• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
18
0
0

Teljes szövegt

(1)

volume 4, issue 4, article 66, 2003.

Received 07 April, 2003;

accepted 30 April, 2003.

Communicated by:L. Leindler

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

INCLUSION THEOREMS FOR ABSOLUTE SUMMABILITY METHODS

H. S. ÖZARSLAN

Department of Mathematics, Erciyes University,

38039 Kayseri, Turkey.

EMail:seyhan@erciyes.edu.tr

c

2000Victoria University ISSN (electronic): 1443-5756 046-03

(2)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

Abstract

In this paper we have proved two theorems concerning an inclusion between two absolute summability methods by using any absolute summability factor.

2000 Mathematics Subject Classification:40D15, 40F05, 40G99 Key words: Absolute summability, Summability factors, Infinite series.

Contents

1 Introduction. . . 3 2 The Main Result . . . 6

References

(3)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

1. Introduction

Let P

an be a given infinite series with partial sums(sn), andrn = nan. By un and tn we denote the n-th (C,1) means of the sequences (sn) and (rn), respectively. The seriesP

anis said to be summable|C,1|k, k ≥1, if (see [4])

(1.1)

X

n=1

nk−1|un−un−1|k <∞.

But since tn = n(un−un−1)(see [7]), the condition (1.1) can also be written as

(1.2)

X

n=1

1

n|tn|k <∞.

The seriesP

an is said to be summable|C,1;δ|k k ≥ 1and δ ≥ 0, if (see [5])

(1.3)

X

n=1

nδk−1|tn|k <∞.

If we takeδ = 0, then|C,1;δ|ksummability is the same as|C,1|ksummability.

Let(pn)be a sequence of positive numbers such that (1.4) Pn =

n

X

v=0

pv → ∞ as n→ ∞, (P−i =p−i = 0, i≥1).

(4)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

The sequence-to-sequence transformation

(1.5) Tn = 1

Pn

n

X

v=0

pvsv

defines the sequence(Tn)of the( ¯N , pn)mean of the sequence(sn), generated by the sequence of coefficients(pn)(see [6]).

The seriesP

anis said to be summable N , p¯ n

k, k ≥1,if (see [1]) (1.6)

X

n=1

Pn pn

k−1

|∆Tn−1|k <∞

and it is said to be summable

N , p¯ n

k,k ≥1andδ ≥0,if (see [3]) (1.7)

X

n=1

Pn pn

δk+k−1

|∆Tn−1|k <∞,

where

(1.8) ∆Tn−1 =− pn

PnPn−1 n

X

v=1

Pv−1av, n≥1.

In the special case when δ = 0 (resp. pn = 1for all values of n)

N , p¯ nk

summability is the same as N , p¯ n

k(resp. |C,1;δ|k) summability.

Concerning inclusion relations between|C,1|k and N , p¯ n

ksummabilities, the following theorems are known.

(5)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

Theorem 1.1. ([1]).Letk ≥ 1and let(pn)be a sequence of positive numbers such that asn → ∞

(1.9) (i) Pn =O(npn), (ii) npn =O(Pn).

If the seriesP

anis summable|C,1|k,then it is also summable N , p¯ n

k. Theorem 1.2. ([2]). Let k ≥ 1 and let (pn) be a sequence of positive num- bers such that condition (1.9) of Theorem1.1is satisfied. If the series P

anis summable

N , p¯ n

k,then it is also summable|C,1|k.

(6)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

2. The Main Result

The aim of this paper is to generalize the above theorems for |C,1;δ|k and

N , p¯ n

ksummabilities, by using a summability factors. Now, we shall prove the following theorems.

Theorem 2.1. Let k ≥ 1and0 ≤ δk < 1. Let(pn)be a sequence of positive numbers such thatPn =O(npn)and

(2.1)

X

n=v+1

Pn pn

δk−1

1 Pn−1

=O (

Pv pv

δk

1 Pv

) . Let P

an be summable |C,1;δ|k. Then P

anλn is summable

N , p¯ nk, ifn)satisfies the following conditions:

(2.2) n∆λn =O

Pn npn

1−δkk ,

(2.3) λn=O

Pn npn

1k .

Theorem 2.2. Let k ≥ 1and0 ≤ δk < 1. Let(pn)be a sequence of positive numbers such that npn = O(Pn) and satisfies the condition (2.1). Let P

an be summable

N , p¯ n

k.ThenP

anλnis summable|C,1;δ|k,ifn)satisfies the following conditions:

(2.4) n∆λn =O

npn Pn

1−δkk

(7)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

(2.5) λn=O

npn Pn

1k .

Remark 2.1. It may be noted that, if we takeλn = 1andδ= 0in Theorem2.1 and Theorem 2.2, then we get Theorem 1.1 and Theorem1.2, respectively. In this case condition (2.1) reduces to

m+1

X

n=v+1

pn PnPn−1

=

m+1

X

n=v+1

1 Pn−1

− 1 Pn

=O 1

Pv

as m → ∞,

which always holds.

Proof of Theorem2.1. Since

tn= 1 n+ 1

n

X

v=1

vav

we have that

an= n+ 1

n tn−tn−1. Let(Tn)denote the( ¯N , pn)mean of the seriesP

anλn. Then, by definition and changing the order of summation, we have

Tn= 1 Pn

n

X

v=0

pv

v

X

i=0

aiλi = 1 Pn

n

X

v=0

(Pn−Pv−1)avλv.

(8)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

Then, forn≥1, we have

Tn−Tn−1 = pn PnPn−1

n

X

v=1

Pv−1avλv.

By Abel’s transformation, we have Tn−Tn−1 = pn

PnPn−1 n−1

X

v=1

Pv∆λvv+ 1

v tv− pn PnPn−1

n−1

X

v=1

pvλvv+ 1 v tv

+ pn PnPn−1

n−1

X

v=1

Pv

v λv+1tv+ pn

Pnλnn+ 1 n tn

=Tn,1+Tn,2+Tn,3+Tn,4, say.

Since

|Tn,1 +Tn,2+Tn,3+Tn,4|k ≤4k(|Tn,1|k+|Tn,2|k+|Tn,3|k+|Tn,4|k),

to complete the proof of the theorem, it is enough to show that (2.6)

X

n=1

Pn pn

δk+k−1

|Tn,r|k <∞ for r = 1,2,3,4.

Now, when k > 1, applying Hölder’s inequality with indicesk andk0, where

(9)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au 1

k +k10 = 1, we get

m+1

X

n=2

Pn pn

δk+k−1

|Tn,1|k

m+1

X

n=2

Pn pn

δk−1

1 Pn−1k

n−1

X

v=1

Pvv+ 1

v |tv| |∆λv|

!k

=O(1)

m+1

X

n=2

Pn pn

δk−1 1 Pn−1k

n−1

X

v=1

|tv| |v∆λv| Pv vpvpv

!k

=O(1)

m+1

X

n=2

Pn pn

δk−1

1 Pn−1k

n−1

X

v=1

|tv| |v∆λv|pv

!k

=O(1)

m+1

X

n=2

Pn pn

δk−1

1 Pn−1

n−1

X

v=1

|tv|k|v∆λv|kpv 1 Pn−1

n−1

X

v=1

pv

!k−1

=O(1)

m

X

v=1

|tv|k|v∆λv|kpv

m+1

X

n=v+1

Pn pn

δk−1 1 Pn−1

=O(1)

m

X

v=1

|tv|k|v∆λv|k Pv

pv δk−1

=O(1)

m

X

v=1

vδk−1|tv|k =O(1) as m → ∞.

by virtue of the hypotheses of Theorem2.1.

(10)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

Again using Hölder’s inequality,

m+1

X

n=2

Pn pn

δk+k−1

|Tn,2|k

=O(1)

m+1

X

n=2

Pn pn

δk−1 1 Pn−1

n−1

X

v=1

pv|tv|kv|k 1 Pn−1

n−1

X

v=1

pv

!k−1

=O(1)

m

X

v=1

pv|tv|kv|k

m+1

X

n=v+1

Pn pn

δk−1

1 Pn−1

=O(1)

m

X

v=1

Pv

pv δk−1

|tv|kv|k

=O(1)

m

X

v=1

vδk−1|tv|kv|k

=O(1)

m

X

v=1

vδk−1|tv|k=O(1) as m → ∞, by virtue of the hypotheses of Theorem2.1.

Also

m+1

X

n=2

Pn

pn

δk+k−1

|Tn,3|k

m+1

X

n=2

Pn pn

δk−1

1 Pn−1k

n−1

X

v=1

Pv

v+1| v |tv|

!k

(11)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

=O(1)

m+1

X

n=2

Pn pn

δk−1

1 Pn−1k

n−1

X

v=1

vpvv+1| v |tv|

!k

=O(1)

m+1

X

n=2

Pn

pn δk−1

1 Pn−1

n−1

X

v=1

pvv+1|k|tv|k 1 Pn−1

n

X

v=1

pv

!k−1

=O(1)

m

X

v=1

pvv+1|k|tv|k

m+1

X

n=v+1

Pn pn

δk−1 1 Pn−1

=O(1)

m

X

v=1

|tv|k Pv

pv

δk−1

v+1|k

=O(1)

m

X

v=1

vδk−1|tv|k=O(1) as m→ ∞, by virtue of the hypotheses of Theorem2.1.

Lastly

m

X

n=1

Pn pn

δk+k−1

|Tn,4|k =O(1)

m

X

n=1

Pn pn

δk−1

n|k|tn|k

=O(1)

m

X

n=1

Pn npn

δk−1

n|k|tn|knδk−1

=O(1)

m

X

n=1

nδk−1|tn|k =O(1) as m → ∞, by virtue of the hypotheses of Theorem2.1.

(12)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

This completes the proof of Theorem2.1.

Proof of Theorem2.2. Let (Tn) denotes the( ¯N , pn) mean of the series P an. We have

Tn= 1 Pn

n

X

v=0

pvsv = 1 Pn

n

X

v=0

(Pn−Pv−1)av. Since

Tn−Tn−1 = pn

PnPn−1 n

X

v=0

Pv−1av,

we have that

(2.7) an = −Pn

pn ∆Tn−1+ Pn−2

pn−1∆Tn−2. Let

tn= 1 n+ 1

n

X

v=1

vavλv.

By using (2.7) we get tn= 1

n+ 1

n

X

v=1

v

−Pv

pv ∆Tv−1+ Pv−2 pv−1

∆Tv−2

λv

= 1 n+ 1

n−1

X

v=1

(−v)Pv

pv∆Tv−1λv− nPnλn

(n+ 1)pn∆Tn−1

+ 1 n+ 1

n

X

v=1

vPv−2 pv−1

∆Tv−2λv

(13)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

= 1 n+ 1

n−1

X

v=1

(−v)Pv

pv∆Tv−1λv

+ 1 n+ 1

n−1

X

v=1

(v+ 1)Pv−1

pv ∆Tv−1λv+1− nPnλn

(n+ 1)pn∆Tn−1

= 1 n+ 1

n−1

X

v=1

∆Tv−1

pv {−vλvPv + (v+ 1)λv+1Pv−1} − nPnλn

(n+ 1)pn∆Tn−1

= 1 n+ 1

n−1

X

v=1

∆Tv−1

pv {−vλvPv + (v+ 1)λv+1(Pv −pv)} − nPnλn

(n+ 1)pn∆Tn−1

= 1 n+ 1

n−1

X

v=1

∆Tv−1

pv {−vλvPv + (v+ 1)λv+1Pv−(v+ 1)λv+1pv}

− nPnλn

(n+ 1)pn∆Tn−1

= 1 n+ 1

n−1

X

v=1

∆Tv−1

pv {−(∆vλv)Pv−(v+ 1)λv+1pv} − nPnλn

(n+ 1)pn∆Tn−1

= 1 n+ 1

n−1

X

v=1

−Pv

pv ∆Tv−1{v∆λv−λv+1} − 1 n+ 1

n−1

X

v=1

∆Tv−1(v+ 1)λv+1

− nPnλn

(n+ 1)pn∆Tn−1

(14)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

=− 1 n+ 1

n−1

X

v=1

vPv

pv ∆λv∆Tv−1+ 1 n+ 1

n−1

X

v=1

Pv

pv∆Tv−1λv+1

− 1

n+ 1

n−1

X

v=1

(v+ 1)λv+1∆Tv−1− nPnλn

(n+ 1)pn∆Tn−1

=tn,1+tn,2+tn,3+tn,4, say.

Since

|tn,1+tn,2 +tn,3+tn,4|k ≤4k(|tn,1|k+|tn,2|k+| |tn,3|k+|t4|k), to complete the proof of Theorem2.2, it is enough to show that

X

n=1

nδk−1|tn,r|k <∞ f or r= 1,2,3,4.

Now, when k > 1 applying Hölder’s inequality with indicesk and k0, where

1

k +k10 = 1, we have that

m+1

X

n=2

nδk−1|tn,1|k

m+1

X

n=2

nδk−1 1 nk

n−1

X

v=1

Pv

pvv|∆λv| |∆Tv−1|

!k

m+1

X

n=2

1 n2−δk

n−1

X

v=1

Pv pv

k

|∆λv|kvk|∆Tv−1|k 1 n

n−1

X

v=1

1

!k−1

m+1

X

n=2

1 n2−δk

n−1

X

v=1

Pv pv

k

|∆λv|kvk|∆Tv−1|k

(15)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

=O(1)

m

X

v=1

Pv pv

k

|∆λv|kvk|∆Tv−1|k

m+1

X

n=v+1

1 n2−δk

=O(1)

m

X

v=1

Pv pv

k

|∆λv|kvk|∆Tv−1|k 1 v1−δk

=O(1)

m

X

v=1

Pv pv

δk+k−1

|∆Tv−1|k=O(1) as m→ ∞, by virtue of the hypotheses of Theorem2.2.

Again using Hölder’s inequality,

m+1

X

n=2

nδk−1|tn,2|k

m+1

X

n=2

nδk−1−k

n−1

X

v=1

v+1|Pv pv

|∆Tv−1|

!k

m+1

X

n=2

1 n2−δk

n−1

X

v=1

Pv pv

k

v+1|k|∆Tv−1|k 1 n

n−1

X

v=1

1

!k−1

=O(1)

m

X

v=1

Pv pv

k

v+1|k|∆Tv−1|k

m+1

X

n=v+1

1 n2−δk

=O(1)

m

X

v=1

Pv

pv k

v+1|k|∆Tv−1|k 1 v1−δk

=O(1)

m

X

v=1

Pv pv

)δk+k−1|∆Tv−1|k

=O(1) as m→ ∞,

(16)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

Also, we have that

m+1

X

n=2

nδk−1|tn,3|k

m+1

X

n=2

nδk−1−k

n−1

X

v=1

(v+ 1)|λv+1| |∆Tv−1|

!k

=O(1)

m+1

X

n=2

nδk−1−k

n−1

X

v=1

v|λv+1| |∆Tv−1|

!k

=O(1)

m+1

X

n=2

1 n2−δk

n−1

X

v=1

vkv+1|k|∆Tv−1|k 1 n

n−1

X

v=1

1

!k−1

=O(1)

m+1

X

n=2

1 n2−δk

n−1

X

v=1

vkv+1|k|∆Tv−1|k

=O(1)

m

X

v=1

vkv+1|k|∆Tv−1|k

m+1

X

n=v+1

1 n2−δk

=O(1)

m

X

v=1

vδk+k−1|∆Tv−1|k

=O(1)

m

X

v=1

Pv

pv

δk+k−1

|∆Tv−1|k

=O(1) as m→ ∞, by virtue of the hypotheses of Theorem2.2.

(17)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

Finally, we have that

m

X

n=1

nδk−1|tn,4|k =O(1)

m

X

n=1

Pn

pn k

nδk−1n|k|∆Tn−1|k

=O(1)

m

X

n=1

Pn

pn

δk+k−1

|∆Tn−1|k

=O(1) as m→ ∞, by virtue of the hypotheses of Theorem2.2.

Therefore, we get that

m

X

n=1

nδk−1|tn,r|k =O(1) as m→ ∞, for r= 1,2,3,4.

This completes the proof of Theorem2.2.

(18)

Inclusion Theorems for Absolute Summability Methods

H. S. Özarslan

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of18

J. Ineq. Pure and Appl. Math. 4(4) Art. 66, 2003

http://jipam.vu.edu.au

References

[1] H. BOR, On two summability methods, Math. Proc. Cambridge Phil. Soc., 97 (1985), 147–149.

[2] H. BOR, A note on two summability methods, Proc. Amer. Math. Soc., 98 (1986), 81–84.

[3] H. BOR, On the local property of

N , p¯ n

k summability of factored Fourier series, J. Math. Anal. Appl., 179 (1993), 646–649.

[4] T.M. FLETT, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113–141.

[5] T.M. FLETT, Some more theorems concerning the absolute summability of Fourier series, Proc. London Math. Soc., 8 (1958), 357–387.

[6] G.H. HARDY, Divergent Series, Oxford University Press., Oxford, (1949).

[7] E. KOGBETLIANTZ, Sur les series absolument sommables par la methode des moyannes aritmetiques, Bull. Sci. Math., 49(2) (1925), 234–256.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

2000 Mathematics Subject Classification: Primary 26D15, 46D05 Secondary 46C99 Key words: Grüss’ Inequality, Inner products, Integral inequalities, Discrete

We derive some spectral results relating to corresponding properties with more than two positive numbers.. 2000 Mathematics Subject Classification: 26E60, 26D15 Key words:

Key words and phrases: Multiplicative integral inequalities, Weights, Carlson’s inequality.. 2000 Mathematics

Key words and phrases: Integral inequality, Cauchy mean value theorem, Mathematical induction.. 2000 Mathematics

2000 Mathematics Subject Classification.. it depends only on the behaviour of f in an arbitrarily small neighbourhood of x), and hence the summability of the Fourier series at t = x

In this paper a main theorem on |N, p n | k summability factors, which generalizes a result of Bor [2] on |N, p n | summability factors, has been proved.. 2000 Mathematics

Key words and phrases: Dynamical Systems, Monotone Trajectories, Generalized Jacobian, Variational Inequalities.. 2000 Mathematics

Key words and phrases: Integral expression, Inequality, Mathieu’s series, gamma function, Fourier transform inequality.. 2000 Mathematics