• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
16
0
0

Teljes szövegt

(1)

volume 6, issue 2, article 34, 2005.

Received 30 November, 2004;

accepted 03 March, 2005.

Communicated by:K. Nikodem

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON A CONVOLUTION CONJECTURE OF BOUNDED FUNCTIONS

1KRZYSZTOF PIEJKO, 1JANUSZ SOKÓŁ AND2JAN STANKIEWICZ

1Department of Mathematics Rzeszów University of Technology ul. W. Pola 2, 35-959 Rzeszów, Poland.

EMail:piejko@prz.rzeszow.pl EMail:jsokol@prz.rzeszow.pl

2Institute of Mathematics University of Rzeszów ul. Rejtana 16A

35-959 Rzeszów, Poland.

EMail:jan.stankiewicz@prz.rzeszow.pl

2000c Victoria University ISSN (electronic): 1443-5756 229-04

(2)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

Abstract

We consider the convolutionP(A, B)? P(C, D)of the classes of analytic func- tions subordinated to the homographies 1+Az1−Bz and 1+Cz1−Dz respectively, where A, B, C, Dare some complex numbers. In 1988 J. Stankiewicz and Z. Stankiewicz [11] showed that for certain A, B, C, D there exist X, Y such thatP(A, B)? P(C, D) ⊂ P(X, Y). In this paper we verify the conjecture thatP(X, Y) ⊂ (A, B)? P(C, D)for someA, B, C, D, X, Y.

2000 Mathematics Subject Classification:Primary 30C45; Secondary 30C55.

Key words: Hadamard product, Convolution, Subordination, Bounded functions.

Contents

1 Introduction. . . 3 2 Main Result . . . 6

References

(3)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

1. Introduction

Let ∆ = {z ∈ C : |z| < 1} denote the open unit disc and let H be the class of functions regular in ∆. We will denote by N the class of functions f ∈ H normalized by f(0) = 1. The class of Schwarz functions Ω is the class of functions ω ∈ H,such that ω(0) = 0 and|ω(z)| < 1 forz ∈∆. We say that a function f is subordinate to a function g in∆ (and write f ≺ g or f(z)≺g(z)) if there exists a functionω∈Ωsuch thatf(z) =g(ω(z));z ∈∆.

If the function g is univalent in ∆, thenf ≺ g if and only iff(0) = g(0) and f(∆)⊂g(∆). In this case we haveω(z) = g−1(f(z)).

Let the functionsf andg be of the form f(z) =

X

n=0

anzn, g(z) =

X

n=0

bnzn, z ∈∆.

We say that the Hadamard product off andgis the functionf ? gif (f ? g)(z) =f(z)? g(z) =

X

n=0

anbnzn.

J. Hadamard [2] proved, that the radius of convergence off ? gis the product of the radii of convergence of the corresponding seriesfandg.The functionf ? g is also called the convolution of the functionsf andg.

For the classesQ1 ⊂ HandQ2 ⊂ Hthe convolutionQ1? Q2is defined as Q1? Q2 ={h∈ H; h=f ? g, f ∈Q1, g ∈Q2}.

(4)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

The problem of connections between functionsf, gand their convolutionf ? gor betweenQ1, Q2andQ1? Q2has often been investigated. Many conjectures have been given, however, many of them have still not been verified.

In 1958, G. Pólya and I.J. Schoenberg [7] conjectured that the Hadamard product of two convex mappings is a convex mapping. In 1961 H.S. Wilf [12]

gave the more general supposition that if F andG are convex mappings in∆ andf is subordinate toF, then the convolutionf ? Gis subordinate toF ? G.

In 1973, S. Rusheweyh and T. Sheil-Small [9] proved both conjectures and more results of this type. Their very important results we may write as:

Theorem A. If f ∈ Sc andg ∈ Sc, thenf ? g ∈ Sc,where Sc is the class of univalent and convex functions. MoreoverSc? Sc =Sc.

Theorem B. IfF ∈Sc, G ∈Sc andf ≺F,thenf ? G≺F ? G.

In 1985, S. Ruscheweyh and J. Stankiewicz [10] proved some generaliza- tions of TheoremsAandB:

Theorem C. If the functionsF andGare univalent and convex in∆,then for all functionsf andg, iff ≺F andg ≺Gthenf ? g≺F ? G.

For the given complex numbersA, B such thatA+B 6= 0and|B| ≤1let us denote

P(A, B) =

f ∈ N : f(z)≺ 1 +Az 1−Bz

.

W. Janowski introduced the classP(A, B)in [3] and considered it for some real A and B. If A = B = 1 then the class P(1,1) is the class of functions with positive real part (Carathéodory functions). Note, that for |B| < 1 the

(5)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

classP(A, B)is the class of bounded functions. In 1988 J. Stankiewicz and Z.

Stankiewicz [11] investigated the convolution properties of the class P(A, B) and proved the following theorem:

Theorem D. If A, B, C, D are some complex numbers such thatA+B 6= 0, C+D6= 0,|B| ≤1,|D| ≤1,then

P(A, B)? P(C, D)⊂P(AC+AD+BC, BD),

moreover, if|B|= 1or|D|= 1,then

P(A, B)? P(C, D) =P(AC+AD+BC, BD).

The equality between the class P(A, B)? P(C, D)and the classP(AC + AD+BC, BD)for|B|<1and|D|<1was an open problem. In [5] K. Piejko, J. Sokół and J. Stankiewicz proved that the above mentioned classes are dif- ferent. In this paper we give an extension of this result. First we need two theorems.

Theorem E (G. Eneström [1], S. Kakeya [4]). If a0 > a1 > · · · > an > 0, wheren∈N,then the polynomialp(z) =a0+a1z+a2z2+· · ·+anznhas no roots in∆ = {z ∈C: |z| ≤1}.

Theorem F (W. Rogosinski [8]). If the functionf(z) =P

n=0αnznis subordi- nated to the functionF(z) = P

n=0βnznin∆,thenP

n=0n|2 ≤P

n=0n|2.

(6)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

2. Main Result

We prove the following theorem.

Theorem 2.1. LetA, B, C, Dbe some complex numbers such thatB+A6= 0, C+D6= 0, |B| < 1, |D| < 1, then there are not complex numbers X, Y, X+Y 6= 0,|Y| ≤1such thatP(X, Y)⊂P(A, B)? P(C, D).

Proof. As in [5], the proof will be divided into three steps. First we give a family of bounded functions ων; ν = 1,2,3. . . having special properties of coefficients. Afterwards we construct, using ων, a function belonging to the classP(X, Y)and finally we will show that such a function is not in the class P(A, B)? P(C, D).

Now we use a method of E. Landau [6] and find some functionsων, ν = 1,2, 3, . . ., which are basic in this proof. We observe that

1 1−z =

1

√1−z 2

=

X

k=0

pkzk

!2

= 1 +z+z2 +z3+· · · ,

where

(2.1) p0 = 1 and pk = 1·3· · · · ·(2k−1)

2·4· · · · ·2k ; k = 1,2,3, . . . For someν ∈Nwe set

Kν(z) =

ν

X

k=0

pkzk = 1 +p1z+p2z2+p3z3+· · ·+pνzν

(7)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

and note that

Kν2(z) = 1 +z+z2+· · ·+zν +bν+1zν+1+· · ·+bz,

wherebν+1, . . . , b ∈C.Letων be given by (2.2) ων(z) = zν+1Kν 1z

Kν(z) =zzν +p1zν−1+p2zν−2 +· · ·+pν 1 +p1z+p2z2+· · ·+pνzν . Since

pk > pk2k+ 1

2k+ 2 =pk+1 where k = 0,1,2,3, . . . , then forν ∈Nwe have1> p1 > p2 > p3 >· · ·> pν >0.

Applying TheoremEto the polynomialKνwe obtainKν(z)6= 0for|z| ≤1, hence the function ων is regular in∆. Moreoverων(0) = 0 and on the circle

|z|= 1we have

ων eit =

e(ν+1)itKν(e−it) Kν(eit)

=

Kν(eit)

|Kν(eit)| = 1; t∈R. In this way we conclude that forν ∈ {1,2,3, . . .}

(2.3) ων ∈Ω.

Let, for a certainν ∈N,the functionων be represented by following power series expansions: ων(z) = γ1νz+γ2νz23νz3 +· · · and letsνn(z)denote the

(8)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

partial sum

sνn(z) =

n

X

k=1

γkνzk1νz+γ2νz23νz3+· · ·+γnνzn

for alln ∈ {1,2,3, . . . , ν+ 1}.

Now we will estimatesνn(1) =γ1ν2ν3ν +· · ·+γnν.If we integrate on a circle C : |z| = rin a counterclockwise direction with 0 < r < 1,then we obtain

(2.4)

Z

C

azmdz = 0 and Z

C

a

zdz = 2πai,

for all integersm 6=−1anda∈C.Hence sνn(1) =γ1ν2ν3ν+· · ·+γnν

= 1 2πi

Z

C

ων(z) 1

z2 + 1 z3 + 1

z4 +· · ·+ 1 zn+1

dz

= 1 2πi

Z

C

ων(z)

zn+1 1 +z+z2+z3+· · ·+zn−1 dz

= 1 2πi

Z

C

ων(z)

zn+1 Q(z)dz, where

Q(z) = 1 +z+z2+· · ·+zn−1+dnzn+dn+1zn+1+· · ·+dszs

(9)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

is any polynomial whose firstnterms are equal to1 +z+z2+· · ·+zn−1. If forn≤ν+ 1we set

Q(z) = Kν2(z) = 1+z+z2+· · ·+zn−1+zn+· · ·+zν+bν+1zν+1+· · ·+bz, then we obtain

sνn(1) = 1 2πi

Z

C

ων(z)

zn+1 Kν2(z)dz.

From (2.2) it follows that sνn(1) = 1

2πi Z

C

zν+1Kν(1z)

Kν(z)

zn+1 Kν2(z)dz

= 1 2πi

Z

C

zν−nKν 1

z

Kν(z)dz

= 1 2πi

Z

C

zν−n

1 +p11

z +p2 1

z2 +· · ·+pν 1 zν

× 1 +p1z+p2z2+· · ·+pνzν dz.

Using (2.4) we get

sνn(1) =pν−n+1+pν−n+2p1+pν−n+3p2+· · ·+pνpn−1, where(pk)are given by (2.1), and so

(2.5) sνn(1) =

n

X

k=1

γkν =

n

X

k=1

pν−n+kpk−1.

(10)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

By the above we have γ1ν = sν1(1) = pν and for all ν ∈ {1,2,3, . . .} and n ∈ {2,3,4, . . . , ν+ 1}

γnν =sνn(1)−sνn−1(1) =

n

X

k=1

pν−n+kpk−1

n−1

X

k=1

pν−n+1+kpk−1.

Therefore

(2.6) γnν =

n−1

X

k=1

(pν−n+k−pν−n+1+k)pk−1 +pνpn−1.

The sequence(pn)is positive and decreasing, then from (2.6) it follows that (2.7) γnν >0 for all ν ∈N and n∈ {1,2,3, . . . , ν+ 1}.

We conclude from (2.5) that forn=ν+ 1 sνν+1(1) =γ1ν2ν +· · ·+γννν+1ν =

ν+1

X

k=1

pk−1pk−1 = 1 +

ν

X

k=1

p2k.

SinceP

k=1p2k=∞then

(2.8) lim

ν→∞sνν+1(1) = lim

ν→∞ 1 +

ν

X

k=1

p2k

!

= +∞.

Now using the properties of ων we construct the function belonging to the classP(X, Y)which is not in the classP(A, B)? P(C, D),where|B|<1and

|D|<1.

(11)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

Since for|x| = 1we have P(A, B) =P(Ax, Bx),we can assume without loss of generality thatB ∈[0; 1), D∈[0; 1)andY ∈[0; 1].

For fixedν ∈Nlethν be given by

(2.9) hν(z) = 1 +Xων(z)

1−Y ων(z),

wherewν ∈ Ωis given by (2.2). It is clearly thathν ∈ P(X, Y).Suppose that there exist the functionsf ∈P(A, B), g∈P(C, D)such that

(2.10) f(z)? g(z) = hν(z).

Let the functionsf andg have the following form:

f(z) = 1 +Aω1(z)

1−Bω1(z) = 1 + (A+B) ω1(z) 1−Bω1(z) and

g(z) = 1 +Cω2(z)

1−Dω2(z) = 1 + (C+D) ω2(z) 1−Dω2(z), whereω1, ω2 ∈Ω.For simplicity of notation we write

f(z) = 1 + (A+B) ˜f(z), g(z) = 1 + (C+D)˜g(z),

where

(2.11) f˜(z) = ω1(z)

1−Bω1(z) and ˜g(z) = ω2(z) 1−Dω2(z).

(12)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

Using these notations we can rewrite (2.10) as h

1 + (A+B) ˜f(z)i

?[1 + (C+D)˜g(z)] = 1 +Xων(z) 1−Y ων(z) and so

(2.12) f˜(z)?g(z) =˜ X+Y (A+B)(C+D)

˜hν(z),

where˜hν(z) = 1−BDωων(z)ν(z).

Let the functions˜hν,f˜andg˜have the following expansions in∆:

(2.13) ˜hν(z) =

X

n=1

cνnzn, f˜(z) =

X

n=1

anzn, ˜g(z) =

X

n=1

bnzn.

From (2.11) it follows, that f(z)˜ ≺ 1−Bzz and g(z)˜ ≺ 1−Dzz , and hence by TheoremF(and since0≤B <1and0≤D <1) we obtain

X

n=1

|an|2 ≤ 1

1−B2 and

X

n=1

|bn|2 ≤ 1 1−D2. Let us note, that

X

n=1

|an|2+|bn|2

=

X

n=1

(|an| − |bn|)2+ 2|an||bn|

≤ 1

1− |B|2 + 1 1− |D|2.

(13)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

From (2.12) and (2.13) we obtain anbn= X+Y

(A+B)(C+D)cνn, for n= 1,2,3, . . . , therefore

(2.14)

X

n=1

(|an| − |bn|)2 ≤ 1

1−B2 + 1 1−D2

2(X+Y) (A+B)(C+D)

X

n=1

|cνn|.

Now we observe that

X

n=1

cνnzn= ˜hν(z) = ων(z) 1−Y ων(z)

ν(z) +Y [ων(z)]2 +Y2ν(z)]3+· · ·

= γ1νz+γ2νz2+· · ·

+Y γ1νz+γ2νz2+· · ·2

+Y2 γ1νz+γ2νz2 +· · ·3

+· · ·

1νz+ γ2ν +Y(γ1ν)2

z2+ γ3ν + 2Y γ1νγ2ν +Y21ν)3

z3+· · · . SinceY ∈[0; 1]and since (2.7) we have

X

n=1

|cνn|=|γ1ν|+

γ2ν +Y(γ1ν)2 +

γ3ν + 2Y γ1νγ2ν +Y21ν)3 +· · ·

ν+1

X

n=1

|cνn| ≥γ1ν2ν3ν+...+γν+1ν =sνν+1(1).

(14)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

From the above we have for allν ∈ {1,2,3, . . .}

(2.15)

X

n=1

|cνn| ≥sνν+1(1).

Combining (2.14) and (2.15) we obtain (2.16)

X

n=1

(|an| − |bn|)2 ≤ 1

1−B2 + 1 1−D2

2(X+Y) (A+B)(C+D)

sνν+1(1).

From (2.8) it follows that we are able to choose a suitable ν such that the right side of (2.16) is negative. In this way (2.16) follows the contradiction and the proof is complete.

From Theorem2.1and TheoremDwe immediately have the following Corollary 2.2. The classesP(A, B)? P(C, D)andP(AD+AC+BC, BD) are equal if and only if|B|= 1or|D|= 1.

(15)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

References

[1] G. ENESTRÖM, Härledning af en allmä formel för antalet pensionärer som vid en godtycklig tidpunkt förefinnas inom en sluten pensionskassa, Öfversigt af Kongl. Vetenskaps – Akademiens Förhandlingar, 50 (1893), 405–415.

[2] J. HADAMARD, Théoréme sur les séries entiéres, Acta Mathematica, 22 (1898), 55–63.

[3] W. JANOWSKI, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1957), 297–326.

[4] S. KAKEYA, On the limits of the roots of an algebraic equation with pos- itive coefficients, Tôhoku Math. J., 2 (1912), 140–142.

[5] K. PIEJKO, J. SOKÓŁ ANDJ. STANKIEWICZ, On some problem of the convolution of bounded functions, North-Holland Mathematics Studies, 197 (2004), 229–238.

[6] E. LANDAU, Darstellung und Begrundung einiger neurer Ergebnise der Funktionentheorie, Chelsea Publishing Co., New York, N.Y. (1946).

[7] G. PÓLYA AND I.J. SCHOENBERG, Remarks on de la Vallée Pousin means and convex conformal maps of the circle, Pacific J. Math., 8 (1958), 295–334.

[8] W. ROGOSINSKI, On the coefficients of subordinate functions, Proc.

London Math. Soc., 48(2) (1943), 48–82.

(16)

On a Convolution Conjecture of Bounded Functions

Krzysztof Piejko, Janusz Sokół and Jan Stankiewicz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of16

J. Ineq. Pure and Appl. Math. 6(2) Art. 34, 2005

http://jipam.vu.edu.au

[9] S. RUSCHEWEYH AND T. SHEIL-SMALL, Hadamard product of schlicht functions and the Pólya-Schoenberg conjecture, Comtnt. Math.

Helv., 48 (1973), 119–135.

[10] S. RUSCHEWEYHANDJ. STANKIEWICZ, Subordination under convex univalent functions, Bull. Polon. Acad. Sci. Math., 33 (1985), 499–502.

[11] J. STANKIEWICZANDZ. STANKIEWICZ, Convolution of some classes of function, Folia Sci. Univ. Techn. Resov., 48 (1988), 93–101.

[12] H.S. WILF, Subordintating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689–693.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: A class of univalent functions which provides an interesting transition from star- like functions to convex functions is defined by making use of the Ruscheweyh

A class of univalent functions which provides an interesting transition from starlike functions to convex functions is defined by making use of the Ruscheweyh derivative.. Some

Key words: Analytic functions; Univalent functions; Coefficient inequalities and coefficient estimates; Starlike functions; Convex functions; Close-to-convex functions; k-

A generalized form of the Hermite-Hadamard inequality for convex Lebesgue in- tegrable functions are obtained.. Key words and phrases: Convex function, Hermite-Hadamard inequality,

Key words: Univalent, Starlike, Convex, Uniformly convex, Uniformly starlike, Hadamard product, Integral means, Generalized hypergeometric functions.. Abstract: Making use of

Key words and phrases: Analytic functions, Univalent, Functions with positive real part, Convex functions, Convolution, In- tegral operator.. 2000 Mathematics

Key words and phrases: Univalent functions, Starlike functions of order α, Convex functions of order α, Inverse functions, Coefficient estimates.. 2000 Mathematics

Key words and phrases: Convolution (Hadamard product), Integral operator, Functions with positive real part, Convex func- tions.. 2000 Mathematics