA,USA)wasapplied.ALaudaAlphaRA8thermostat(LaudaDr.R.

WobserGmbh,Lauda-Königshofen,Germany)wasusedtoregulate columntemperature.

ThesecondliquidchromatographicsystemwasfromShimadzu, andit containeda low-pressurequaternary pump(LC-20AD), a

(3)

photodiodearraydetector(SPD-M20A),aModel7125injectorwith a 20-␮lloop (Rheodyne,Cotati,CA,USA), and LCSolutiondata acquisitionsystem(ShimadzuCorporation,TokyoJapan).Allexper- imentsinnormal-phasemode(NP)werecarriedoutunderisocratic conditionsataflowrateof0.6mLmin–1andatacolumntemper- atureof25C(ifnototherwisestated).

Thethirddevice,aWatersAcquityUltraPerformanceConver- genceChromatographyTM(UPC2,WatersCorporation)systemwas appliedforSFCstudieswithabinarysolventpump,anautosam- pler,abackpressureregulator,acolumnoven,andaphotodiode arraydetector.AnEmpower2softwarewasusedtosystemcontrol anddataacquisition.IneverycaseSFCwasperformedinisocratic modeataflowrateof2.0mLmin–1andacolumntemperatureof 40C(ifnototherwisestated).Theoutletpressurewassetat150 bar.ThemobilephasesappliedinSFCconsistedofliquidCO2and MeOH,EtOH,1-PrOHor2-PrOHindifferentratios(v/v)containing differentacidandbaseadditives.

Stocksolutionsoftheanalyteswerepreparedbydissolvingthe solidCinchonasamplesinMeOHor2-PrOHin1.0mgmL–1concen- trationandfurtherdilutedwhennecessary.Aninjectionvolume of20␮LwasappliedinLCand7␮LinSFC.InLCthedead-time ofcolumns(t0)wasdeterminedbyinjectionoftri-t-butylbenzene, whileinSFCmodethefirstnegativesignalbyinjectingMeOHwas used.AnalytesweredetectedbytheirUVabsorptionat215–230 nm.

Polysaccharide-based columns amylose tris-(3,5- dimethylphenylcarbamate) (Chiralpak IA), amylose tris-(3-chlorophenylcarbamate) (Chiralpak ID), amylose tris-(3,5-dichlorophenylcarbamate) (Chiralpak IE), amylose tris-(3-chloro-4-methylphenylcarbamate) (Chiralpak IF), and amylosetris-(3-chloro-5-methylphenylcarbamate)(Chiralpak IG) aswellascellulosetris-(3,5-dimethylphenylcarbamate)(Chiralpak IB) and cellulose tris-(3,5-dichlorophenylcarbamate) (Chiralpak IC)allwiththesamesize(250mm×4.6mmI.D.,5-␮mparticle size)weregenerousgiftsfromChiralTechnologiesEurope(Illkirch, France).AllCSPsemployedinthisstudybelongtotheimmobilized PS-typecolumns.ThestructuresofselectorsarepresentedinFig.

S1.

3. Resultsanddiscussion

3.1. EffectsofmobilephasecompositioninNP-LCandinSFC

InthecaseofPS-CSPs,thegenerallyacceptedrecognitionmech- anismis basedontheinclusion ofchiral solutesintothechiral cavities ofthepolysaccharide-typeselectordrivenbyadditional attractiveforcessuchasH-bonding,dipole–dipoleand␲–␲inter- actions. Inaddition,therole ofsteric“hindrance” forthegiven SAs toenterdeep intothechiral grovesshouldalsobeconsid- ered[11–17].Toregulatetheoverallchromatographicretention, thenatureandconcentrationofanalcoholmodifierinbothnor- mal phase LC (NP LC) [19] and SFC [20] are often varied. To explorethepossibleeffectsofthealcoholmodifierinNP LCand SFC, two columnswere selected: the cellulose-based Chiralpak IC column (as the mosteffective CSP in thescreening process fortheinvestigatedconformationallyrestrictedanalytes)andthe amylose-basedChiralpakIEcolumn,bothpossessingthesamecar- bamatemodification(tris-3,5-dichlorophenylcarbamatemoiety)of thetwodifferentpolysaccharidebackbones.

Withvariationofthenatureofthealcoholforthestudiedana- lytes on the7 CSPsin NP-LC modality, a relatively similarbut slightincreaseink1wasregisteredintheEtOH<1-PrOH<2-PrOH sequencewiththeexceptionofepi-QN/epi-QD,whichwasretained moresignificantly(Fig.S2).Thebeststereoselectivityperformances (higher˛andRS)couldgenerallybeachievedwith2-PrOHonChi-

ralpakIC.InSFCmodalityonthesamecolumns,slightlyhigherk1 valueswereobtainedonmobilephasescontainingMeOHand2- PrOHcomparedtoEtOH(especiallyforepi-QN/epi-QD).For˛and RSthevariationsobservedwerequitesimilartothoseinNP-LC;

namely,ChiralpakIEexhibitedmuchlesseffectivenessthanChi- ralpakIC.Asexpected,underNP-LCandSFCconditionsanincrease oftheapolarcharacterofthealcohol,i.e.,applyingalcoholswith alongerorbranchedchainusuallyresultedinanenhancedana- lyteretention,selectivity,andresolution,especiallyonChiralpak IC(Fig.S2).Itshouldbementioned,thatoppositebehaviorshad alsobeenreportedintheliterature[21,22].Thechangeinenantio- anddiastereoselectivityresultingfromchangingthealcoholmodi- fierwaspreviouslyrationalizedasaresultofalterationofthesteric environmentofthechiralcavitiesbydifferentalcoholmodifiers dueto intra-andinter-molecular solvation effects [22].On the basisoftheseresults,furtherexperimentswerecarriedoutwith theapplicationofEtOHand2-PrOHinNP-LCaswellasMeOHand 2-PrOHinSFCconditions.

Foramorethoroughstudyoftheeffectsofalcoholconcentration onchromatographic parameters in NP LC,n-hexane/EtOH/DEA and n-hexane/2-PrOH/DEA (60/40/0.1–95/5/0.1 v/v/v) mobile phaseswereapplied.UnderSFCconditions,theMeOHand2-PrOH contentinliquidCO2wasvariedfrom10to60v%(with20mM DEAinallexperiments).Theamylose-andcellulose-basedcolumns appliedearlierwiththesameselector(ChiralpakICandChiralpak IE,seeFig.S1)wereselectedforthisstudy.Regardingtheretentive characteristics,atypicalNPbehaviorwasobservedforbothNP LC andSFCmodalities:increasingtheratioofapolarn-hexaneorCO2

resultedinanincreasedk1,especiallyfortheepi-QN/epi-QDpair (Fig.1).Itisnoteworthy,thatwiththeincreaseofthemobilephase polarity,thestrengthoftheH-bondsbetweentheanalytesandthe selectordecreasesandthesolubilityoftheanalytesinthemobile phaseincreases[23].

On Chiralpak IEthe stereoselectivity exhibited only a small enhancementinbothNP-LCandSFC modalitieswithincreasing n-hexaneorCO2 content.However,onChiralpakICinNP-LCin n-hexane/EtOH/DEAmobilephaseaslightincrease,whereasinn- hexane/2-PrOH/DEAmobilephaseamoderateenhancementinthe

˛valuewasregistered.InSFConChiralpakIC˛generallyslightly decreasedordidnotchangesignificantlywithincreasingCO2con- tent.Theepi-QN/epi-QDpair,again,wasanexceptionshowinga slightincreaseonChiralpakICinCO2/MeOH.Itshouldbenoted, thatslightlyhigher˛valueswereregisteredinCO2/2-PrOHthanin CO2/MeOHmobilephases.

RegardingRS values, in both NP-LC and SFC, theyincreased significantly onChiralpak IC and slightly on Chiralpak IEwith increasingofn-hexaneorCO2 content(althoughanunexpected exceptionwasfoundinSFCmodalityforDHQN/DHQDonChiralpak IE,Fig.1).Itisworthmentioningthatthechangeinthechromato- graphic performance caused by the alcohol modifier depended on the structure of the chiral selector as well; the cellulose- basedselectorfortheinvestigatedbasicanalytesoutperformedthe amylose-basedone.

Thealcoholmaybeincorporatedintothepolysaccharidestruc- ture, either into the cavities or between the polymer chains, affectingthetertiarystructureofthechiralpolymeritselfviasol- vationeffects[24].UnderLCconditions,themainadsorbingsites areconsideredtobethepolarcarbamateresidues[25] andthe differentinvolvementoftheNHandCOgroupsintheH-bonding processwerefoundtoberesponsibleforthedifferencesobserved inthestereoselectiveandenantioselectivebindingprocess[26].It isimportanttonote,thatinthisstudy10–60v%ofalcoholicmodi- fierwasemployedunderSFCconditions,i.e.,SFCisoperatedunder subcriticalconditions,wheresignificantdeviationsduetothedif- ferenceofthesetvaluesandactualoperationalconditionscannot beexpected[27].Besidesaffectingthephysicalpropertiesofthe

(4)

Fig.1.Effectofmobilephasecompositiononchromatographicparameters,retentionfactor(k),separationfactor(˛)andresolution(RS)fortheseparationofCinchona alkaloidanalogsonChiralpakICandIEcolumnsinNP-LCandSFCmodalities.

Chromatographicconditions:columns,ChiralpakICandChiralpakIE;mobilephase,fornormalphase,n-hexane/EtOH/DEAandn-hexane/2-PrOH/DEA(60/40/0.1–95/5/0.1 v/v/v);forSFC,CO2/MeOH(40/60–90/10v/v)containing20mMDEAandCO2/2-PrOH(40/60–80/20v/v)containing20mMDEA;flowrate,1.0mLmin–1;detectionat220 nm;temperature,25C;symbolsforChiralpakIC,䊏,QN/QD, ,DHQN/DHQD,,epi-QN/epi-QD,,CD/CNand ,rac.QN,forChiralpakIE,–,QN/QD;,DHQN/DHQD;, epi-QN/epi-QD;,CD/CNand♦,rac.QN.

eluent (e.g.,polarity,viscosity,anddensity),analterationofthe adsorptionlayershouldalsobeconsideredunderSFCconditions [27].

Besides thenatureand concentrationof thealcohol compo- nents,otheradditives(e.g.,acid,base,water)arealsofrequently appliedtomodify“chiral”resolutionondifferenttypesofCSPs.In SFC,beyondimprovementinpeakshape,additivesmayalsohave animpactonretention[28]andonthenumberoftheoreticalplates [29].Fig.2depictstheeffectsofAcOH(A)andH2O(B)additiveson

thechromatographicperformanceofChiralpakICwitheluentsys- temsCO2/MeOH(60/40v/v)containing20mMDEA,and0.0–40 mMAcOH(A)or0.0–5.0v%H2O(B)applyingtheQD/QNpairof diastereomersastestcompounds.Uponincreasingtheconcentra- tionoftheadditiveretentiondecreasedincaseofAcOHandslightly increasedincaseofwaterinparallelwithaminordecreaseof˛ andamarkedreductioninRSvalues(Fig.2),whilethechangein theefficiencywasusuallyintherangeof10–15%(datanotshown).

Theslightchangecausedbytheadditionofwaterwasprobably

(5)

Fig.2.EffectofAcOHandH2OcontentonthechromatographicperformanceofChiralpakICforanalyteQD/QNunderSFCconditions.

Chromatographicconditions:mobilephase,CO2/MeOH(60/40v/v)containing20mMDEAandA,0mM,20mMand40mMAcOH;B,0.0v%,1.0v%,3.0v%and5.0v%H2O;

flowrate,1.0mLmin–1;detectionat220nm;temperature,25C.

duetothelesspolarcharacteroftheCSPstudiedasobservedby Armstronget.al[29].

3.2. Effectofthestructureofpolysaccharide-typeselectors

The stereoselectivity characteristics of the studied Cinchona alkaloidsonthesevenPS-CSPswerestudiedwithdifferentmobile phase systems, and thecorresponding dataare summarized in Tables2–5.Duetothedifferenceinlinkageofglycopyranosemoi- eties inamylose-andcellulose-based selectors,theinteractions betweenanalyte andselectormaychangeresulting indifferent chromatographic behaviors,which mayeven affectthe elution orderoftheresolveddiastereomersandenantiomers.Thecontri- butionof thepolysaccharidebackbone canbeevaluatedbythe comparison of thechromatographicdata obtainedonthesame carbamateresidue;i.e.,tris-(3,5-dimethylphenylcarbamate)(Chi- ralpakIAvs.ChiralpakIB)andtris-(3,5-dichlorophenylcarbamate) (Chiralpak IE vs. Chiralpak IC), linked to amylose or cellu- lose,respectively.Tofacilitatethecomparisonbetweendifferent columns,chromatographicconditionswerekeptconstant,applying then-hexane/EtOH/DEAandthen-hexane/2-PrOH/DEA(80/20/0.1 v/v/v)mobilephasecompositionsinNP-LC.Inafewcaseswhena partialresolutionoccurred,theseparationwasfurtheroptimized.

DatasummarizedinTable2showthathigherretentioncouldbe obtainedonamylose-thanoncellulose-basedCSPsinmostcases.

Exceptions,however,doexistespeciallyformobilephasescontain- ing2-PrOH.

Itshouldbenoted,thatinNP-LC,despiteshorterretentiontimes, ChiralpakICprovedtobethemosteffectiveCSPintheseparationof thediastereomericpairsofbothCinchonaalkaloidsandofrac.QN.

InSFCmodalitytheeffectofthepolysaccharidebackbonewasalso evaluatedonthesamepairsofCSPsapplyingCO2/MeOHandCO2/2- PrOH(60/40v/v)mobilephasesallcontaining20mMDEA(Table3).

Regardingretention,theresultswithChiralpakIEandICweresimi- lartothedataobtainedinNP-LC;i.e.,theamylosebackboneoffered

higherretentions.ChiralpakIAandIB,inturn,gaveoppositeresults, withthecellulose-basedCSPprovidinghigherretentions.Among theabove-mentionedfourcolumnsunderSFCconditions,thebest separationswereachievedwithChiralpakIC,similartothosefound inNP-LC.

Thefundamentalstructuraldifferencesbetweenamylose-and cellulose-based tris-(3,5-dimethylphenylcarbamate) or tris-(3,5- dichlorophenylcarbamate) were found to be reflected in the stereochemicalrecognitionpatternsevenforsomediastereomeric analytes.Reversalofelutionorderbetweenamylose-andcellulose- basedCSPs containingthe same substituents wasregistered in NP-LCcontainingEtOHasmobilephaseforanalyteCN/CDonChi- ralpakIAvs.IB,andinmobilephasescontainingEtOHand2-PrOH onChiralpakIEvs.IC(Table4).Similarbehaviorswereregistered inSFCmodalityforQN/QDandCN/CDonChiralpakIEvs.IC(Table 2B).Examplesofreversedelutionordersofenantiomericanalytes onamylose-orcellulose-basedcolumnshavebeendescribedpre- viously[19].

Applyingconstantchromatographic conditions inNP-LC and SFCmodality,datalistedinTable2and3canprovideopportunity toevaluatetheeffectofthenatureofthesubstitutedphenylcar- bamatemoiety. BycomparingthedataobtainedwithChiralpak IAvs.IE(bothareamylose-basedCSPs),andIB vs.IC(bothare cellulose-basedCSPs),higherretentionscanclearlybeidentified forallanalytesonCSPswithtris-(3,5-dichlorophenylcarbamate) moiety. The higher ˛ and RS values, observed generally in the case of CSPs with tris-(3,5-dichlorophenylcarbamate), suggest morepronouncedSO–SAinteractionsofthestudiedanalytes.This maybe attributed to a ␲–␲-typeinteraction increment of the acidicphenylcarbamateandthe␲-basic-typequinolinemoietyof Cinchonaalkaloids.However,inafewcases,inparticularforepi- QN/epi-QD,lower˛andRS wereregisteredonChiralpakIEand ChiralpakICthanonChiralpakIAandChiralpakIB.Nevertheless, resultsshowedthatthetris-(3,5-dichlorophenylcarbamate)CSPs, inmostcases,outperformotherSOtypes.

(6)

Table2

EffectofEtOHand2-PrOHcontentinn-hexaneasbulksolventforthechromatographicdata,k1,˛,RSofCinchonaalkaloidsinnormalphasemodality.

Column Mobilephase k1,˛,RS QN/QD rac.QN DHQN/DHQD epi-QN/epi-QD CD/CN

IA

a

k1 0.59 0.59 0.60 2.47 0.76

˛ 1.18 1.00 1.00 1.00 1.45

RS 1.02 0.00 0.00 0.00 2.47

b

k1 0.60 0.64 0.62 2.45 0.77

˛ 1.19 1.00 1.00 1.00 1.00

RS 0.70 0.00 0.00 0.00 0.00

IB

a

k1 0.51 0.52 0.45 1.15 0.56

˛ 1.00 1.00 1.00 1.28 1.22

RS 0.00 0.00 0.00 1.12 0.47

b

k1 1.02 1.01 0.99 2.72 0.99

˛ 1.00 1.00 1.00 1.46 1.00

RS 0.00 0.00 0.00 1.26 0.00

IE

a

k1 7.12∗∗ 1.45 1.40 4.57 3.00

˛ 1.06∗∗ 1.00 1.00 1.00 1.10

RS 1.16∗∗ 0.00 0.00 0.00 1.40

b

k1 1.48 1.89 2.10 9.15 1.42

˛ 1.00 1.00 1.00 1.00 1.13

RS 0.85 0.00 0.00 0.00 1.25

IC

a

k1 0.73 0.82 0.86 3.61 0.83

˛ 1.23 1.19 1.20 1.00 1.22

RS 1.18 0.84 1.27 0.00 1.22

b

k1 1.05 1.02 1.09 15.48 0.97

˛ 1.52 1.56 1.48 1.00 1.80

RS 3.07 2.67 2.88 0.00 4.20

ID

a

k1 0.68 0.68 0.69 2.68 0.76

˛ 1.21 1.08 1.16 1.14 1.39

RS 1.49 0.22 0.94 1.62 2.55

b

k1 0.80 0.97 1.08 5.37 0.99

˛ 1.13 1.00 1.00 1.14 1.00

RS 0.18 0.00 0.00 1.45 0.00

IF

a

k1 0.99 0.99 0.96 4.17 1.15

˛ 1.00 1.00 1.00 1.00 1.18

RS 0.00 0.00 0.00 0.00 1.22

b

k1 1.37 1.41 1.53 5.73 1.18

˛ 1.00 1.00 1.00 1.03 1.24

RS 0.00 0.00 0.00 0.27 1.00

IG

a

k1 0.98 0.98 0.98 5.02 1.36

˛ 1.27 1.00 1.10 1.08 1.22

RS 2.27 0.00 0.22 1.25 2.14

b

k1 1.06 1.07 1.08 6.64 1.16

˛ 1.10 1.00 1.18 1.09 1.18

RS 0.46 0.00 0.48 1.28 1.64

Chromatographic conditions:columns, ChiralpakIA-IG; mobilephase, a, n-hexane/EtOH/DEA (80/20/0.1v/v/v), n-hexane/EtOH/DEA (90/10/0.1v/v/v) and∗∗n- hexane/EtOH/DEA(95/5/0.1v/v/v),b,n-hexane/2-PrOH/DEA(80/20/0.1v/v/v);flowrate,1.0mLmin−1;detection,230−250nm;temperature,25C.

As mentioned earlier, the structure of SO may affect the sequenceofelutiontoo.Inthisstudy,areversalofelutionsequence was registered in NP-LC modality in EtOH-containing mobile phasesforanalytesQN/QDusingChiralpakIAvs.IE(Table4).The reversalofelutionsequencebychangingthechemicalstructure ofsubstituentsonthetris-(phenylcarbamate)moietywasalready indicatedinearlierpublications[19,30,31].

Theeffectofthepositionofthesubstituentsofthecarbamate moietyofthePS-CSPsonthechromatographicperformanceforthe givenanalyteswasinvestigatedbycomparisonofchromatographic dataobtainedonChiralpakIF,IG,andIDcolumnsinbothNP-LC andSFCmodalities(seeFig.1S).Ingeneral,higherretentionand better˛andRSvalueswereobtainedonChiralpakIGthanonIF.

ChiralpakIDseemstobeasefficientasChiralpakIGinNP-LCmodal- ityinthepresenceofEtOHasbulksolventcomponent,andless efficientinallothercases.Thesecondarystructureofthetris-(3- chloro-5-methylphenylcarbamate)-basedCSP(ChiralpakIG)offers strongerretentiveinteractionswiththeanalytes.Regardingelu- tionsequencesofQN/QDandrac.QN,nochangewasregistered byalteringtheseCSPs.Incontrast,forepi-QN/epi-QDandCD/CNa reversalofelutionsequencewasregisteredinNP-LCinthepres- enceof2-PrOHaseluentconstituent.Thestrongdependence of thesequenceofelutionasafunctionofthemobilephase(eluent compositionandSOstructure),observedinallcases,drawsatten-

tiontotheimportanceofidentificationofeachpeakinthecase ofPS-CSPs.Forchiralion-exchangersinvestigatedpreviously,this scatteredtendencywasnotseen[10].

Intheenantio-anddiastereoseparationoftheinvestigatedCin- chona alkaloids in SFC modality, Chiralpak IC and IG columns performedsignificantlybetter.However,inNP-LC,the3-chloro- substitution in Chiralpak IC and ID promotes an increased stereodiscrimination but with lower effectiveness than in SFC modality.

Theenantio-anddiastereoselectivitiesofthesevenchiralselec- tors for the five pairs of Cinchona alkaloid stereoisomers are summarizedinTables4and5.Fortheseparationofenantiomers, consistencieshavebeennoticednumeroustimeswithanelution sequence(+)QN<(–)QN,butareversedelutionsequencewasreg- isteredonChiralpakIDandIFinSFCmodalityapplying2-PrOHas alcoholmodifier.

Thesituationbecomesevenmorecomplicatedfortheresolu- tionofthediastereomericpairsQN/QD,DHQN/DHQD,CD/CN,and epi-QN/epi-QD,whereacleartrendcannotbeseen.Inboth NP- LCandSFCmodalitiesonthesevencolumns,theelutionsequence QN<QD,DHQN<DHQD,andCD<CNanditsreversalcanalso beobserved, as a clear indicationof thedifficulty to interpret enantioselectivityvsdiastereoselectivity(Tables2and3).Unex- pectedreversalsoftheelutionorderofthediastereomeric(often

(7)

Table3

ComparisonoftheeffectofMeOHand2-PrOHcontentinCO2asbulksolventforthechromatographicdata,k1,˛,RSofCinchonaalkaloidsinSFCmodality.

Column Mobilephase k1,˛,RS QN/QD rac.QN DHQN/DHQD epi-QN/epi-QD CD/CN

IA

a

k1 0.38 0.33 0.37 0.83 0.39

˛ 1.21 1.38 1.46 1.11 1.20

RS 1.16 1.91 2.43 0.74 1.03

b

k1 0.30 0.29 0.33 1.16 0.42

˛ 1.41 1.00 1.23 1.00 1.26

RS 1.43 0.00 0.79 0.00 0.65

IB

a

k1 0.41 0.41 0.40 1.47 0.50

˛ 1.00 1.00 1.00 1.00 1.07

RS 0.00 0.00 0.00 0.00 0.21

b

k1 0.52 0.52 0.54 1.55 0.69

˛ 1.00 1.00 1.00 1.18 1.00

RS 0.00 0.00 0.00 0.53 0.00

IE

a

k1 3.20 3.20 3.81 7.57 3.21

˛ 1.00 1.00 1.07 1.00 1.04

RS 0.00 0.00 0.91 0.00 0.32

b

k1 2.28 2.27 3.25 4.83 2.42

˛ 1.17 1.05 1.00 1.05 1.17

RS 1.68 0.40 0.00 0.28 1.79

IC

a

k1 1.87 1.66 1.89 7.52 2.19

˛ 1.22 1.38 1.43 1.09 1.47

RS 3.18 5.14 5.71 1.36 6.34

b

k1 0.90 0.80 0.97 13.86 1.23

˛ 1.53 1.73 1.66 1.00 1.44

RS 4.62 5.69 5.47 0.00 4.48

ID

a

k1 0.95 0.91 1.14 1.74 0.89

˛ 1.08 1.00 1.00 1.00 1.08

RS 0.91 0.00 0.00 0.00 0.73

b

k1 0.71 0.71 1.01 2.63 0.88

˛ 1.31 1.08 1.08 1.00 1.00

RS 2.89 0.00 0.83 0.00 0.00

IF

a

k1 1.14 1.08 1.27 2.95 1.12

˛ 1.00 1.00 1.00 1.00 1.08

RS 0.63 0.00 0.00 0.00 0.76

b

k1 0.70 0.72 0.85 2.62 0.91

˛ 1.34 1.13 1.28 1.00 1.13

RS 1.89 0.68 1.56 0.00 0.74

IG

a

k1 1.26 1.03 1.45 2.08 0.99

˛ 1.12 1.38 1.45 1.33 1.46

RS 1.32 3.84 4.68 3.81 4.37

b

k1 0.71 0.72 1.18 2.92 0.87

˛ 1.87 1.00 1.49 1.18 1.47

RS 5.98 0.00 4.20 2.49 3.82

Chromatographicconditions:columns,ChiralpakIA-IG;mobilephase,a,CO2/MeOH(60/40v/v)containing20mMDEA,b,CO2/2-PrOH(60/40)containing20mMDEA;flow rate,2.0mLmin−1;detection,215−230nm;temperature,40C;backpressure,150bar.

termedpseudo-enantiomeric)pairscaneasilyhappenasafunction ofthecompositionofthemobilephase.Inthiscontext,itbecame particularlyinterestingthatonChiralpakIGapplying2-PrOHas eluentcomponentunderLCconditionstheelutionorders(+)DHQD

<(–)DHQNandCN<CDchangedinSFCmodalityto(–)DHQN<

(+)DHQDandCD<CN(Table4and5).Thisisanotherstrongindi- cation abouttherole of solvation oftheselector andselectand moietiesontheoveralldiastereoselectivity.

Representative chromatogramsfor theresolution of racemic quinineandfourdiastereomersofCinchonaalkaloidsinSFCmode aredepictedinFig.3andFig.S3onChiralpakICandIGapplying 2-PrOHandMeOHasalcoholmodifiers.Fullseparationandiden- tificationsoffivepairsofenantiomersanddiastereomerscanonly beachievedintwochromatographicruns.

3.3. Effectofthestructureofanalyte

Analytes, except DHQN/DHQD, possess an unsaturated side chain(vinylversusethylgroup)onthequinuclidinemoiety,which mayinfluenceinteractionsbetweenSAandCSP,despitesmalldif- ferencesinsizeandpolarity.SurveyingthedatainTables2and3 revealed, that,in general,at a givenmobile phasecomposition retentionsinNP LCorSFCmodalitiesdifferonlyveryslightly.In somecases,however,thedifferenceismoresignificant.Asaresult,

Fig.3.Chromatogramsforseparationofdiastereomersandenantiomersofnatural andsyntheticCinchonaalkaloidanalogs.

Chromatographicconditions:columns,A,ChiralpakIC;mobilephase,CO2/2-PrOH (70/30v/v)containing20mMDEA,B,ChiralpakIG;mobilephase,CO2/MeOH(70/30 v/v)containing20mMDEA;flowrate,1.0mLmin–1;detectionat220nm;temper- ature,25C.

(8)

Bajtai,I.Ilisz,R.Berkeczetal.JournalofPharmaceuticalandBiomedicalAnalysis193(2021)113724

Table4

ElutionsequencesofCinchonaalkaloidsinn-hexaneasbulksolventcontainingEtOHor2-PrOHinnormalphasemodality.

Mobilephase:n-hexane/EtOH(80/20v/v)containing0.1%DEA

Column IA IB IE IC ID IF IG

QN/QD (-)QN<(+)QD (+)QD<(-)QN (+)QD<(-)QN (-)QN<(+)QD (-)QN<(+)QD

rac.QN (+)QN<(-)QN (+)QN<(-)QN

DHQN/DHQD (+)DHQD<(-)DHQN (-)DHQN<(+)DHQD (-)DHQN<(+)DHQD

epi-QN/epi-QD (+)epi-QD<(-)epi-QN (-)epi-QN<(+)epi-QD (-)epi-QN<(+)epi-QD

CD/CN CD<CN CN<CD CD<CN CN<CD CD<CN CD<CN CD<CN

Mobilephase:n-hexane/2-PrOH(80/20v/v)containing0.1%DEA

QN/QD (-)QN<(+)QD (-)QN<(+)QD (+)QD<(-)QN (-)QN<(+)QD (-)QN<(+)QD

rac.QN (+)QN<(-)QN

DHQN/DHQD (+)DHQD<(-)DHQN (+)DHQD<(-)DHQN

epi-QN/epi-QD (+)epi-QD<(-)epi-QN (-)epi-QN<(+)epi-QD (-)epi-QN<(+)epi-QD (+)epi-QD<(-)epi-QN

CD/CN CD<CN CN<CD CD<CN CN<CD

Chromatographicconditions:columns,ChiralpakIA-IG;flowrate,1.0mLmin−1;detection,230−250nm;temperature,25C.

Table5

ElutionsequencesofCinchonaalkaloidsinCO2asbulksolventcontainingMeOHor2-PrOHinSFCmodality.

Mobilephase:CO2/MeOH(90/10v/v)containing20mMDEA

Column IA IB IE IC ID IF IG

QN/QD (+)QD<(-)QN (+)QD<(-)QN (-)QN<(+)QD (+)QD<(-)QN

rac.QN (+)QN<(-)QN (+)QN<(-)QN (+)QN<(-)QN

DHQN/DHQD (+)DHQD<(-)DHQN (+)DHQD<(-)DHQN (+)DHQD<(-)DHQN (+)DHQD<(-)DHQN

epi-QN/epi-QD (-)epi-QN<(+)epi-QD (+)epi-QD<(-)epi-QN (+)epi-QD<(-)epi-QN

CD/CN CN<CD CN<CD CN<CD CN<CD CN<CD CN<CD CN<CD

Mobilephase:CO2/2-PrOH(80/20)containing20mMDEA

QN/QD (-)QN<(+)QD (-)QN<(+)QD (+)QD<(-)QN (-)QN<(+)QD (-)QN<(+)QD (-)QN<(+)QD

rac.QN (+)QN<(-)QN (-)QN<(+)QN (-)QN<(+)QN

DHQN/DHQD (-)DHQN<(+)DHQD (+)DHQD<(-)DHQN (-)DHQN<(+)DHQD (-)DHQN<(+)DHQD (-)DHQN<(+)DHQD

epi-QN/epi-QD (+)epi-QD<(-)epi-QN (+)epi-QD<(-)epi-QN (+)epi-QD<(-)epi-QN

CD/CN CD<CN CD<CN CN<CD CD<CN CD<CN

Chromatographicconditions:columns,ChiralpakIA-IG;flowrate,2.0mLmin−1;detection,215−230nm;temperature,40C;backpressure,150bar.

8

(9)

theslightlylesspolarDHQN/DHQDanalytesaremoreretained.This isnotsurprising,butthemarkedincreaseofretentionofthepair ofepi-QN/epi-QDdiastereoisomersisstriking.Theincreasedreten- tionswereaccompaniedwithhigher˛andRSvaluesonlyinafew cases.Aplausibleexplanationforthisbehaviorismostprobably relatedtotheconfigurationofthefivechiralcentersandtheresult- ingconformationofthestericallyrestrictedanalytes.Namely,for QN/QD,DHQN/DHQD,andCD/CNthechiralcentersofthequinucli- dineringareidentical[(1S),(3R),and(4S)],andonlythetwoother chiralcenters(C-8andC-9carbonatoms)aredifferent[(R)/(S)for QDand(S)/(R)forQN].Thereisasimilarsituationwithrespectto theabsoluteconfigurationofC-9in9-epi-QN[(9S)]and9-epi-QD [(9R)].Thishasastrongimpactontheconformationofmolecules withmultiplechiralcenters.

Inthepresentcase,onlytheoverallretentionbutnotthestere- ochemicaldifferentiationofthediastereomericanalytesisaffected markedlyundertheappliedchromatographicconditions.

3.4. Effectoftemperatureandthermodynamicparameters

The temperature dependence of retention and enantioselec- tivity may provide some valuable information on the chiral recognitionprocess[31–35].Keepinginmindthelimitations of theapproachappliedinthisstudy[33,32–35],thedifferenceinthe changeinstandardenthalpy(H)andentropy(S)forthe enantiomerswerecalculatedonthebasisofthevan’tHoffequation:

ln˛=−(H)

RT +(S) R

Table6

Thermodynamicparameters,(Ho),(So),Tx(So),(Go),correlationcoefficients(R2),TisoandQvaluesofCinchona-alkaloidanalogsonChiralpakIA,IB,IC,IE columnsinnormal-phaseandSFCmodalities.

Analyte -(Ho)(kJ/mol) -(So)(J/(mol*K) Correlationcoefficients(R2) -Tx(So)298K(kJ/mol) -(Go)298K(kJ/mol) Tiso(oC) Q NP-LCmodality

ChiralpakIA

QN/QD 1.1 2.3 0.938 0.7 0.4 219 1.6

CD/CN −2.3 −7.9 0.993§ −2.4 0.2 14 0.9

ChiralpakIB

epi-QN/epi-QD 4.5 12.3 0.996 3.7 0.8 95 1.2

ChiralpakIE

QN/QD −0.4 −2.1 0.959 −0.6 0.2 −91 0.7

DHQN/DHQD −0.7 −3.0 0.998 −0.9 0.2 −33 0.8

CD/CN −0.2 −1.55 0.931 −0.5 0.3 −170 0.4

ChiralpakIC

QN/QD 1.9 3.1 0.979 0.9 1.0 345 2.1

rac.QN 1.6 1.8 0.926 0.5 1.1 604 3.2

DHQN/DHQD −0.5 −4.9 0.979 −1.5 1.0 30* 0.3

DHQN/DHQD 1.9 3.1 0.991 0.9 1.0 2.1

CD/CN −1.0 −8.2 0.963 −2.4 1.4 29* 0.4

CD/CN 1.8 0.9 0.973 0.3 1.5 6.0

SFCmodality ChiralpakIA

QN/QD a 3.4 9.0 0.990 2.7 0.7 108 1.3

rac.QN 5.4 14.1 0.990 4.2 1.2 111 1.3

DHQN/DHQD 2.4 2.8 0.996 0.8 1.6 584 3.0

epi-QN/epi-QD −1.4 −5.4 0.997 −1.6 0.2 −15 0.9

ChiralpakIB

epi-QN/epi-QD b −4.2 −14.4 0.999 −4.3 0.1 20 0.9

ChiralpakIE

DHQN/DHQD c 0.5 1.0 0.994 0.3 0.2 217 1.7

epi-QN/epi-QD −1.9 −6.3 0.985 −1.9 4.4 24 0.9

ChiralpakIC

rac.QN c 1.0 0.4 0.997 0.1 0.9 >1000 10.0

DHQN/DHQD 1.0 0.4 0.993 0.1 0.9 >1000 10.0

epi-QN/epi-QD −5.5 −18.8 0.980 −5.6 0.1 18 0.9

Chromatographicconditions:column,ChiralpakIA,IB,IC,IE;mobilephase,inNP-LCmodality,n-hexane/2-PrOH/DEA80/20/0.1(v/v/v),inSFCmodality,a,CO2/MeOH80/20 (v/v)containing20mMDEA,b,CO2/MeOH90/10(v/v)containing20mMDEA,c,CO2/MeOH70/30(v/v)containing20mMDEA;inNP-LCmodality,temperaturerange,

§35−50C,7.5−30C,30−50Candtemperatureofpointofintersection(seeFig.S4);flowrate,inNP-LC,1.0mLmin−1,inSFC,2.0mLmin−1;backpressureinSFC,150 bar;detection,215−230nm;Tiso,temperaturewheretheenantioselectivitycancels;Q=(Ho)/Tx(So)298K.

whereRistheuniversalgasconstant,TistemperatureinKelvin, and˛istheapparentselectivityfactor.

Inordertoinvestigatetheeffectsoftemperatureonthechro- matographicparameters,avariabletemperaturestudywascarried outforfiveanalytesinLC-NPandSFCmodalitiesonfourPS-CSPs (ChiralpakIA,IB,IE,andIC)inthetemperaturerange7.5–50C inmobilephasesbasedonn-hexane/2-PrOH/DEA(80/20/0.1v/v/v) andCO2/MeOH(90/10,80/20and70/30v/v)allcontaining20mM DEA.TheexperimentaldataaresummarizedinTablesS1andTable S2.

Inbothmodalitiesonallfourcolumns,theretentioninmost casesdecreasedwithincreasingtemperature.Thetransferofthe analytefromthemobilephase tothestationary phase,in gen- eral,isanexothermicprocess.Asaresult,kand˛aswellasRS decreasewithincreasingtemperature.However,regardingsepa- rationfactorandresolution,severalexceptionswereobserved.On ChiralpakIAforCD/CNinthetemperaturerange30–50Candon ChiralpakICforDHQN/DHQDandCD/CNinthetemperaturerange 7.5–30C,˛(andRS)increasedwithincreasingtemperature(Table S2).Interestingly,inSFCmodalityforepi-QN/epi-QDonallinves- tigatedCSPs,kdecreased,but˛andRSincreasedwithincreasing temperatureinthestudiedtemperaturerange(TableS2).Apply- ingPS-CSPs,severalexampleswerereportedpreviously forthe increaseofselectivitywithincreasingtemperatureinchromato- graphicsystems[14,19,33,35].Itshouldbenoted,thatseveraltimes inbothmodalities,RSincreasedwithincreasingtemperatureinde- pendentlyofthechangeof˛.Thisphenomenoncanbeattributed totheenhancedkineticeffectuponincreasingtemperature.

From the chromatographic data van’t Hoff plots were con- structed.Asageneraltrend,ln˛vs.1/Tcurvesgaveclearlylinear

Ábra

Fig. 1. Effect of mobile phase composition on chromatographic parameters, retention factor (k), separation factor (˛) and resolution (R S ) for the separation of Cinchona alkaloid analogs on Chiralpak IC and IE columns in NP-LC and SFC modalities.
Fig. 2. Effect of AcOH and H 2 O content on the chromatographic performance of Chiralpak IC for analyte QD/QN under SFC conditions.
Fig. 3. Chromatograms for separation of diastereomers and enantiomers of natural and synthetic Cinchona alkaloid analogs.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Fast enantiomeric separation of amino acids using liquid chromatogra- phy/mass spectrometry on a chiral crown ether stationary phase.. Achiral molecular recognition of

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

From the 1990s, enantioseparation of salsolinol and THIQ analogs was performed by gas chromatography, utilizing indirect liquid chromatography applying isothiocyanate- based

In this contribution, we present and discuss the separa- tion performance of Cinchona alkaloid-based chiral zwitterionic [ZWIX( + ) TM and ZWIX( − ) TM ] and chiral

High-performance liquid chromatographic (HPLC) and subcritical fluid chromatographic (SFC) separations of the enantiomers of structurally diverse, basic

Abstract: A library of steviol-based trifunctional chiral ligands was developed from commercially available natural stevisoide and applied as chiral catalysts in the addition

The structure of selector and analyte, the mobile phase compo- sition (nature and content of bulk solvent and alcohol modifier), and temperature may affect the observed elution

The enantioseparation of a few ß 2 -amino acids have recently been carried out by direct high-performance liquid chromatography (HPLC) methods on chi- ral stationary phases (CSPs)