• Nem Talált Eredményt

Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance"

Copied!
6
0
0

Teljes szövegt

(1)

ColloidsandSurfacesA:Physicochem.Eng.Aspectsxxx (2013) xxx–xxx

ContentslistsavailableatSciVerseScienceDirect

Colloids and Surfaces A: Physicochemical and Engineering Aspects

j ou rn a l h o m e pag e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f a

Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance

E. Tombácz

a,∗

, I.Y. Tóth

a

, D. Nesztor

a

, E. Illés

a

, A. Hajdú

a

, M. Szekeres

a,∗

, L.Vékás

b

aDepartmentofPhysicalChemistryandMaterialsScience,UniversityofSzeged,Hungary

bCenterofFundamentalandAdvancedTechnicalResearch,RA-TD,Timisoara,Romania

h i g h l i g h t s

Organic acids either stabilize or destabilize oxide nanoparticles in naturalwaters.

The stabilizing/destabilizing effect dependsonpH,salinityandorganic concentration.

Specificconfigurationof carboxylic groupsisnecessarytosurfacecom- plexation.

Surfacecomplexationleadstohigh- affinityadsorptionisotherms.

Higher molecular weight organic acids provide better stability than smallerones.

g r a p h i c a l a b s t r a c t

a r t i c l e i n f o

Articlehistory:

Received1October2012

Receivedinrevisedform15January2013 Accepted18January2013

Available online xxx

Keywords:

Carboxylatedmagnetitenanoparticles Smallandmacromolecularorganic polyacids

Adsorption

Nanoparticlestabilization Overcharging

a b s t r a c t

TheadsorptionofdifferentorganicacidsandtheirinfluenceonthepH-dependentcharging,salttol- eranceandsothecolloidalstabilityofmagnetitenanoparticlesarecompared.Adsorptionisothermsof citricacid–CA,gallicacid–GA,poly(acrylicacid)–PAA,poly(acrylic-co-maleicacid)–PAMandhumic acid–HAweremeasured.ThepH-dependentchargestateofMNPswascharacterizedbyelectrophoretic mobilityandtheiraggregationbydynamiclightscattering.Thesalttolerancewastestedincoagulation kineticexperiments.Althoughtheadsorptioncapacities,thetypeofbonding(eitherH-bondsormetal ion-carboxylatecomplexes)andsothebondstrengthsaresignificantlydifferent,thefollowinggeneral trendshavebeenfound.SmallamountoforganicacidsatpH<∼8(thepHofPZCofmagnetite)–relevant conditioninnaturalwaters–onlyneutralizesthepositivecharges,andsopromotestheaggregationand sedimentationofnanoparticles.Greateramountsoforganicacid,abovethechargeneutralization,cause thesignreversalofparticlecharge,andathighoverchargingpromotestabilizationanddispersing.The thickerlayerofPAA,PAMandHAprovidesbetterelectrostericstabilitythanCAandGA.GAundergoes surfacepolymerization,therebyimprovingstabilization.Theorganicacidsstudiedhereeliminatecom- pletelythepHsensitivityofamphotericmagnetite,butonlythepolyanioniccoverageprovidessignificant increaseinresistanceagainstcoagulatingeffectsofsaltsatneutralpHcommonlyprevailinginnatural waters.

© 2013 Elsevier B.V. All rights reserved.

Correspondingauthorsat:DepartmentofPhysicalChemistryandMaterialsSci- ence,UniversityofSzeged,Aradivt.1,H-6720Szeged,Hungary.Tel.:+3662544212;

fax:+3662544042.

E-mailaddresses:tombacz@chem.u-szeged.hu(E.Tombácz), szekeres@chem.u-szeged.hu(M.Szekeres).

1. Introduction

Inaqueousmedium,thecolloidalstabilityofdispersed mag- netitenanoparticlesasan exampleof environmentallyrelevant metaloxidesdependssensitivelyonnotonlythepH,butalsothe amountoforganicacidsoccurringmainlyinsurfacewaters.These 0927-7757/$seefrontmatter© 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.colsurfa.2013.01.023

(2)

2 E.Tombáczetal./ColloidsandSurfacesA:Physicochem.Eng.Aspectsxxx (2013) xxx–xxx

organiccompoundscanmodifythesurfacechargepropertiesof magnetiteentirelyorpartiallydependingontheirchemistryand amountsadsorbed.

Themacromolecularhumicacids(HA)areanimportantfraction ofthenaturalorganicmatter(NOM)[1].Thesyntheticpolyacrylic acid(PAA)isoftenstudiedasHAanaloguemacromolecularcom- pound.Theycontainmainlycarboxylicacidicgroups,similarlyto thecitricacid(CA).Thenaturalhumicmacromoleculeshowever, have aromatic ringsbesides aliphaticparts of carbon skeleton, andsophenolicgroupshavetobealsoconsideredamongacidic functions[2].Gallicacid(GA)isoneofthecommonaromaticcom- poundshavingboth carboxylicandphenolic groups.It isfound frequentlyintheesterbondsoccurringinseveralnaturalantioxi- dantssuchasflavonoidsandgreentea,orasafreeacidreleased intotheenvironment. GA isa labile compound, it polyconden- satesspontaneouslyunderneutralpHconditions,especiallyinthe presence ofmineral particles [3].HA is ableto formappropri- atestabilizinglayeronmetaloxideparticles due toitsspecific affinitytometalions andpolyionic character[4,5].Besidesour severalyears’experiencewithaqueoussolutionsofhumicacids, theirinteractionwithmagnetite(Fe3O4,magneticironoxide)has beenalsostudied[6,7].TheCA,PAAandPAMinteractionswith magnetitenanoparticleshavebeenrecentlyinvestigated[8,9,16].

Besidestheirenvironmentalrelevance,theseareimportantfrom biomedicalapplicationpointofview.Althoughmagnetitenanopar- ticles can be easily prepared by co-precipitation of Fe(II) and Fe(III) salts in an alkaline solution, different coating layers on thesurfaceofparticleshavetobedevelopedtopreventparticle aggregationandtoimprovetheircolloidalandchemicalstability [10].Surfactantsareoftenusedtodispersenanoparticlesentirely inan appropriatemedium. Coatingof single-domainmagnetite nanoparticles(typical sizeof about10nm) withadouble layer ofsurfactants in anaqueousmedium resultsin stablecolloidal dispersions[11].Thecoverageofparticleswithadsorptionlayer providesenhancedresistanceagainsttheparticleaggregation.In aqueousmedium,electrostatic,stericorcombined(i.e.,electros- teric)stabilizationlayerscandevelop[5,12,13].Thethickercoating providesbetterstability[14].Magnetitenanoparticleswerestabi- lizedwithCAasawell-knowncomplexantof Fe OHsurfacesites [8,15],naturalpolycarboxylicacidHA [6,7,8]andartificialpoly- merspolyacrylicacid(PAA)andpoly(acrylic-co-maleic)acid(PAM) [9,16].

InthisworkweshowhowthepHsensitivityofamphotericmag- netitecanbeeliminatedandasignificantincreaseintheresistance againstsalt canbereachedbycoating ironoxidenanoparticles withtheabove polyanionicacids. Thebinding of thepolyacids tomagnetitesurfacewasstudiedinadsorptionexperimentsand thechargingandaggregationoftheparticlesinelectrokineticand dynamiclightscatteringmeasurements.Wecomparedtheeffectof theadsorptionofthedifferentorganicacidsonthepH-dependent charging,salttoleranceandsothecolloidalstabilityofmagnetite nanoparticles.Someoftheresultsusedherecanbefoundinourear- lierpublications[6–9,16],togetherwiththedetaileddiscussionson themechanismsofadsorption.Therefore,wedonotintendtogo intothosedetails,butweuseourearlierconclusionstosupport thefindingsofthepresentcomparativestudyonthestabilizing efficienciesofsmallandlargemolecularorganicacids.

2. Experimental

2.1. Materials

Syntheticmagnetite(Fe3O4)waspreparedbyalkalinehydroly- sisofiron(II)-andiron(III)-salts.Themethodwasusedtoprepare superparamagneticmagnetitewithparticlesizebelow10nm.The

detailsofpreparationandthecharacterizationofmagnetiteitself canbefoundinthepaperspublishedbefore[7,17,18,19].

Reagent grade citric acid(CA) and gallic acid(GA), and the polyelectrolytes polyacrylic acid (PAA, Mw=1800DA) and poly (acrylic-co-maleic)acid(PAM,Mw=3000DA,50wt.%inH2O)were purchasedfromSigma–Aldrich.

Humicacid(HA)wasobtainedfrombrowncoal (Tatabánya, Hungary)byatraditionalalkalineextractionprocedureusing0.1M NaOHsolution.TheashcontentofrawHAwasreducedbyHF/HCl treatmentbelow 1%.The dried, ground HA wasextracted with benzene/ethanol in a Soxhlet apparatusfor 72hto remove tar components.Na–humate solutionwaspreparedfrom thedried HAsampledissolvedinacalculatedamountofNaOHequivalent tothetotal acidityof HA measuredbypotentiometric titration [6].Theamountofhumicacidsinmolescannotbegiven,because themolecularweightofthesenaturalmaterialsisundefineddue totheirpolydisperseand fractalnature[1].Because mainlythe acidicfunctionalgroups(carboxylandphenolicOH)takepartin thecomplexationreactionsandadsorptionprocesses,itisstraight- forwardtoexpresstheamountofHAinrelationtotheamount ofthesegroups.Thewholeamountoftheacidic groupsrelated totheunitmassofHA(i.e.,thetotalacidityofthesample)was 3.5mmol/g,whichwasusedtogivetheconcentrationofHAsolu- tionsinmmol/Lunit.Theamountoftheothertwopolyelectrolytes PAAand PAM(Mw3000Da forboth)wasrelated tothenum- berofcarboxylicgroupsinthemonomerunits: COOH/AA=1and COOH/AM=3.Themolarweightsofthemonomersare72(AA) and 188(AM)g/mol. We did notuse theamountof carboxylic groupstoexpressconcentrationinthecaseofsmallmoleculesCA andGA,becausetheirmolecularweightisexactanditallowstoget aclearmolecularpictureoftheinteractions.

NaCl,HCl and NaOH,usedtosetthe pHand ionicstrength, wereanalyticalgradeproductsofReanal(Hungary).Milli-Qwater wasused.Allexperimentswereperformedatroomtemperature (25±1C).

2.2. Methods 2.2.1. Adsorption

TheadsorptionisothermsofthepolyacidsatpH6andcon- stantsaltconcentrationof0.01MNaClweredeterminedbybatch method.Themagnetitesuspensions(1–20g/L)wereequilibrated withtheseriesofpolyacidsolutionsupto10mmol/Lconcentra- tionin closed testtubes for 24hat roomtemperature.ThepH wasadjustedto6.5±0.1byaddingsmallportionsofeitherNaOH orHClsolutionsandcheckedafteradsorptiontimefor24h.The equilibrium concentrations were determined by measuringthe absorbanceofsupernatantsat260nm(GA),450nm(HA)orthe differentialabsorbanceat223and250nm(PAAandPAM)inan USB4000spectrometer(OceanOptics)afterperfectseparationof thesolidparticlesbycentrifugingat13000rpmfor1h.Athigher polyacidconcentrationstheseparationwasassistedbyaperma- nentmagnetandmembranefiltration(0.22␮mMILLEX-GP).The equilibrium concentration of CAwas determined bycerimetric titrationusingferroinindicator[15].

2.2.2. Electrophoreticmobilitymeasurement

Electrophoreticmobilitiesofthepure(naked)andthepolyacid coatedmagnetitesamplesweremeasuredat25±0.1Cinadispos- ablezetacell(DTS1060)ofNanoZS(Malvern,UK)apparatus.The settingsoftheinstrumentwerecheckedbymeasuringastandard latexsamplewiththezetapotentialof55±5mV.Themeasure- mentswereperformedunderoptimalscatteringcondition(105 countspersecond)applyingeither0.05or0.1g/Lmagnetitecon- tentdependingontheaggregationstateofthedispersions.The rangeofpHwasbetween3and10.Themeasurementswere

(3)

E.Tombáczetal./ColloidsandSurfacesA:Physicochem.Eng.Aspectsxxx (2013) xxx–xxx 3

startedafteronehourequilibrationtime.Inoneseriesofexperi- mentstheeffectoftheaddedamountsofpolyacids(expressedas theamountsofacidicgroupsforHA,PAAandPAM)upto0.6mmol relatedto1gmagnetitewasmeasuredatpH6.Then, thepH- dependencewasinvestigatedinthepresenceofvariousselected amountsofpolyacidsrangingfrom0.05to1.8mmol/g.Theexper- imentswereperformedatconstantionicstrengths0.005M(CA), 0.002M(HA)and0.01M(GA,PAAandPAM)setbyNaCl.

2.2.3. Particlesizing–dynamiclightscattering(DLS)

Measurements were performed using a NanoZS apparatus (Malvern, UK) with a He-Ne laser (=633nm), operating in backscatteringmodeatangle173.Thestocksolofmagnetitepar- ticles wasdilutedwithNaCl electrolyteto achieve 0.1g/L solid content.ThepHofthesystemswasadjustedintherangeof3–10, measureddirectlybeforeplacingthesampleinthemeasuringcell.

ThepH-dependentparticleaggregationwasmeasuredatconstant ionicstrength,0.005M(CA),0.002M(HA)and0.01M(GA,PAAand PAM),setbyNaCl.Thestabilizingeffectoftheadsorptionofpoly- acidswasinvestigatedatdifferentaddedamountsofthemsimilarly tothatintheelectrophoreticmobilitymeasurements.Allmeasure- mentswereperformedatagivenkineticstateachievedby10sof ultrasonicationfollowedby110sofrelaxation.Theaverageval- uesofthehydrodynamicdiameterwerecalculatedfrom3rdorder cumulantfitsofthecorrelationfunctions.

2.2.4. Coagulationkineticmeasurement

Thesalt tolerance ofstabilized magnetite nanoparticleswas tested in coagulation kinetic measurements by using Zetasizer 4 (Malvern, UK) apparatus. NaCl concentration was changed graduallyfrom0mMto1000mMatpH6.Themagnetitesolcon- centrationtoachieveoptimumscatteringanddiffusionconditions was0.0025g/L.TheDLSmethodwasusedtofollowthesizeevolu- tionofaggregatesintime.Thecoagulationratewascalculatedfrom theslopeofkineticcurvesasexplainedbefore[7,12].Thestability ratio(W)wascalculatedfromtheinitialslopesofkineticcurves belongingtotheslowandfastcoagulationassuggestedinlitera- ture[20,21].Toensuretheonsetoffastcoagulationregime,atleast threedifferent,instantlycoagulatingconcentrationsofNaClwere applied.Thecriticalcoagulationconcentration(CCC)wasdeter- minedfrom thelog10W versuslog10cNaCl (NaCl concentration) function.Ina typicalexperiment,changes inthehydrodynamic diameter(Z-averagevalues,Zave)weremonitoredforanhourwith atimeresolutionof2min.

3. Resultsanddiscussion

3.1. Adsorptionofcarboxylicacidsonmagnetitenanoparticles Theadsorptionisothermsofthedifferentlowandhighmolecu- larweightcarboxylicacidsareseeninFig.1.Theadsorbedamounts representmmolesofCAorGApergofMNP,andmmolesof COOH groupspergofMNPforthepolyelectrolytes,andthusonlythefea- tureoftheisothermsisdirectlycomparable.Alltheisotherms,with theexceptionofPAA,areofH-type,meaningthattheadsorption isofhighaffinity.Thisisexplained[22]byeitherthecooperative interactionsoccurringbetweenthemanyfunctionalgroupsofthe macromoleculesandthesurfacesitesoftheMNPsortheintrin- sichighaffinityoftheindividualcarboxylgroupstothesurface sites.Wehaveproventheformationofdirectmetal–carboxylate surfacecomplexesinthecaseofCA,PAMandHA[6,8,15,16],and onlyH-bondinginthecase ofPAA [9].Theresultssuggestthat surfaceFe–carboxylatecomplexbondscanformwhen thegeo- metricarrangementoftheneighboringcarboxylgroupsmatches thedistancebetweensurface Fe–OHsites.Wehavefoundthat carboxylicgroupsbelongingtoneighboring carbonatomsinCA

0 0.2 0.4 0.6 0.8 1

0 1 2 3 4

Amount adsorbed, mmol/g

Equilibrium concentration, mmol/L pH ~ 6 -6.5

0.01 M NaCl

CA HA

PAA

GA PAM

0 0.4 0.8

0 0.05 0.1 0.15

HA

Fig.1.Adsorptionisothermsofcarboxylicacidsonmagnetitenanoparticlesmea- suredatpH6–6.5and0.01Mionicstrength.TheenlargementoftheHAisotherm isseenintheinset.(Theamountofthemacromolecularpolyacids(HA,PAAand PAM)wasrelatedtothemolesofacidicgroups.Thelinesaredrawntoguidethe eyes.)

andinthecarbonbackboneofPAMandHAcantakepartinsuch interaction.TheneighboringcarboxylatesinPAAbelongtoevery secondCatomofthebackboneofpolyacidchain,ageometrically unfavorableconditionforFe–carboxylateformation.

InthecaseofGA,thehighadsorptionaffinitycanresultfrom

␲–electroninteractionswiththepolarsurfaceoftheMNPs,aswell asfromcomplexbondformationat Fe–OHsiteswiththepartici- pationoftwoneighboringphenolicOHgroupsofGA[23].Itshould benotedthatalthoughtheshapeofthePAA,CAandGAisotherms maylooksomewhatsimilaratlowequilibriumconcentrations,the high-affinitypartisdefinitelyabsentfromthePAAisotherm.The latterisaclearindicationthatthemechanismofPAAadsorptionis differentfromthatofCAandGA.TheadsorptionofPAA,PAMand HAreachesdefiniteplateauregionattheadsorbedamountsof0.6 [9],0.9[16]and0.85mmol/g,respectively.Thefullisothermsof PAAandPAMadsorption(uptotheirequilibriumconcentrationof 8and7mmol/L,respectively)areseeninRefs.[9]and[16].On thecontrary,oncethehigh-affinityadsorptionlimit(0.1mmol/g) hasbeenexceeded,theadsorptionofbothCAandGAincreases linearlywithoutlevelingoffataplateauvalue.Thelinearincrease intheadsorbedamountsisprobablyconnectedwiththepolymer- izationofthemoleculesintheadsorptionlayer.Itiswellknown thatGApolymerizeseasilyinsolution[24].Afteritsadsorption,the polymerizationcontinueswithanevengreaterrateatthesurface aswell[3].RegardingthelinearpartoftheCAisotherm,ourpre- liminarystudiesclearlyindicatetheappearanceofC Ovibrations intheFTIRspectrabelongingtoestergroups;theresultsbeingpub- lishedinaforthcomingpaperontheadsorptionmechanismofCA andGA.

3.2. Theeffectofdifferentorganicacidsonparticlechargeof magnetite

The addition of carboxylic acids to the MNP dispersions at pH6.5andI=0.01Mhadapronouncedeffectontheelectrokinetic potentialoftheparticles,asseeninFig.2.Duringtheadsorption, thepolyacidsCA,HA,PAMandPAAtakenegativechargestothe surfaceinexcessofthatnecessarytoneutralizetheoriginalpos- itivechargesofthemagnetiteatthegivenpHandionicstrength.

Theamountofcarboxylicacidsatthepointofchargeneutralization (thezerovalueoftheelectrokineticpotential,akindofisoelectric

(4)

4 E.Tombáczetal./ColloidsandSurfacesA:Physicochem.Eng.Aspectsxxx (2013) xxx–xxx

Fig.2. Effectoftheadditionofcarboxylicacidsontheelectrokineticpotentialofthe MNPs,measuredatpH6–6.5,andatI=0.01M.(Theamountofthemacromolecular polyacids(HA,PAAandPAM)wasrelatedtothemolesoftheiracidicgroups.The linesaredrawntoguidetheeyes.)

point– IEP)isnearlythesameforallthefourmacromolecularpoly- acids;thesmalldeviationsarewithintheinaccuracyrangeofthe measurements(±5mV,Section2.2.2).Accordingtoourconception, theseamountsaretheactualmolesof COOgroupslinkingthe polyacidstothesurfacesites.Furtheradsorptionofthepolyions inexcessofsurfacechargeneutralizationcauseschargereversalof particles.AdditionofGA,amonocarboxylicacid,shouldnotinduce chargereversal,ifthecarboxylicgroupbecomescoordinatedor electrostaticallyattachedtothesurface.Thechangesintheelec- trokineticpotentialofMNPswithincreasingGAadsorptionarevery similartothatofthepolyacids,meaningthatGAadsorptionneu- tralizesandoverchargestheMNPs.Thissinglefactshowsthatthe carboxylicgroupsofGAarenotinvolveddirectlyinGAbonding toMNPs,whichisinlinewiththefindingsinRef.[23].Theelec- trokineticpotentialoftheGA-coatedMNPschangeswithtime,as itispresentedinFig.3.Thisuniquebehaviorindicatesthatsurface polymerizationofGAproceeds,leadingtotheincreasingthickness ofthecoatingshellandthedecreasingabsolutevaluesofelectroki- neticpotential.Wewillgiveadetailedanalysisoftheadsorption, surfacepolymerizationandstabilizingeffectofGAonMNPsina forthcomingpublication.

We have alsostudied thestability of thedispersions in the functionof the added amountof the carboxylic acids bymea- suring thesize of the primary particles and aggregates in DLS

Fig.3.Time-dependenceoftheelectrokineticpotentialofGA-coatedMNPs.(The linesaredrawntoguidetheeyes.)

experiments.The resultsshowthatMNPs aggregateat pH6.5 and0.01Mionicstrengthandthehydrodynamicdiameterofthe aggregatesis300nm.Thesizeoftheaggregatesincreaseswith additionofsmallamounts(0.1–0.2mmol/g)ofcarboxylicacidsup tod1000orevento2000nm.Largeramountsofeachpolyacid decreasethehydrodynamicdiameterdowntothesizeofthepri- maryMNPs(around100nm)measuredfortheuncoatedparticlesat pH<5,wellbelowtheIEPofnakedMNPs(pH8[8]).Thus,allcar- boxylatedcoatingscanstabilizetheindividualMNPsatthemost commonpHsgenerallyprevailinginenvironmentalwaters.

3.3. Theeffectofsmallandmacromolecularorganicacidcoating onthepH-dependentchargestateandaggregationofmagnetite

Wehaveexaminedthestabilizingeffectofthedifferentcar- boxylicacidsintermsofthebreadthofthepHrange,inwhichthe coatednanoparticlesaredispersedindividuallyinacolloidallysta- blestate.AsitisseenontheleftsideinFig.4,theIEPofMNPsshifts frompH8tolowerpHvaluesuponadditionof0.1mmol/gofall carboxylicacids.Attheirhigheraddedamounts(1.2–1.8mmol/g, rightsideinFig.4)theelectrokineticchargeofthecoatedparticles wasprincipallynegativeinthewholerangeofpHstudiedhere.In thepresenceofthesmallmoleculesCAandGA,theIEPshiftedto pH3,andsothepH-rangeoftheirstabilityisnarrowerthanthatof thepolyacids.Thesizeoftheparticles(individualandaggregated) wasmeasuredinDLSexperimentsinparallelwiththeelectroki- neticpotentialmeasurements,tosupportthataggregationoccurs neartheIEPs.

ThepH-rangesofaggregationareshowninTable1togetherwith theIEPvalues.TheresultsshowthatthepH-dependentstability shiftsinparallelwithIEPineachcase,thedifferencesareonlyin theamountsthatcancompletelymasktheoriginalamphotericfea- tureofmagnetite.Inaddition,smalldeviationhasbeenfoundin theaveragehydrodynamicsizesofparticlescoveredbydifferent organicacidsduetothedifferenceinthestructureandthicknessof theadsorbedlayers.Highmolecularweightpolyelectrolytesgen- erallyledtolargervaluesofhydrodynamicdiameterthansmaller molecules,forexample,150nmforPAAandPAM[16,19],ascom- paredto100nmforCAandGAstabilizedsystems,measuredin dynamiclightscatteringexperiments.

3.4. Salttoleranceofdifferentcarboxylatedmagnetite nanoparticles

SalttoleranceoftheMNPscoatedwithdifferentamountsof carboxylicacidswasmeasuredatpH6.5incoagulationkinetics experiments.We observedthat thecriticalcoagulation concen- tration(CCC)of thecoagulating NaClelectrolyteincreases with increasingamountofcarboxylicacid,iftheIEPoftheactualcar- boxylicacidcoatedMNPislowerthanpH6.5.Inthecasethat theaddedamountofcarboxylicacidsisinsufficienttodecreaseIEP wellbelowpH6.5,theCCCdoesnotincreasecomparedtothatof thenakedMNPs.Atlowcoverage,thepartiallycovered(i.e.,deco- rated)particlescanaggregatebecauseoftheelectrostaticattraction betweentheoppositelychargeduncoatedandcoatedpatcheson theparticlesurfaces[7,25].ThehighestattainedvaluesofCCCand therespectiveamountsofaddedpolyacidsarecollectedinTable2.

ItisseenthatthesmallmoleculesCAandGAcannotstabilizethe MNPsatneutralpHtoresisthighersaltconcentrations,despitethe approximatelyidenticalvaluesofelectrokineticpotentials(within therangeof−35–−55mVatpH6.5,rightsideofFig.4).Onthe contrary,thethickercoatingshellspreparedwithmacromolecular polyelectrolytesPAA,PAM,HAandthesurfacepolymerizedPGA enhancethesaltresistanceequallyuptoCCC500mM.

It is worth mentioning that there are hardly any publica- tions giving CCC values for colloidalparticles, relevant for the

(5)

E.Tombáczetal./ColloidsandSurfacesA:Physicochem.Eng.Aspectsxxx (2013) xxx–xxx 5

Fig.4. ShiftinginthevaluesoftheelectrokineticpotentialoftheMNPsduetotheadditionofsmall(leftside)andlarge(rightside)amountsofcarboxylicacids,measured atdifferentpHsandatI=0.01M.(Thelinesaredrawntoguidetheeyes.)

Table1

EffectofthequalityandaddedamountsofcarboxylicacidsontheIEPandthepH-rangeofaggregationofMNPs.

Carboxylatedcoatingagents Addedamounta(mmol/g) pHofIEP pH-rangeofaggregation

CA 0.13 6.0 4.5–9.5

0.65 3.0 <4.5

GA 0.02 6.8 <9

0.1 4.8 <7.5

0.6 4.2 <6

1.8 2.7 <5.2

PAA 0.1 6.5 4–7

0.48 3.8 3.5–5.5

1.15 3.0 <3.5

PAM 0.1 6.2 3.5–8.5

0.47 3.5 <5

1.3 2.5 <3.5

HA 0.08 4.3 3.5–8.5

1.54 3.2 <3

aTheaddedamountofHA,PAAandPAMwasrelatedtothemolesoftheiracidicgroups.

magnetite/polyelectrolytesystemsstudiedhere.InthepaperofHu etal.[26]theCCCvalueofmagnetitenanoparticlesisgiveninthe presenceof20mg/gofhumicacidatpH9.8as125.5mM(NaCl).

AtthishighpH,themagnetiteitselfhadconsiderableelectrostatic stability withCCC=23.8mM NaCl (for comparison, CCC=1mM NaClatpH6.5inourexperiments)andthechargeofbothMNPs andHAisnegative.Correspondingly,theadsorbedamountofthe humate mustbe low, i.e.,restricted tothespecific effects only (e.g.,Fe–carboxylatesurfacecomplexformation),whicharehardly affectedbypH.Ofcourse,theprobabilityofclosecontactofHA carboxylatesand Fe OHgroupsonMNPsurface,thusthechance ofcomplex formation,is reduced bytheincreased electrostatic repulsionat pH9.8.Unfortunately, theauthorsdidnotprovide adsorptiondata.Nevertheless,evenunderelectrostaticallyunfa- vorableconditions,thestabilizingeffectofHAonMNPshasbeen shown.

Table2

CCCvaluesofuncoatedandcoatedMNPs,measuredatpH6.5.

Polyacids@MNP Addedamounta(mmol/g) Approx.CCCNaCl,(mM)

NakedMNP 0 1

CA@MNP 0.3 70

GA@MNP 2 20b

PAA@MNP 1.12 500

PAM@MNP 1.18 500

HA@MNP 1.5 500

PGA@MNP 2 500c

aTheaddedamountofHA,PAAandPAMwasrelatedtothemolesoftheiracidic groups.

bMeasuredafter1hstanding.

c Measuredafter2weeksstanding(whileGAsurfacepolymerizationtookplace).

7. Conclusion

The colloidal stability of magnetite as an example among the environmentally relevant iron oxides dispersed in aqueous medium depends sensitively on not only the pH,but also the amountoforganicacidssuchashumicacidsoccurringmainlyin surfacewaters.Thesepolyanionicorganiccomplexantscanmodify thesurfacechargepropertiesofmagnetiteentirelyorinacertain degreedependingontheiramountadsorbed.

Theadsorptionofdifferentorganicacidsanditseffectsonthe pH-dependentcolloidalstabilityandsalt toleranceofmagnetite nanoparticleswerestudied.Theadsorbedamountsweregivenin themolaramountof acidicgroups perunit mass ofiron oxide formacromolecularacidsHA,PAA,PAMandPGA.Thisapproach madethequantitativecomparisonoftheamountsofacidicgroups of large organicacids (both thewell, and the undefined poly- electrolytes) in the adsorbedlayer withthe amountof surface chargeof magnetitepracticable.Thus, thecharge neutralization andchargereversalcouldbeinterpretedonchemicalbases.The specificchemicalfeatureoftheinteractingpartnershastobecon- sidered,becausechemicalreactionstakeplaceattheelectrified interface,i.e.,thefunctionalgroupsoforganicacidsinteractwith thecharged/unchargedsurfacesitesofmagnetite.Theexactfeature ofthespecificinteractionsdependsdefinitelyonthegeometryof complexinggroupsoforganicmolecules.

Traceamountsoftheorganicacidscandestabilizemagnetite dispersions,while theirhighloadingmaskstheoriginalsurface propertiesofmagnetiteandimprovescolloidalstabilityandsalt toleranceofdispersions.TraceamountsofCA,GA,PAA, PAMor HAonlyneutralizethepositivechargesofmagnetiteatpHlower

(6)

6 E.Tombáczetal./ColloidsandSurfacesA:Physicochem.Eng.Aspectsxxx (2013) xxx–xxx

thanitspHPZC8,andsopromoteaggregationbetweentheparti- cleshavingbothpositivesurfacesitesandnegativepatchescoated bytheorganicpolyanions.Theseconditions,i.e.,fineironoxide particlesdispersedinwaterwithneutralorslightlyacidicpHand onlytraceamountoforganicacidsdissolvedinit,arerelevantin naturalwaters.Inthepresenceofgreateramounts ofpolyacids (abovetheadsorptionsaturation)however,thesurfacecoverage ofmagnetitebecomescompletecausingasignreversalofparticle chargeandoverchargingofnanoparticles.Thethickerlayerofthe macromolecularcoatingshellprovidesbetterelectrostericstabil- itythanthatformedfromthesmallmoleculesofCAorGA.Ithas beenprovedthatthepHsensitivityofamphotericmagnetitecan becompletelyeliminatedbybothsmallandlargemolecularstabi- lizers,butonlythemacromolecularcoverageofparticlesincreases significantlyintheresistanceagainstsaltatneutralpHcommonly prevailinginnaturalwaters.Oneadditionalinterestingfindingis thatapparentlythereisnocorrelationbetweenthestabilizingeffi- ciencyofthecarboxylicacidsandtheconcentrationofthefully dissociatedcarboxylicgroups.

Acknowledgement

ThisworkwassupportedbyOTKA(NK84014)foundation.The financialsupportbytheTÁMOP-4.2.2/B-10/1-2010-0012fundis gratefullyappreciated.

References

[1]E.Tombácz,Colloidalpropertiesofhumicacidsandspontaneouschangesof theircolloidalstateundervariablesolutionconditions,SoilSci.164(1999) 814–824.

[2]E.Tombácz,Effectofenvironmentalrelevantorganiccomplexantsonthesur- facechargeandtheinteractionofclaymineralandmetaloxideparticles,in:S.

Barany(Ed.),RoleofInterfacesinEnvironmentalProtection,KluverAcademic Publishers,Netherlands,2003,pp.397–424.

[3]E. Tombácz, M. Szekeres, L. Baranyi, E. Micheli, Surface modification of clay minerals by organic polyions, Colloids Surf. A 141 (1998) 379–384.

[4]L.Weng,W.H.VanRiemsdijk,L.K.Koopal,T.Hiemstra,Adsorptionofhumicsub- stancesongoethite:comparisonbetweenhumicacidsandfulvicacids,Environ.

Sci.Technol.40(2006)7494–7500.

[5]L.Weng,W.H.VanRiemsdijk,T.Hiemstra,Adsorptionofhumicacidsonto goethite:effectsofmolarmass,pHandionicstrength,J.ColloidInterfaceSci.

314(2007)107–118.

[6] E.Illés,E.Tombácz,Theroleofvariablesurfacechargeandsurfacecomplexa- tionintheadsorptionofhumicacidonmagnetite,ColloidsSurf.A230(2004) 99–109.

[7]E.Illés,E.Tombácz,TheeffectofhumicacidadsorptiononpH-dependentsur- facechargingandaggregationofmagnetitenanoparticles,J.ColloidInterface Sci.295(2006)115–123.

[8]A.Hajdú,E.Illés,E.Tombácz,I.Borbáth:,Surfacecharging,polyanioniccoating andcolloidstabilityofmagnetitenanoparticles,ColloidsSurf.A347(2009) 104–108.

[9]A.Hajdú,M.Szekeres,I.Y.Tóth,R.A.Bauer,J.Mihály,I.Zupkó,E.Tombácz, Enhancedstabilityofpolyacrylate-coatedmagnetitenanoparticlesinbiorele- vantmedia,ColloidsSurf.B94(2012)242–249.

[10] S.C.Pang,S.F.Chin,M.A.Anderson,Redoxequilibriaofironoxidesinaque- ousbasedmagnetitedispersions:effectofpHandredoxpotential,J.Colloid InterfaceSci.311(2007)94–101.

[11]C.Scherer,A.M.FigueiredoNeto,Ferrofluids:propertiesandapplications,Braz.

J.Phys35(2005)718–727.

[12]R.J.Hunter,FoundationsofColloidScience,vol.I,ClarendonPress,Oxford,1987.

[13] M.M.Ramos-Tejada,A.Ontiveros,J.L.Viota,J.D.G.Durán,Interfacialandrheo- logicalpropertiesofhumicacid/hematitesuspensions,J.ColloidInterfaceSci.

268(2003)85–95.

[14]S.Odenbach,Ferrofluids-magneticallycontrolledsuspensions,ColloidsSurf.A 217(2003)171–178.

[15] A.Hajdú,E.Tombácz,E.Illés,D.Bica,L.Vékás,Magnetitenanoparticlesstabi- lizedunderphysiologicalconditionsforbiomedicalapplication,Prog.Colloid Polym.Sci.135(2008)29–37.

[16]I.Y.Tóth,R.A.Bauer,D.Nesztor,M.Szekeres,E.Tombácz,Designedpoly- electrolyteshellonmagnetitenanocorefordilution-resistantbiocompatible magneticfluids,Langmuir28(2012)16638–16646.

[17]L.Vékás,D.Bica,O.Marinica,Magneticnanofluidsstabilizedwithvariouschain lengthsurfactants,Rom.Rept.Phys.58(2006)217–228.

[18]D.Bica,L.Vékás,M.V.Avdeev,O.Marinica,V.Socoliuc,M.Balasoiu,V.M.Gara- mus,Stericallystabilizedwaterbasedmagneticfluids:synthesis,structureand properties,J.Magn.Magn.Mater.311(2007)17–21.

[19] E.Tombácz,E.Illés,A.Majzik,A.Hajdú,N.Rideg,M.Szekeres,Ageinginthe inorganicnanoworld:exampleofmagnetitenanoparticlesinaqueousmedium, CroaticaActaChem.80(2007)503–515.

[20]M.Schudel,S.H.Behrens,H.Holthoff,R.Kretzschmar,M.Borkovec,Absolute aggregationrateconstantsofhematiteparticlesinaqueoussuspensions:acom- parisonoftwodifferentsurfacemorphologies,J.ColloidInterfaceSci.196 (1997)241–253.

[21]R.Kretzschmar,H.Holthoff,H.Sticher,InfluenceofpHandhumicacidoncoag- ulationkineticsofkaolinite:adynamiclightscatteringstudy,J.ColloidInterface Sci.202(1998)95–103.

[22]J.Lyklema,L.Deschênes,Thefirststepinlayer-by-layerdeposition:electrostat- icsand/ornon-electrostatics?Adv.ColloidInterfaceSci.168(2011)135–148.

[23] P.Z.Araujo,P.J.Morando,M.A.Blesa,Interactionofcatecholandgallicacidwith titaniumdioxideinaqueousSuspensions.1.Equilibriumstudies,Langmuir21 (2005)3470–3474.

[24]E.Giannakopoulos,M.Drosos,Y.Deligiannakis,Ahumic-acid-likepolycon- densateproducedwithnouseofcatalyst,J.ColloidInterfaceSci.336(2009) 59–66.

[25]M.Borkovec,G.Papastavrou,Interactionsbetweensolidsurfaceswithadsorbed polyelectrolytesofoppositecharge,Curr.Opin.ColloidInterfaceSci.13(2008) 429–437.

[26] J.-D.Hu,Y.Zevi,X.-M.Kou,J.Xiao,X.-J.Wang,Y.Jin,Effectofdissolvedorganic matteronthestabilityofmagnetitenanoparticlesunderdifferentpHandionic strengthconditions,Sci.TotalEnviron.408(2010)3477–3489.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The noteworthy chemical stability of CSA-coated MNPs, the outstanding pH and salt tolerance of the MFs accompanied by their non-toxicity based on the MTT assays support the

Trace amounts of the organic acids can destabilize magnetite dispersions, while their high loading masks the original surface properties of magnetite and improves colloidal

- On the one hand the British Overseas Territories of the United Kingdom, which are made up of the following areas: Akrotiri and Dhekelia (The Sovereign Base Areas of Cyprus),

In this work, the pH-dependent surface charging of metal oxides due to the spe- cific adsorption of H + / OH − in the presence of indi ff erent and specific ions, and other

– S Z UCS ˝ , A., Surface Characterization of Polyethyleneterephthalate (PET) Based Activated Carbon and the Effect of pH on its Adsorption Capacity from Aqueous Phenol

These differences in the removal capacities of oxMWCNT3h and oxMWCNT6h (observed in the case of Cu(II) and Ni(II), and to a much lesser extent for Cr(VI)) are most likely due to

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the