• Nem Talált Eredményt

PROCEEDINGS OF THE SYMPOSIUM ON BACTERIAL TRANSFORMATION AND BACTERIOCINOGENY

N/A
N/A
Protected

Academic year: 2022

Ossza meg "PROCEEDINGS OF THE SYMPOSIUM ON BACTERIAL TRANSFORMATION AND BACTERIOCINOGENY"

Copied!
172
0
0

Teljes szövegt

(1)

S ym p os ia B io lo g ic a H u n g a r ic a

H i

Symposia Biologica Hungarica

PROCEEDINGS OF THE

SYMPOSIUM ON BACTERIAL TRANSFORMATION AND

BACTERIOCINOGENY

(2)

P R O C E E D I N G S O F T H E S Y M P O S I U M

O N B A C T E R I A L T R ANS F O R M A T I O N

A N D

B A C T E RIO C I N O G E N Y

August, 13 — 16, 1963 B u dap est

( S y m p o s i a Biologien H u n g á riá i 6 )

T h is work co n ta in s the lec­

t u r e s , debates a n d contribu­

t io n s to the Sym posium organ­

iz e d b y the H ungarian A cadem y o f Sciences.

T h e volume con tain s also lit e r a r y references and consists o f th r e e parts. P a r t 1 deals w i t h th e transform ation of b a c­

te r ia , Part 2 w ith th e phenom e­

n a o f bacterioeinogeny, and P a r t 3 with the g en etic funda­

m e n ta ls of cell regulation.

A K A D É M I A I K I A B Ö B U D A P E S T

(3)

S V m |i o s i a B i o l o g i c a 1 1 u n g a r i c a

ü

(4)

S y m p o s i a B i o l o g i c a H u n g a r i c a

11 e d i g i t B. G Y Ö R F Í Y

V ol. 6

A K A D É M I A I K I A D Ó , B U D A P E S T 9 6 6

(5)

PROCEEDINGS OE THE SYMPOSIUM ON BACTERIAL

TRANSFORMATION AND BACTERIOQNOGENY

A U G U ST, 13 - 16, 1963, B U D A P E S T

A K A D É M I A I K I A D Ó , B U D A P E S T 1 9 6 6

(6)

(C) A K A D É M I A I K I A D Ó , B U D A P E S T I 9 6 0

P I M N T E I ) I N H U N G A 11 V

(7)

C O N T E N T S

F o r e w o r d ... 7 L is t o f p a r t i c i p a n t s ... 9 P h o to g r a p h s o f th e p a r tic ip a n ts o f t h e S y m p o s i u m ... 13 S tr a u b , F . B ru n o

O p en in g a d d re s s ... 15 G y ő rffy , B a r n a

I n tr o d u c to r y r e m a r k s ... IT S E C T I O N i

B A C T E R I A L T R A N S F O R M A T I O N H o tc h k is s , R o llin D .

M e ch an ism o f re c o m b in a tio n in D N A -m e d ia te d t r a n s f o r m a t i o n s ... 23 P a k u la , R o m a n

K in e tic s o f p ro v o k e d c o m p e te n c e in s tre p to c o c c a l c u ltu re s a n d its sp e c ific ity . . 33 S z y b alsk i, W a c la w a n d O p a ra -K u b in s k a , Z ofia

P h y sic o -c h e m ic a l a n d b io lo g ical p ro p e r tie s o f g e n e tic m a r k e rs in tr a n s fo r m in g D N A ... 43 Ig a li, S á n d o r

E f f e c t o f x - r a y s on th e tr a n s f o r m a tio n fre q u e n c y o¥ E scherichia c o l i... 57 D e k h ty a re n k o , T . 13.

D N A c o m p o s itio n o f tr a n s f o r m a n ts o f th e e n te r ic b a c te r ia g r o u p ... 59 K o h o u to v á , M.

In f e c tio n o f t h e re c ip ie n t cell b y tr a n s fo r m in g D N A . T h e s tim u la tio n a n d in h ib i­

tio n o f i n f e c t i o n ... 65 F ö ld e s, J . a n d T r a u tn e r , T h o m a s A.

I n f e c ti v ity o f is o la te d B . su b tilis p h a g e D N A ... 73 G á b o r, M ag d a

T ra n s f o rm a tio n o f s tr e p to m y c in m a r k e r s in ro u g h s tr a in s o f R h izo b iu m lu p i n i . . 75 S ik, T ib o r

S e d im e n ta tio n s tu d ie s o f t h e d e o x y rib o n u c le ic a c id s o f R h izo b iu m m elilo ti a n d o f it s ly so g en ic f o r m ... 79

5

(8)

S E C T I O N I I

B A C T E R I O C I N O G E N Y C low es, R o y s to n C.

C olicin fa c to rs a s sex f a c t o r s ... 85 W a ta n a b e , T s u to m u

R e c e n t p ro g re ss in t h e s tu d ie s on tr a n s m is s ib le d r u g r e s is ta n c e fa c to rs in J a p a n

( p a p e r n o t re c e iv e d )

W a ta n a b e , T s u to m u a n d O k a d a , M o to y u k i

M a tin g in d u c e d b y co licin o g en ic f a c to r B in a n F - s tr a in o f E sch erich ia coli K 1 2 97 H o lla n d , I . B .

E ffe c t o n D N A s y n th e s is o f p r e p a r a tio n s o f a b a c te rio c in fo rm e d b y B . m egaterium ... 101 W o llm a n , E lie L .

O n t h e g e n e tic d e te r m in a tio n o f c o li c in o g e n y ... 107 P a te r s o n , A n n C.

B a c te rio c in o g e n y in P seu d o m o n a s a e r u g in o s a... 115 H a m o n , Y v e s e t P é ro n , Y v o n n e

A p ro p o s d e s b a c té rio c in e s p ro d u ite s p a r K lebsiella p n eu m o n ia e e t Aerobacter aerogenes ... 119

SEC T I O N II I

D N A S P E C I F I C I T Y A N D R E G U L A T I O N S te n t, G u n th e r S.

R e g u la tio n o f R N A s y n th e s is in b a c t e r i a ... 123 S ta h l, F r a n k lin W .

R e c o m b in a tio n in b a c te rio p h a g e T 4. H e te ro z y g o s ity a n d c ir c u la r ity ... 131 K a p la n , R . W .

I n d u c t io n o f m u t a ti o n s in th e p h a g e k a p p a ... 143 S ch aeffer, P ie r re

R e g u la tio n m e c h a n is m s c o n tro llin g b a c te r ia l s p o r u l a t i o n ... 147 Iv á n o v ic s , G.

T e m p e r a tu r e s e n s itiv ity o f m u t a n ts o f B a c illu s a n th ra cis c a u se d b y a b lo c k in th y m in e - n u c le o tid e s y n th e s is ... 153 A lfö ld i, L a jo s

R e la x a tio n a n d a m in o ac id s e n s itiv ity o f E . coli K l 2 m u t a n t s ... 155 E c k h a r t , W a lte r

A s tra in -sp e c ific p r o te in fo r th e r e p lic a tio n o f b a c te rio p h a g e s T 2 a n d T 4 ... 157

* G y ő rffy , B a r n a

C losing r e m a r k s ... 161 I n d e x e s ... 163 6

(9)

F O R E W O R D

A sym posium w ith th e title Bacterial Transform ation and Bacteriocinogeny was held in B u d ap est from A ugust 13 to 16, 1963, sponsored b y th e H u n g a ­ ria n A cadem y o f Sciences. T he p u rp o se o f th is S ym posium w as to m ak e an a tte m p t to exam ine som e re c e n t developm ents in ce rtain avenues o f m olec­

u la r genetics a n d it w as so designed to b rin g scien tists to g e th e r to re p o rt re c e n t findings. T he th re e sessions o f th e S ym posium w ere d ev o ted to t r a n s ­ form ation, bacteriocinogeny, a n d D N A specificity an d cell re g u la tio n a n d on each o f th e sessions a u th o ritie s o f th ese top ics p re sen ted tw o in v ite d lectu res follow ed b y c o n trib u to ry papers. T h e one-day excursion to L ak e B a la to n offered a fu rth e r o p p o rtu n ity for inform al exchanges o f ideas a n d discussions. T h e p a p e rs given b y th e in v ite d speakers a n d c o n trib u to rs a n d th e discussions are p re sen ted in th is volum e. An a tte m p t has been m ade to m a in ta in th e co n v ersatio n al to n e o f th e exten siv e discussions, how ever, i t is u n fo rtu n a te , p erh ap s, t h a t th e pu b lish ed proceedings does n o t record th em com pletely. W e wish to express o u r ap p reciatio n to th e m an y people w hose co n trib u tio n s m ade th e S ym posium successful, an d especially tho se w ho g ave advice to us d u rin g th e pro g ram m in g stage, th e sp eakers an d chairm en. T h a n k s are d u e to th e co-operation o f th o se who d e v o te d efforts in arran g in g a n d ru n n in g th e p rogram m e. P a rtic u la r th a n k s are due to D r K. S zende w ho assisted in over-all e d ito rial d u ties o f th e arra n g e m e n ts for p u b licatio n o f th e proceedings. G ra titu d e is expressed to M rs É. Szelei w ho pro v id ed sec retaria l services in th e ea rly ph ase o f th e S ym posium and for helping th e indexing a n d for checking th e p age proof. A cknow ledgem ent is g ra te fu lly m ade to th e A kadém iai K iad ó , B udapest, p u b lish in g th is sym posium volum e.

The Organizing Committee B. G Y Ő R F F Y

T . S IK

(10)
(11)

L I S T 0 F P A R T I C I P A N T S

Al f ö l d i, L ajos, I n s titu te o f M icrobiology, U n iv ersity M edical School, Szeged, H u n g a ry

Bá l in t, A ndor, I n s titu te o f G enetics, H u n g a ria n A cadem y of Sciences, B udapest, H u n g a ry

Be a n, A n ita, Virus L a b o ra to ry , U n iv ersity of C alifornia, B erkeley, C ali­

fornia, U.S.A.

Bé l á d y, Ilona, I n s titu te o f M icrobiology, U n iv e rsity Medical School, Sze­

ged, H u n g a ry

Bö h m e, H elm ut, I n s titu t fü r K u ltu rp flan z en fo rsch u n g , D eutsche A kadem ie d er W issenschaften zu Berlin, G atersleben, D eutsche D em o k ratisch e R epublik

Cl o w e s, R o y sto n , C., M edical R esearch Council, M icrobial G enetics R e ­ search U n it, H a m m ersm ith H o sp ital, L ondon, U .K .

De k h t y a r e n k o, T. D ., I n s titu te o f M icrobiology, A cadem y o f Sciences o f th e U k ra in ia n S .S.R ., K iev, U.S.S.R.

Ec k h a r d t, W alter, V irus L a b o ra to ry , U n iv e rsity o f C alifornia, Berkeley, C alifornia, U.S.A.

Fe j é r- Ko s s e y, Olga, I n s titu te o f G enetics, H u n g a ria n A cadem y o f S ci­

ences, B u d ap est, H u n g a ry

Gá b o r, M agda, I n s titu te o f G enetics, H u n g a ria n A cadem y of Sciences, B u d ap est, H u n g a ry

GyŐr f f y, B arn a , I n s titu te o f G enetics, H u n g a ria n A cadem y o f Sciences, B u d ap est, H u n g a ry

He in c z-Cz a k o, M ária, I n s titu te o f G enetics, H u n g a ria n A cadem y of Sciences, B u d ap est, H u n g a ry

Hi l l, R ebecca, V irus L ab o rato ry , U n iv e rsity o f C alifornia, B erkeley, C ali­

fornia, U.S.A.

Ho l l a n d, I. B., M icrobiology U n it, D e p a rtm e n t o f B iochem istry, U n iv e r­

sity o f O xford, O xford, Ű .K .

Ho r v á t h, Is tv á n , I n s titu te o f P h arm aco lo g y , B udapest, H u n g a ry

Ho t c h k is s, R ollin, D., T he R ockefeller I n s titu te , New Y ork, N .Y ., U.S.A.

Ig a l i, S ándor, F red e ric Jolio t-C u rie N a tio n a l R esearch I n s titu te for R adio- biology a n d R adiohygiene, B udapest. H u n g a ry

Iv á n o v ic s, G yörgy, I n s titu te o f M icrobiology, U n iv ersity M edical School, Szeged, H u n g a ry

Ka p l a n, R . W ., I n s titu t fü r M ikrobiologie, J o h a n n W olfgang G oethe U n iv e rsitä t, F ra n k f u rt a. M ain, D eu tsch e B undesrep u b lik

9

(12)

Ke c s k é s, M ihály, I n s titu te o f A g rochem istry an d Soil Science, H u n g a ria n A cadem y o f Sciences, B u d ap est, H u n g a ry

Km: m en t, Z o ltán , I n s titu te o f P la n t P ro te c tio n , B u d ap est, H u n g a ry Ko h o u t o v á, M., D e p a rtm e n t o f M icrobial G enetics a n d V ariab ility , I n ­

s titu te o f M icrobiology, C zechoslovak A cadem y o f Sciences, P rague, C zechoslovakia

Lo v r e k o v ic s, László, I n s titu te of P la n t P ro tectio n , B u d ap est, H u n g a ry Pa k u l a, R om an, I n s titu te o f B ioch em istry a n d B iophysics o f th e P olish

A cadem y o f Sciences, W arsaw , P o la n d

Pa t e r s o n, A nn, C., A g ricu ltu ral R esearch Council U n it for M icrobiology, D e p a rtm e n t o f M icrobiology, T h e U n iv ersity , Sheffield, U .K .

Sc h a e f f e r, P ierre, I n s titu t P a ste u r, P aris, F rance

Sí k, T ibor, I n s titu te o f G enetics, H u n g a ria n A cadem y o f Sciences, B u d a ­ p est, H u n g a ry

So l y m o s i, F erenc, I n s titu te o f P la n t P ro te c tio n , B u d a p e st, H u n g a ry St a h l, F ra n k lin , W ., D e p a rtm e n t o f Biology a n d I n s titu te o f M olecular

Biology, U n iv e rsity o f Oregon. Eugene, Oregon, U.S.A.

St e n t, G u n th e r S., V irus L a b o ra to ry , U niv ersity o f C alifornia, Berkeley, C alifornia, U.S.A.

St r a u b, F . B runo, B iological Section, H u n g a ria n A cadem y o f Sciences, B u d ap est, H u n g a ry

Sz y b a l s k i, W aclaw , Me A rdle M em orial L a b o ra to ry , U n iv ersity of W iscon­

sin, M adison, W is., U.S.A.

Tr a u t n e r, T h o m as A., I n s titu t fü r G enetik d e r U n iv e rsitä t zu Köln, K ö ln , D e u tsc h e B u n d esrep u b lik

Ud v a r d y, É v a , C hem ical W orks G. R ich ter, B uclapest, H u n g a ry

Wa t a n a b e, T su to m u , D e p a rtm e n t o f M icrobiology, K eio U n iv ersity School o f M edicine, T okyo, J a p a n

Wo l l m a n, E lie L ., S ervice de P hysiologie M icrobienne, I n s t i t u t P a s te u r, P aris, F ra n c e

Ye g ia n, C harles D ., V irus L a b o ra to ry , U n iv ersity o f C alifornia, B erkeley, C alifornia, U.S.A.

10

(13)

P H O T O G R A P H S O F T H E P A R T I C I P A N T S O F T H E S Y M P O S I U M

E . L . W o llm a n G. S. S te n t F . W . S ta h l

I . B. H o lla n d T. A. T r a u tn e r R . C. C low es

(14)

R . I). H o tc h k is s

R . P a k u la W . S z y b a ls k i F . R. S tr a u b 12

(15)

j

\ f S t :

I T" ' 1 8

r * Űr- m I | g l

T . I). D e k h ty a re n k o , O. F e jé r-K o sse y , 1’. S ch aeffer, W . S z y b a ls k i a n d (íy . Ivánovics

(16)
(17)

O P E N I N G A D D R E S S By

F. Br u n o St r a u b

SECRETARY OF THE BIOLOGICAL SECTION,

HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, HUNGARY

O n b e h a lf o f th e H u n g a ria n A cadem y o f Sciences I am g lad to welcom e th e p a rtic ip a n ts o f th e Sym posium on Bacterial Transform ation and Bacterioci- nogeny.

As a biochem ist I am n o t in a p o sitio n to m ake wise in tro d u c to ry com m ents o n th e s u b je c t o f th is S ym posium , alth o u g h it is clear to a biochem ist t h a t th e analy sis o f tra n sfo rm a tio n p h en o m en a has influenced co n tem p o rary b io ch em istry q u ite p rofoundly. O ur ideas on genetic in fo rm atio n a n d on in fo rm atio n tra n s fe r are based on th is p a rtic u la r field. I am g lad to see t h a t w ell-know n scientists from differen t coun tries h av e com e to us to discuss som e aspects o f th e p re se n t s ta n d o f research in th is field. I th in k , one o f th e g re a t problem s o f science still unsolved is th e problem o f in fo rm atio n tr a n s ­ fer b etw een scientists. M aybe, th e s tu d y of biological in fo rm atio n a n d in ­ fo rm a tio n tra n s fe r will help us p erfec t o u r m eth o d s for scientific in fo rm a ­ tio n tra n s fe r a n d in fo rm a tio n re trie v al.

Such a S ym posium seem s to m e like an in te lle c tu a l episom al effect, a n d I hope t h a t som e new th o u g h ts in tro d u c e d in to th ese ta lk s w ill m an ife st them selves in new m ed ia a n d p ro d u ce new resu lts. O ur A cadem y o f Sciences is giving special a tte n tio n a n d help to th e biological sciences n o w adays, as w e h av e realized th a t, in sp ite o f s c a tte re d successes in som e fields, we h av e sev eral shortcom ings in basic biological research, and, in p a rtic u la r, we did n o t do enough in th e p a s t to help basic research in genetics.

T h e convening o f th is S ym posium is one o f th e m easures to help geneticists a n d th e field o f m o d ern m icrobiology. I sincerely hope t h a t th is S ym posium will, a p a r t from fu rth e rin g in te rn a tio n a l u n d e rsta n d in g , give m uch s tim u la t­

ing in telle ctu al pleasure for p a rtic ip a n ts.

T h a n k you !

15

(18)
(19)

S y m p. Hiol. H u n g . 6, 17-9 (1965)

I N T R O D U C T O R Y R E M A R K S

B y Ba r n a Gy ő r f f y DIRECTOR, INSTITUTE OF GENETICS,

HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST, HUNGARY

I t is m y privilege a n d hon o u r to h e a rtily welcom e you in th e nam e o f th e O rganizing C om m ittee a n d o f th e H u n g a ria n geneticists, on th e occasion o f th e Sym posium on Bacterial Genetics held for th e first tim e in H u n g a ry .

T he ta s k o f th e opening th is S ym posium is n o t only a g re a t h o n o u r to me, b u t a source o f deep perso n al g ratification.

G enetics has com e to occupy a key positio n in m odern biology an d , re ­ cently, to serve as a focal p o in t also for b iochem istry, physical chem istry, virology a n d so on. T h e ex tensive stu d ies m ade d u rin g th e la s t decade re ­ su lted in a sh ift from th e classical appro ach es o f genetics to th e m olecular view o f th e m echanism o f h ered ity , w hich resid ts in re ite ra tio n o f th e d an g e r in th e u n ity o f genetics.

B efore beginning o u r sessions, we should do well to ta k e a little tim e off for considering th e to p ic o f th is Sym posium a n d its perspectives in th e g en ­ e ra l schem e o f genetics.

I t w as alre a d y in th e la st q u a rte r o f th e 19th c e n tu ry w hen W ilson s t a t ­ ed: “T h e tran sm issio n o f a specific su b stan ce or idioplasm , w hich we h av e seen reason to id e n tify w ith ch ro m atin , th e general role o f th e nucleus in m etabolism is o f v ita l im p o rtan ce to th e th e o ry o f in h eritan ce. T h e c y to ­ plasm is, in a m easure, th e su b s tra tu m o f in h eritan ce, b u t it is so only by v irtu e o f its re la tio n to th e nucleus, w hich is — so to speak th e u ltim a te c o u rt o f appeal. T he nucleus c a n n o t o p e ra te w ith o u t a cytoplasm ic field in w hich its p ecu liar pow ers m ay com e in to p lay , b u t th is field is created a n d m olded b y itself. B o th are necessary to d evelopm ent, alth o u g h th e nucleus alone suffices for th e in h eritan c e o f specific possibilities o f d ev e l­

o p m e n t.”

Since t h a t tim e re m a rk a b le progress has been m ade in o u r u n d e rsta n d in g o f th e basic m echanism o f h ered ity , m an y m ajo r a n d exciting problem s w ere solved along th e avenues o f th e classical genetics, an d d u rin g th e la st decade genetics has been developing sp ec ta cu larly fru itfu lly , w ith ev er increasing speed, an d b rillia n t adv an ces have been achieved, p a rtic u la rly in th e field o f m olecular genetics. W hile th is re v o lu tio n ary an d triu m p h a n t genetics (as S onneborn p arap h ra se d ) m akes an u n e x p e c te d a n d illu m in atin g su b sta n tia l progress from one week to th e o th er, th e re seem s to be also a c e rta in a m o u n t o f a n x ie ty t h a t th e re is a fu n d a m e n ta l difference betw een th e classical g ene­

tics a n d th e m olecular genetics t h a t m ay cause an u n b alan c e in th e fu tu re dev elo p m en t o f genetics. I th in k , it is w rong to m ake such a c h a ra c te riz a ­ tio n , as th e difference is fa r from being fu n d a m e n tal. T here is only a differ­

ence in th e aspects o f m ethodology.

2 Symp. Biol. Hung. 0 17

(20)

I do n o t agree w ith th e som ew hat ex a g g era te d views t h a t ev e ry problem o f genetics will sooner or la te r be solved in m olecular term s a n d t h a t th e form al genetics o f th e fu tu re will consist in m atch in g in te s t tu b e s D N A s a n d m essenger R N A s from v e g e ta tiv e o r som atic cells, or t h a t th e m olecu­

lar genetics is n o t genetics a t a ll b u t m uch m ore b io ch em istry or biophysics.

I am convinced t h a t th e m olecular genetics a tta c k in g first th e basic problem s by sim plifications a t th e m olecular level, will proceed fu rth e r to th e n ex t, m ore co m plicated sets o f problem s a t th e cellular, in d iv id u a l a n d even a t th e p o p u la tio n level, like it has been done b y th e classical genetics. T he fu tu re b alan ced in te g ra tio n o f b o th genetical aspects is obvious.

I t seem s v ery o ften t h a t th e problem s o f m olecular genetics p re d o m in a te a n d are m uch m ore in th e focus o f in te re st th a n an y o th ers. I firm ly believe, how ever, t h a t th e X l t h International Congress of Genetics in som e weeks a t T h e H ag u e will w itness to th e b alan c ed progress in m an y fields o f genetics.

C onsidering th e p a s t a n d p re se n t progress as well as th e p ro sp ects of genetics, th e p red ictio n seem s n o t to be im probable t h a t th e re are th re e m ain avenues along w hich th e genetics will progress in th e foreseeable fu tu re : first, th e m olecular a n d cellular level analy sin g th e fu rth e r d etails o f classi­

cal chrom osom al h e re d ity as well as th e extrach ro m o so m al in h eritan ce, second, th e in d iv id u al level a tta c k in g th e still fa in tly explored genetical problem s of d iffe ren tiatio n a n d d evelopm ent, an d lastly , th e p o p u latio n level revealing th e fu n d a m e n ta l problem s o f evolution.

F ro m th e general g e n e tic ist’s p o in t o f view, I th in k , m any o f th e problem s o f m olecular genetics an d m olecular biology to be discussed in th e com ing sessions are in in te rre la tio n s w ith m an y o th e r classical fields o f genetics a n d a co rrelatio n can only c o n trib u te to th e b alan c ed u n ity o f genetics.

*

N ow I w ish to recall a few phases o f th e sto ry o f th is S ym posium . I t w a alre ad y tw o y e a rs ago w hen it w as proposed to th e H u n g arian A cadem y o f Sciences t h a t a S ym posium on b a c te ria l genetics should be held in 1962 in B u d ap est. Owing to th e severely lim ited p ossibility to sponsor such a special Sym posium , th e su b je c t to be considered w as lim ited to b ac te rial tra n sfo rm a tio n . H ow ever, th e o rg an izatio n o f th e S ym posium w as postp o n ed u n til th is y ear, w hich afforded th e o p p o rtu n ity for co rrelatin g it in som e w ay w ith th e International Congress of Genetics as well as w ith th e Third E rw in Baur-Gedächlnisvorlesungen to be held before th e Congress a t T he H ague, in G atersleben. W hen th e arra n g e m e n ts o f th e S ym posium really s ta rte d a t th e en d o f th e la s t year, it w as th o u g h t m ore p ro fitab le if th e su b je c t o f th e S ym posium w ould be e x te n d e d to bacteriocinogeny, in w hich field re su lts h av e been achieved also in H u n g a ry .

I t was a courageous step , indeed, t h a t we to o k o ver w hen we s ta rte d th is S ym posium an d we se n t o u r first inform al le tte rs to m an y o f th e research w orkers w ho h a d m ade significant adv an ces in th ese areas. H ow ever, th e response w as fa r beyond o u r ex p e ctatio n s a n d even th e in te re s t aroused m uch g re a te r th a n we could h av e im agined. T hus, ta k in g in to a c co u n t th a t, ow ing to o th e r com m itm en ts, several o f th e leading w orkers in tra n s fo rm a ­ tio n h a d declined o u r in v ita tio n a n d as a re s u lt o f th e replies from th o se able to com e to B u d a p e st a n d p a rtic ip a te , we decided to e x te n d th e topics for discussion also to problem s o f regulation.

18

(21)

O ur id e a w as t h a t th is S ym posium should give a n o p p o rtu n ity to ex a m in e th e c u rre n t s ta te s o f research w ork in ce rtain avenues, to h ea r th e p re s e n ta ­ tio n s o f p erso n al co n trib u tio n s to th e progress, to discuss p roblem s o f m u tu a l in te re st, a n d la st b u t n o t least, to s tre n g th e n th e links b etw een scien tists o f d ifferent n atio n s.

O ur desire, to h av e a S ym posium on b a c te ria l genetics here in B u d a p e st, is now realized an d we are p ro u d o f such an élite g ath e rin g since m an y o f o u r guests w ho ac cep ted o u r in v ita tio n a n d h av e u n d e rta k e n th e effort to com e here c o n trib u te d re m a rk a b ly to o u r u n d e rs ta n d in g o f th e basic problem s o f genetics. On th e o th e r h an d , we re g ret v ery m uch indeed t h a t P rofessor B resler, D r G oldfarb, P rofessor M aa l0 e an d P rofessor S h u g a r c a n n o t be here am ong us.

I n sp ite o f all o u r efforts, we know , th e re are also fa u lts in o u r a rra n g e ­ m ents, th ere fo re we ea rn e stly re q u e s t you to b e a r in m in d t h a t we a re really ra n k a m a te u rs in th is k in d o f w ork a n d overlook o u r errors. W e will do o u r b e st to ensure t h a t th ese shortcom ings are outw eighed b y o u r efforts a n d good-will, a n d we hope th a t, w ith y o u r sincere co-operation and u n d ersta n d in g , th e S ym posium will be successful.

I n conclusion, I w ould like to express ap p reciatio n to th e H u n g a ria n A c ad ­ em y of Sciences for ac cep tin g o u r proposal a n d sponsoring th is Sym posium . I should like to th a n k also all tho se w ho so graciously co llab o rated in th e arra n g e m e n ts an d are now assisting in th e ru n n in g o f th e w hole o f th e S y m ­ posium .

So now, on b e h a lf o f th e O rganizing C om m ittee, it is m y p le a s a n t d u ty to declare th e Sym posium on Bacterial Transform ation and Bacteriocinogeny open.

T h a n k you!

2 19

(22)
(23)

S E (' TI () N

B A C T K R 1 A L T R A N S F O R M A T I O N

(24)
(25)

S y m p . Biol. H u n g . 6, 23-32 (1965) M E C H A N I S M O F R E C O M B I N A T I O N I N D N A - M E D I Á T E D

T R A N S F O R M A T I O N S Bv

Ro l l in D. Ho t c h k is s

THE ROCKEFELLER INSTITUTE, NEW YORK, U.S. A.

T h e tra n sfo rm a tio n o f re cep tiv e b ac te rial cells b y iso lated d eo x y rib o n u cleate (DNA) from re la te d stra in s provides one o f th e sim plest genetic system s.

Since th e classic w ork o f A very e t al. (1944) it has becom e increasingly clear t h a t th e ac tiv e D N A is a sim ple form o f th e genetic m a te ria l th a t , o r­

ganized in to chrom osom es, is p re se n t in alm o st all living organism s. T h e d em o n stratio n s t h a t a v a rie ty o f b a c te ria l pro p erties, such as d ru g resis­

tan ce s a n d vario u s en z y m a tic tra its , are sim ilarly tra n s fe rre d b y D N A ju stifie s th e e x p e c ta tio n t h a t th is d e te rm in a n t m a te ria l re p re se n ts th e functional m a tte r o f m an y genes, as well as m an y kinds o f cells.

T h e ad v a n ta g e s o f th is genetic sy stem o ver m ost o th e r ones is t h a t th e genetic m a te ria l can be m a n ip u la te d chem ically a n d physically to a fa r g re a t­

er e x te n t w hen it is in th e form o f iso lated DNA th a n w hen it is p re se n t in cells, nuclei or even viruses. F o r in th ese o th e r cases, th e biological a c tiv ity can no longer be e stim a te d if th e m an ip u latio n has seriously a lte re d th e com ­ plex co n ta in e r in w hich th e D N A is carried. T herefore, w ith tra n sfo rm a tio n system s one has th e o p p o rtu n ity to in v estig ate th e chem ical a n d physical p ro p e rtie s o f genetic m ateria l, its se n sitiv ity to chem ical o r physical change, th e creation o f m u ta tio n s, th e s tru c tu ra l req u irem en ts for its a c tiv ity . I n w h a t follows, I shall discuss som e re c e n t w ork w hich, utilizing th is app ro ach , begins to show com plex b eh a v io r p reviously n o t know n to be associated w ith single p articles o f DNA.

L e t us first recall t h a t w hen th e resu lts o f a tra n sfo rm a tio n could be m eas­

u re d q u a n tita tiv e ly (H otchkiss 1951), it w as found t h a t m ost p airs of tr a its ca rried by DNA w ere se p a ra te ly in tro d u c e d in to d ifferent cells. T hus, for a p a ir o f m ark ers X an d F , in d e p e n d e n t tra n sfo rm a n ts T w ere found:

eells(wild) + t)NA(Al') gives T x and T y

T h e double tra n s fo rm a n t T XY, if recovered, ap p e ars only in th e low fre q u e n ­ cies resu ltin g from successive single tra n sfo rm a tio n s. On th e o th e r h an d , if m a rk e r Y is linked to Z (M arm ur an d H o tch k iss 1960):

eells(w ild) + D N A (A 1 '/? ) g iv es T x + T YZ + T y + T z

I n such cases, th e linked p air Y Z seem s to be ca rried by a single D N A p a r ­ ticle, w hich undergoes se p a ratio n b y re co m b in atio n w henever T Y or T z are produced. M ost p airs o f m ark ers b eh a v e in d e p e n d e n tly like X an d Y .

One se t o f linked m ark e rs o f Diplococcus pneumoniae, d esig n ate d Sadb, was occasionally tra n sfo rm e d to g e th e r, Sadb or adb, b u t was g enerally sepa-

23

(26)

i

ra te d in to th e sm aller u n its, Sa, ad o r d or 8 , etc. (In these, 8 rep resen ts stre p to m y c in resistance, a, d a n d b are sep a rab ly identifiable sulfonam ide re sistan ce tra its m an ifested in a folic acid sy n th e ta se .) T h e hypo th esis was, therefore, proposed t h a t th e re was a size lim ita tio n on th e a m o u n t o f g ene­

tic m ateria l t h a t could be effectively tra n sfe rre d by tra n s fo rm a tio n (H o tc h ­ kiss 1958, B alassa a n d P ré v o st 1962). R eco m b in atio n w as also being in v e sti­

g a te d a t th is tim e in th e p o p u latio n o f D N A p articles resu ltin g from infection o f single cells w ith m ixed b ac te rio p h ag e s (Chase a n d D oerm ann 1958, S te in ­ berg an d E d g a r 1962, L u ria 1962). We proposer] to ex p lain th e q u a n tita tiv e anom alies (n o n -a d d itiv ity a n d high coincidence o f m u ltip le tran sfers) in th is a n d o th e r finely a n a ly z ed system s as due sim ply to o ne-directional tra n s fe r o r copying o f sh o rt regions o f th e D N A s tra n d s. I n th is view, th e u su al recom - b in atio n e v e n t in D N A stra n d s is a double one (sw itch-over a n d n ea rb y sw itch-back) so t h a t tho se exchanges observed in th re e -fa c to r crosses, in w hich one is obliged to fo rm u late as double events, w ould still be o rd i­

n a ry ones. C onsequently, th e ir fre q u e n t occurrence is ex p ected a n d th e re is little o r no a c tu a l ‘high n eg a tiv e in terfe ren c e’. B y ad h erin g to th e single e v e n t (one sw itch-over) as th e u n it reco m b in atio n al process, ph ag e gene­

tic ists h av e h ad to p o s tu la te n o t only double, b u t trip le a n d q u ad ru p le ev en ts, all clu stered in, a n d occurring o ften in ac tiv e ly recom bining regions o f D N A (L u ria 1962).

Since t h a t tim e, it has seem ed m ore d o u b tfu l w h e th e r th e re is a n y sh arp basis for d istin c tio n betw een th e sm all m olecular s tra n d s o f D N A an d th e o ften fa r larger stra n d s o f chrom osom es. I f th e re is, it will p ro b a b ly be m ost im p o rta n t to learn in w h a t w ay in d iv id u a l D N A m olecules are joined to each o th e r —p erh ap s b y cations, organic bases or o th e r s u b s ta n c e s —in m aking up th e large chrom osom es. I f th e re tu rn s o u t to be no im p o rta n t d isc o n tin u ity betw een th e D N A m olecule a n d th e chrom osom e, th e n it will becom e all th e m ore significant to u n d e rs ta n d how D N A m olecules behave in th e recom b in atio n t h a t occurs in b a c te ria l tran sfo rm atio n .

B y a s tu d y o f th e effect o f D N A co n c en tratio n a n d o f tim e o f exposure to D N A on tra n sfo rm a tio n yield, it has been possible to d eterm in e how m any p articles o f D N A are re q u ire d to effect tra n sfo rm a tio n o f one cell. T his re p resen ts som e a d v a n ta g e o ver th e ph ag e reco m b in atio n s w hich occur betw een ill-defined p o p u latio n s o f phage genom es increasing b y sy n th esis a n d decreasing b y m a tu ra tio n b u t n u m b erin g p erh ap s several h u n d re d p artic le s w ith in each host cell ra n d o m ly infected w ith a few phages o f each kind.

In an early w ork w ith th e n o n -q u a n tita tiv e antig en ic m arkers, th e re w as a rough p ro p o rtio n a lity betw een D N A co n c en tratio n a n d th e nu m b ers o f sub-populations o f b a c te ria in w hich tra n s fo rm a n t cells w ere d e te c te d (M cC arthy e t al.1946, R av in 1954, S to ck er e t al. 1953). W hen individual tr a n s ­ form ed cells could be co u n ted b y th e use o f th e q u a n tita tiv e selective tra its , it w as show n t h a t transformation yield w as sim ilarly re la te d to D N A con­

c e n tra tio n (H otch k iss 1951, 1957). In th e useful cases o f s tre p to m y c in resis­

ta n c e tra n sfo rm a tio n o f b o th Pneumococcus (H otchkiss 1957) a n d Hem o­

philus influenzae (A lexander e t al. 1954), it w as show n t h a t th e n u m b e r of tran sfo rm ed cells w as p ro p o rtio n al to D N A co n cen tratio n o ver a lOOOfold range. I t w as concluded from such w ork t h a t a single p artic le o f D N A re a c t­

ing w ith a cell is sufficient to brin g a b o u t a single tra n sfo rm a tio n for th e 24

(27)

m ark e rs w hich i t contain s. T he fa c t t h a t u n lin k ed m ark ers w ere co -tran sfo rm - ed a t a freq u en cy w hich is a p p ro x im a te ly th e p ro d u c t o f th e in d iv id u a l m a rk e r frequencies (H otch k iss 1951, M arm ur a n d H o tch k iss 1960) ind icates t h a t p ra c tic a lly all th e cells are equ ally tran sfo rm ab le. T his rela tio n sh ip w as show n b y G oodgal (1961) to a p p ly o ver a w ide c o n c e n tra tio n range.

C o -tran sfo rm atio n o f linked m arkers, on th e o th e r han d , rem ains a lin ear fu n ctio n o f co n c en tratio n in c o n s ta n t p ro p o rtio n to single tra n sfo rm a tio n s (M arm ur an d H otch k iss 1960, B alassa an d P ré v o st 1962, G oodgal 1961).

T hus, one m ay a p p ro x im a te ly ch a rac te rize a linkage re la tio n b y th e ra tio o f th e frequencies o f th e linked g roup to one o f its c o n stitu e n t m arkers.

W e m ay now re w rite th e expression given above as

w ith corresponding tw o -step tra n sfo rm a tio n s w hen DN A se is also presen t- I n a re cen t w ork w ith D r J o a n K e n t, we h av e been able to m easure t r a n s ­ fo rm atio n yields a t a c o n sta n t D N A co n c en tratio n as a fu n c tio n o f d u ra tio n o f exposure tim e o f cells to DNA. T his ap p ro ach ta k e s th e a d v a n ta g e o f th e uniform tim e-course t h a t can be observed for th e reactio n betw een cells a n d D N A a t 30° (Fox a n d H otchkiss 1957), a te m p e ra tu re below t h a t a t w hich th e cells are n o rm ally grow n. T h e exposure is controlled b y ad d in g th e D N A a t a know n tim e an d te rm in a tin g c o n ta c t by ad d in g a t chosen tim es p a n c re a tic deoxyribonuclease to b re ak dow n th e u n u sed DN A .

L inear ra te s o f e n try are found for in d iv id u a l m arkers, a n d th ese ra te s are c h a rac te ristic o f th e m a rk e r (K e n t a n d H o tch k iss 1964). A t a given c o n c e n tra tio n o f D N A b ea rin g several m arkers, th e re la tiv e effectiveness a n d co n c en tratio n o f d ifferent m ark ers can in th is w ay be v ery a c cu ra te ly d eterm in ed . F ig u re 1 illu stra te s t h a t lin e a r ra te s o f e n try are o b ta in e d also for linked m arkers, a lth o u g h th e low est ra te s show n are p e rh a p s 3 p e r cent o f th e ra te s for single m arkers. T he re la tiv e slopes for th e linked an d single m ark e rs in a D N A solution give a m easure o f th e co -tran sfo rm a tio n effici­

ency or linkage o f a m a rk e r p air, fa r m ore reliable an d ch a ra c te ristic of th e linkage g roup th a n w hen a single tim e p o in t is used.

In th is w ay, it w as possible to show t h a t from a linkage g ro u p o f th re e m arkers, all th re e , o r a n y p air, including th e tw o outside m ark e rs can be ta k e n up as a re su lt o f c o n ta c t w ith single D N A particles. An exam ple of th is la st case is th e in tro d u c tio n o f m ark ers S a n d d from g roup Sad (K e n t e t al. 1963). In all th e cases in w hich th is 1-3 in co rp o ratio n occurred, it proceeded lin early w ith tim e, a lth o u g h a t a v ery low ra te . T herefore, it seem s to be d e m o n stra te d t h a t a single D N A p artic le e n te rin g a re cip ien t cell m ay d o n a te to th e la tte r tw o se p a ra te p o rtio n s o f itself in a re co m b in a­

tio n e v e n t in w hich four b re ak ag e -fu sio n ev e n ts h av e occurred. A v ery in te re stin g finding is t h a t th is m ore com plex k in d o f recom b in atio n v irtu a lly d isap p ea rs w hen th e tra n sfo rm a tio n is ca rried o u t a t th e ‘n o rm a l’ grow th te m p e ra tu re o f 37° (K e n t e t al. 1963).

cells(w ild) + D N A X - f D X A V g iv es T nn d T y Tx ~\~ l^NAy

Ty + D N A X while in th e case o f th e linked p a ir

cells(w ild) + I)N Akz g iv es T y Z + T y +

(28)

T hus, we m ay conclude t h a t a single D N A s tra n d is able to tra n s fe r n o n -a d ja ­ ce n t m ark ers in a tra n s fo rm a ­ tio n ev e n t; th is is one of th e w ay s D N A m ay b eh a v e .There m ay, how ever, be re stric tin g influences, fa v o red p erh ap s by evolution, w hich r e ­ d uce th e e x te n t o f such com plex ev e n ts unless th e D N A p airin g c o n ta c t is m a in ta in e d a b n o rm a lly long b y unphysiological con d i­

tions. As m entioned, th is ty p e o f e v e n t seem s to occur in p o p u latio n s o f grow ing phages, b u t it is d ifficult in t h a t case to d e ­ te rm in e th e n u m b e r o f p a r t ­ icles in volved a n d w h e th e r th e tru e n u m b er o f sw itch ev e n ts is th e sam e as t h a t in ­ ferred. W hen tw o m ark ers com ing from s e p a ra te donors (m ixed DNA) are in co r­

p o ra te d , th e tra n s fe r ra te is alw ays q u a d ra tic , show ­ ing t h a t e x a c tly tw o D N A p articles are needed to p ro ­ d uce th e p a ire d tra n s fo r­

m ation. T his is also tru e for u n lin k ed m ark ers com ing from th e sam e d o n o r (K e n t an d H otch k iss 1964) (see Fig. 2) an d for p reviously linked m ark ers a f te r subcritical h ea t in activ atio n (localized d ep u rin a tio n ) (K e n t e t al. 1963).

In su m m ary , th ese new k in etic c rite ria for tra n sfo rm a tio n ra te s give stro n g in d icatio n s t h a t th e n u m b e r o f D N A m olecules involved in p a rtic u la r tra n sfo rm a tio n s o f in d iv id u a l recip ien t cells are as follows.

Transform ations effected by single D N A molecules: (1) single m arkers, (2) linked m ark e rs from single donors, (3) p a irs o f m ark e rs from linkage g ro u p even w hen in te rm e d ia te m ark ers are n o t in co rp o rated .

Transform ations requiring two D N A molecules: (1) u n lin k e d m ark e rs from single donors, (2) m ark e rs o f a lin k ag e g ro u p w hen deriv ed from d iffe re n t d o n o r stra in s (in m ixed D N A o f th e tw o stra in s, (3) a sm all p ro p o rtio n o f linked m ark e rs (p ro p o rtio n a l to single tra n s fo rm a tio n frequency) m ay e n te r by successive tra n sfo rm a tio n s by tw o m olecules from th e sam e s tra in , (negligible, ex c e p t w hen co n c en tratio n o f D N A is high or tim e o f e x p o ­

0 4 8 12 15 20 25 30 mm duration o f exposure to DNA

Fi g. 1 .—R a t e o f a c c u m u la tio n o f specified t r a n s ­ fo r m a n ts a s a fu n c tio n o f e x p o su re o f d cells to S a D N A . T h e tr ip le tr a n s f o r m a n t S a + ( t h a t is S a d + o r S a D ) is p ro d u c e d a s fr e q u e n tly a s th e d o u b le S a d . T h e class S d + (o r S I ) ) in c lu d e s tw o ty p e s ; b y s u b tr a c tin g th e v a lu e s fo r th e d ire c tly m e a s u re d classes, S d + m in u s S a +, on e o b ta in s th e ‘d o u b le s w itc h re c o m b in a n ts ’, S a +d + (or S A D ) . (S = s tr e p to m y c in re s is ta n c e , a a n d d = d iffe re n t d is tin g u is h a b le su lfo n a m id e re s is ­

ta n c e fa c to rs)

26

(29)

sure is p rolonged), (4) linked m ark ers from th e sam e donor, w hen localized d e p u rin a tio n or o th e r d am ag e has in a c tiv a te d m an y o f th e in d iv id u a l m arkers.

One corollary o f th is finding is th a t, w hile p airin g o f D N A m olecules gives increased o p p o rtu n ity for linked m ark ers to be in co rp o rated , it does n o t s u b sta n tia lly decrease th e p ro b a b ility for a second D N A p a rtic le to d o n a te m ark ers to th e sam e or d ifferent p a r ts o f th e sam e cell genom e.

i t has been p o in te d o u t t h a t m ark ers ap p e arin g to be u n lin k ed m ight really be p a r t of th e sam e s tru c tu re b u t m erely so fa r a p a r t t h a t th e large s tru c tu re w as unab le to be in c o rp o ra te d a t once (H otchkiss 1958). B alassa a n d P ré v o s t h ave m ad e m ore d e ta ile d calculations o f such p ro b a b ilities by assum ing a size-influenced in co rp o ratio n (B alassa a n d P ré v o s t 1962) in ­ s te a d o f a m ax im u m size-lim ited one as w as done e a rlier (H o tc h k iss 1958).

I t now seem s t h a t th e k in etic c rite ria described ab o v e are able to show t h a t m ost, if n o t all, of th e ‘u n lin k e d ’ double tra n s fo rm a ­ tio n s we h av e o b served do indeed involve m ark e rs o f se p a ra te m olecules.

T his ty p e o f analysis is p ro v in g to be o f value in th e s tu d y o f a n o th ­ er new fe a tu re o f tra n sfo rm a tio n , involving apparently h eterozygotic regions o f DNA. T his w ork is largely ca rried o u t in collab o ratio n w ith Dr Mihoko Abe an d is now in p re p a ra tio n for d etailed publication. A sulfonam ide resistance m arker, c, discov­

ered som e tim e ago in w ork w ith Miss E v a n s (H otchkiss a n d E v a n s 1958), h a d been observed to be ‘u n s ta b le ’ w hen stra in s c o n tain in g it were re p eated ly passed for m any generatio n s. W hen reex am in ed b y D r Abe, it was found t h a t a p p ro x i­

m ately one p rogeny cell from each five or six divisions (1 in 32 to 64 cells) lo st its sulfonam ide resistance.

Since th e sensitive cells p ro ­ d uced w ere stab le a n d in ­ d istin g u ish ab le genotypical- lyor p h en o ty p ica llv , from wild ty p e ( + ) cells, th e process ap p e ars to be as show n sch em atically in Fig.

3. T he u n sta b le c stra in s arising e ith e r by m u ta tio n or by tra n sfo rm a tio n give a m ixed p o p u latio n . T ak in g a d v a n ta g e o f specific sulfo­

nam id e-related drugs, th e population m ay be selected for its p h e n o ty p ic tr a its into tw o kinds. Selected in

F i e . 2. — R a te o f a c c u m u la tio n o f u n lin k e d m a r k e rs S a n d K (s tre p to m y c in a n d m icro co ccin re sista n c e ) a t d iffe re n t D N A c o n c e n tra tio n s . A ll th e c u rv e s a re e ss e n tia lly q u a d r a tic ; t h a t is, (tra n s f o rm a n ts ) 1/2

is a lin e a r fu n c tio n o f d u r a tio n o f e x p o su re 27

(30)

sulfanilam ide (SA) th e p o p u latio n becom es ‘p u re ’ r cells, w hich, how ever, soon lead to p ro d u ctio n o f w ild ( 4 ) cells again. S elected in para-n itro b en zo ic acid (NO B), selection is a g a in st c cells, a n d a w ild ty p e p o p u latio n results w hich shows no a b ility to tu r n back in to , or recom bine to give, re sista n t cells again.

growth

© ©

©©

Fig. 3 .—S ch em e o f g ro w th , se g re g a tio n a n d selectio n o f r su lfo n a m id e r e s is ta n t cells

T his could be view ed as a m u ta tio n w ith a high reversion ra te , b u t it a p p e a re d like a segregation o f a c m a rk e r aw ay from som e h eterozygotic form w hich co n tain s b o th th e c a n d its w ild -ty p e allele C. T his h eterozygotic form could be an o v erlap p in g s tru c tu re o f som e so rt, or som e episom e-

@ ©

Fig. 4 . —S ch em e sh o w in g se g re g a tio n o f c, a n d tw o k in d s o f cd cells

b ea rin g form as suggested b y th e v ery in tere stin g re c e n t w ork o f D r W a- ta n a b e , re p o rte d a t th is S ym posium a n d elsew here (W atan ab e 1963).

T h e com bination of m a rk e r c w ith re sis ta n t stra in s a a n d b th re w no light upon th e m a tte r, fo r ac (or be) stra in s seg reg ated o r re v e rte d to a (or b) stra in s in th e sam e w ay as w hen a a n d b were n o t p resen t.

H ow ever, w hen we tra n sfe rre d m a rk e r c to a a? stra in , a closely linked p air, rd, w as produced. Now, if c m erely m u ta te s back in to C, th e n cd s tra in s should change b ack only in to d s tra in s (Cd). B u t, if a hetero zy g o tic s tru c tu re c(C)

(31)

w ere th e basis o f th e c in s ta b ility , one m ig h t ex p e c t t h a t th e D N A ca rry in g th e c m a rk e r w ould som etim es in tro d u ce its D n eighbor in to th e cd strain .

T his la tte r is w h a t a p p a re n tly happens. W hen cd s tra in s are ex am in ed by selection in th e d ru g p ara-n itro b en z o ic acid, tw o ty p e s are found.

One ty p e can prod u ce sta b le d strain s, w hile th e o th e r gives b o th stab le d a n d ( + ) ty p es. T h e recovery o f ( + ) cells [CD] m eans t h a t m a rk e r D has also been in tro d u c e d p re su m a b ly from th e c d o n o r (cD). F u rth e rm o re , w hen th e c m a rk e r leaves th e s tra in , it ap p e ars som etim es to ta k e w ith it th e d, som etim es th e D, m arker.

T he p h e n o ty p e s fo u n d are sum m arized in Fig. 4. T hese re su lts are e x p la in ­ able if th e c stra in carries m a rk e r C unexpressed, a n d th e cd s tra in s c a rry

Fig. 5 .—O v e rla p m odel

in th e one case C a n d in th e o th e r CD, in an unex p ressed s ta te . So we e x ­ am in ed th e D N A o f th ese stra in s for la te n t m arkers, n o t expressed in th e stra in itself, b u t tra n sfe ra b le to recip ien ts o f th e su itab le gen o ty p e. I n T ab le I are show n th e results. I t is a p p a re n t t h a t th e su sp ected la te n t m ark ers are all p resen t. B y using th e so p h istic ated k in etic te s t for th e linkage m en ­ tio n e d above, i t is fo u n d t h a t th e p airs cd a n d C D are linked to each oth er, while c is n o t linked to D. B y an occasional reco m b in atio n , th e Cd ty p e is form ed a n d segregates o u t as an a p p a re n tly sta b le p ro d u c t. I f D is n o t p re ­ sent, th is is th e only d e te c te d re a rra n g e m e n t; if D is p re sen t, th e CD ty p e (wild ty p e ) segregates o u t even m ore freq u en tly .

T A B L E i

T r a n s fo r m in g agents rec\

P h e n o ty p e In f e ri•ed g e n o ty p e

c

C

cd

c

c d

cd* C D

c d

S rd * C D

S c d

red fro m ed str a in s

T ra n s fo rm in g a g e n ts recognized*

c cd, c, d cd, C D , c, d, D

S rd , cd, S c, C D (an d S , c, d, D )

T hese findings in d icate t h a t m a rk e r c becom es m ore in tim a te ly associated w ith p re ex istin g b a c te ria l m ark ers (d ) th a n it w ould be if it w ere b orne on a free episom al p article. Since v irtu a lly all o f it behaves th is w ay all o f th e

29

* N o te : m a r k e r C c a n n o t be re c o g n iz e d a lo n e in tr a n s fo r m a tio n

(32)

tim e , an episom e seem s to be excluded. F u r th e r ­ m ore, th e C D or C m ark ers so ca rried are n o t fu n c ­ tio n al. T his w as learn ed from th e absence o f a folic acid s y n th e ta s e hav in g th e know n d ru g sen sitiv ity corresponding to these m ark e rs (u n til re co m b i­

n a tio n occurs). T he D N A b ea rin g th ese m ark ers does n o t seem to be in a n y w ay p h y sically a b ­ norm al. We will discuss th ese a n d o th e r studies on th ese stra in s in m ore d e ta il in la te r p u b lic a ­ tions.

An a d e q u a te s tru c tu ra l m odel for th e h e te ro z y ­ gote cd (CD) should, th e re ­ fore, show th e following p ro p erties: (1) tw o regions hav in g d u p lic a te d genes ca rried b y (2) d o u b le-stra n d ed DNA in b o th regions, w ith (3) p ossibility for reco m b in atio n betw een th e tw o regions, b u t (4) w ith no rm al D N A replication usually repro d u cin g b o th regions a n d heterozygosity, how ever (5) th ese regions to be asy m m etric in th e ir re la tio n s to th e re s t o f th e genom e so t h a t (6) c re a ­ tio n o f gene p ro d u c t is n o t eq u al for b o th , therefore, p re su m a b ly , sites Fi g. (i.— M odel o f p n e u m o c o c c a l ch ro m o so m e t h a t

w o u ld a c c o u n t fo r s t a b il it y a n d b e h a v io r o f cd (CD) s tr a in s , i ß = p o ssib le site s o f in itia tio n o f r e p li­

c a tio n a n d o f f o r m a tio n o f m e sse n g e r, C D , cd m a r k ­ e rs in h e te ro z y g o tic reg io n

e

Fi g. 7 .— M odel o f F ig . 6 a f t e r co m m e n c e m e n t o f p o la riz e d s in g le s tra n d (K o rn b e rg ) re p lic a tio n . N o te t h a t a t cG th e re s tin g e n d s s ta b iliz e e a c h o th e r. N o te also that, h e te ro z y g o s ity a t E w o u ld se g re g a te a t th is n e x t

d iv isio n , w h ile h e te ro z y g o s ity a t cd is re p lic a te d

o f in itia tio n o f R N A tra n s c rip tio n (in itia to r, o p erato r, p u n c tu a tio n ) being a b s e n t o r n o t fu n c ­ tio n a l in one o f th e tw o regions.

T h e first th re e o f th ese p ro p e rtie s hold for a sim ple ov erlap m odel (Fig. 5). T he la s t th re e p ro p e rtie s seem m ore s a ­ tisfa c to rily a c c o m o d a t­

ed b y a m odel w hich we h av e been considering for som e tim e, th e one p re se n te d in F ig. 6.

D oubtless, o th e r m odels also w ould serve in v a r y ­ ing degrees, b u t th is one has th e a d d itio n a l advan ta g e o f giving a ch ro m o ­ som e t h a t w ould a p p e a r

3 0

(33)

to be circu lar in linkage te s ts (an d in electro n m icrographs). I t w ould allow s ta b ility o f th e loose ends also d u rin g a ‘K o rn b e rg re p lic a tio n ’ o f single stra n d s (K o rn b erg 1961), s ta rtin g from opposite ends, as suggested in F ig. 7.

I f re p lic atio n of b o th stra n d s a c tu a lly proceeded synch ro n o u sly from one end, as suggested b y re c e n t a u to ra d io g ra p h s o f d ividing Escherichia coli cells (C airns 1963), th e n th e ends could still hold each other.

M ore im p o rta n t, th e m odel gives asy m m etric positions to th e re p e a te d regions cd a n d CD. W e m ay th in k o f cd as being asso ciated w ith a site o f in itia tio n o f tra n sc rip tio n (‘in itia to r’ or ‘o p e ra to r’), p erh ap s to th e rig h t of d in Fig. 7, w hich is a b s e n t e n tire ly a t th e CD end o f th e s tra n d (a t B).

T his w ould n o t affect th e re p e a te d com plete rep lication o f th e D N A including th e overlap, b u t w ould p re v e n t fo rm atio n o f an y gene p ro d u c t (‘m essenger’) from th e (non-functioning) CD p a rt.

A lthough we w ere u n aw are o f it, th is m odel w ith te rm in a l re d u n d a n c y h a d been suggested for ph ag e h eterozygotes som e tim e before b y S treisinger a n d discussed inform ally a t vario u s tim es, being finally su m m arized in an excellent p re se n ta tio n by D r S ta h l a t th is Sym posium . W e h av e n o t begun to m ake as m any ex p e rim en tal te s ts o f th e m odel as he has ou tlin ed , b u t we m ay p e rh a p s be considered to have offered a n o th e r n o t to o rigorous ap p lica tio n o f th e m odel a n d a rg u m e n ts co n sisten t w ith it. In ad d itio n , it is o f in te re st t h a t we h ad a som ew hat different reason for considering th e m odel: th e b alan ce o f D N A rep licatio n , a n d th e im b alan ce o f D N A fu n ctio n , in th e tw o p a rts.

I n su m m ary , we can now s ta te w ith som e confidence t h a t recom bination in tra n sfo rm a tio n occurs b etw een th e b a c te ria l genom e and one o r m ore p a r ts o f a single incom ing D N A m olecule. A second DNA m olecule is n o t excluded from ac tin g on th e sam e recip ien t cell su b seq u e n tly , b u t th is p ro ­ cess can be d istin g u ish ed from th e o th e r b y k in etic crite ria. A t le a s t one tra n sfo rm a tio n in tro d u ce s a d u p licate m a rk e r o r linked p a ir o f m ark e rs to produce a h eterozygotic s tru c tu re . T his s tru c tu re is so c o n s titu te d t h a t only one p a r t o f i t is p h en o ty p ica lly expressed in cell function. I t is rep lic ated in ta c t, how ever, ex c ep t t h a t an occasional reco m b in atio n occurs, w ith th e p ro d u c tio n o f a sta b le seg reg an t h av in g a d ifferent a sso rtm e n t o f th e m a rk ­ ers in th e fu n c tio n a l sta te .

R E F E R E N C E S

A le x a n d e r, H . E ., L e id y , G . a n d H a h n , E . (1954) ,7. exp. M e d . 97, 797 A v e ry , O. T ., M acL eo d , C. T . a n d M c C a rth y , M . ( 1944) ,7. exp. M e d . 79, 137 B a la ss a , G . a n d P ré v o s t, G . (19G2) J . theor. B iol. 3, 315

C airn s, J . (1963) J . molec. B io l. 0, 208

C hase, M. a n d D o e rm a n n , A . H . (1958) G enetics 43, 332 F o x , M. S. a n d H o tc h k is s , R . D . (1957) N a tu re (L o n d .) 179, 61 G oodgal, S. H . (1961) .7. gen. P h y sio l. 45, 205

H o tc h k is s , R . D . (1951) Gold S p r . H arh. S y m p . q uant. B io l. 16, 457

H o tc h k is s , R . D . (1957) in C hem ical B a s is o f H ered ity, ed . W . M c E lro y a n d B . G lass, J o h n s H o p k in s U n iv . P re s s, B a ltim o re

H o tc h k is s , R . D . (1958) T h e b io lo g ical re p lic a tio n o f m a e ro m o lecu les, in S y m p . Soc.

E x p . Biol. X I I , 49

(34)

H o tc h k is s , R . D . a n d E v a n s , A . H . (1958) Cold Spr. Harb. Symp. quant. Biol. 23,58 K e n t, J . L . a n d H o tc h k is s , R . D . (1964) in p r e p a r a tio n fo r p u b lic a tio n

K e n t, J . L ., R o g e r, M . a n d H o tc h k is s , R . D . (1963) Proc. nut. Acad. Sei. ( Wash.) 50, 717 K o rn b e rg , A . (1961) E n z y m a tic S y n th e s is o f U N A , Ciha Lectures in Microbial Bio­

chemistry,J o h n W iley a n d Sons, N ew Y o rk L u ria , S. E . (1962) Ann. Rev. Microbiol. IG, 205

M a rm u r, J . a n d H o tc h k is s , R . D . (1960) Proc. nat. Acad. Sei. (W ash.) 40,55

M c C a rth y , M .,T a y lo r, H . E . a n d A v e ry , O. T . (1946) Cold Spr. Harb. Symp. quant. Biol.

11, 117

R a v in , A. W . (1954) Exp. Cell Res. 7,58

S te in b e rg , C. M . a n d E d g a r, R . S. (1962) Genetics 47, 187

S to c k e r, B . A. !)., K ra u s s , M. R . a n d M acL eo d , C. T . (1952) ./. Path. Bart. GO,220 W a ta n a b e , T . (1962) Bact. Rev. 27,87

(35)

S y m p . B io l. H u n g . 6, 33-42 (1965) K I N E T I C S O F P R O V O K E D C O M P E T E N C E I N S T R E P T O C O C C A L C U L T U R E S A N D I T S

S P E C I F I C I T Y B y

Ro m a n Pa k u l a

INSTITUTE OF BIOCHEMISTRY AN D BIOPHYSICS OF THE POLISH ACADEMY OF SCIENCES, WARSAW, POLAND

T ra n sfo rm ab ility o f b a c te ria is so fa r lim ited to a sm all n u m b e r o f species a n d w ith in th ese species only to som e strain s. T h e a b ility to undergo tr a n s ­ fo rm a tio n is defined as com petence b u t th e n a tu re o f th is phenom enon is n o t well understood.

A fte r a careful s tu d y o f com petence in strep to co ccal cu ltu res, we found t h a t th e ap p e ara n ce o f com petence resem bles in m an y resp ects th e kin etics o f ac cu m u latio n of enzym es a n d to x in s, such as strep to d o rn a se, s tr e p to ­ kinase, hialu ro n id ase a n d stre p to ly sin 0 in cu ltu re s of th ese b ac te ria. We assum ed, therefore, t h a t streptococci do n o t develop com petence u n til a su b stan ce p ro d u c ed by th e cells them selves, w hich is capable o f co n v ertin g n o n -c o m p e ten t cells in to co m p ete n t ones, is accu m u lated . T his w as found to be tru e a n d a fa cto r prov o k in g com petence w as discovered in sterile su p e r­

n a ta n ts o f tran sfo rm ab le a n d co m p ete n t strep to co ccal cultures.

B efore th e c h a ra c te riz a tio n o f th is factor, it has to be m en tio n ed th a t, u n d e r n a tu ra l conditions, com petence o f streptococci develops only in m edia su p p lem en ted w ith e ith e r serum or album in. I n th e absence o f th ese s u b sta n c ­ es tra n sfo rm a tio n does n o t occur or, if p resen t, is ex tre m ely low. T h e onset o f com petence, th e period o f its d u ra tio n a n d th e tim e o f its d isap p earan ce are s tric tly d e p e n d e n t on th e size o f th e in itia l inoculum in th e culture. T he sm aller th e inoculum th e la te r th e a p p e ara n ce o f com petence. T hus, th e conversion to com petence o f th e n o n -c o m p e ten t b a c te ria w ith th e use o f th e pro v o k in g fa cto r can be d e m o n stra te d in tw o different conditions: (1) in cu ltu re s grow n in th e absence o f serum or album in, (2) in cu ltu re s grow n in m edia co n tain in g serum or album in. As for th e second condition, th e c u ltu re is s ta rte d w ith a sm all a m o u n t o f initial inoculum an d th e cells are exposed to th e actio n o f th e prov o k in g fa cto r fo r 2 h before n a tu ra l com pe­

ten ce can be expected.

In all experim ents, ex c ep t one, th e first m eth o d o f com petence p ro v o c a­

tio n was applied. T h e m ark e r used in th e tra n sfo rm a tio n ex p e rim en ts was strep to m y cin -resista n ce.T h e recipients an d donors w ere g roup H h aem olytic streptococci a n d stra in s o f Streptococcus sanguis, T y p es I, I I a n d I / I I reg ard ed to be closely re la te d to g roup H streptococci. S tra in s of S . sanguis, T y p e I / I I sh are th e C -polysaccharide ch a rac te ristic s o f g roup H streptococci.

W ith th e fa c to r prov o k in g com petence available, th e follow ing p ro ced u re o f tra n sfo rm a tio n was developed. B a c te ria grow n in th e absence o f serum or alb u m in for 2 h w ere exposed to th e ac tio n o f th e p rovoking fa cto r. A fte r 30 m in, th e cells w ere sp u n down, th e s u p e rn a ta n t co n tain in g th e prov o k in g fa c to r discarded, th e cells suspended in fresh m edium , exposed to th e actio n

3 Symp. Biol. Hung. 6 33

Ábra

TABLE  I C a tegory P o in t-m u ta n ts D e le tio n s D e fin itiv e p ro p e r tie s f  re v e rs io n   r a t e   ^   I0 ~ 8 l   m a p   a t   a   p o in t N o  d e te c ta b le   re v e rsio n   F a il  to   re c o m b in e   w ith   e a c h   o f tw

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

This dissertation deals with class number problems for quadratic number fields and with summation formulas for automorphic forms.. Both subjects are important areas of

Essential minerals: K-feldspar (sanidine) > Na-rich plagioclase, quartz, biotite Accessory minerals: zircon, apatite, magnetite, ilmenite, pyroxene, amphibole Secondary

Folin-Ciocalteu method was performed to visualization of total phenolic compounds (TPC) and the ferric reduction antioxidant power (FRAP) method to quantify antioxidant activity

Our results show dielectric measurement is a suitable method to detect the changes in the soluble organic matter content, since there is a strong linear correlation between

My results verified that measuring dielectric parameters (especially dielectric constant) is a proper and easy way to detect the chemical change of the biomass

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of