• Nem Talált Eredményt

Supporting Information Conventional or mechanochemically-aided intercalation of diclofenac and naproxen anions into the interlamellar space of CaFe-layered double hydroxides and their application as dermal drug delivery systems

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Supporting Information Conventional or mechanochemically-aided intercalation of diclofenac and naproxen anions into the interlamellar space of CaFe-layered double hydroxides and their application as dermal drug delivery systems"

Copied!
12
0
0

Teljes szövegt

(1)

1

Supporting Information

Conventional or mechanochemically-aided intercalation of diclofenac and naproxen anions into the interlamellar space of CaFe-layered double hydroxides and their application as dermal drug delivery systems †

Márton Szabados,

a,b

Attila Gácsi,

b,c

Yvette Gulyás,

b

Zoltán Kónya,

d,e

Ákos Kukovecz,

d

Erzsébet Csányi,

c

István Pálinkó

a,b

and Pál Sipos

b,f*

aDepartment of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary

bMaterial and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi vértanúk tere 1, Szeged, H-6720 Hungary

cInstitute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös utca 6, Szeged, H-6720 Hungary

dDepartment of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged, H-6720 Hungary

eMTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. tér 1, Szeged, H-6720 Hungary

fDepartment of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720 Hungary

Table S1

Comparative literature for drug release of Mg- and Zn-based LDH solids summarizing the applied kinetic models, n release exponents, and R2 linear correlation coefficients.

Investigated

nanocomposites Intercalation method Kinetic models n R2 References MgAl-LDH−naproxen Co-precipitation Korsmeyer–Peppas 0.9 0.997 Rojas et al., 2014 MgAl-LDH−naproxen Co-precipitation Korsmeyer–Peppas 0.89 0.996 Carriazo et al., 2010 MgAl-LDH−diclofenac /

Eudragit Direct anion exchange Higuchi 0.5 0.995 Ambrogi et al., 2008 MgAl-LDH−diclofenac Direct anion exchange Higuchi 0.5 0.989 Ambrogi et al., 2002 ZnAl-LDH/diclofenac /

Polycaprolactone Direct anion exchange Ritger-Peppas 0.37 0.933 Wang et al., 2019 ZnAl-LDH−diclofenac Direct anion exchange Ritger-Peppas 0.21 0.991 Joy et al., 2017 ZnAl-LDH−diclofenac Direct anion exchange Higuchi 0.5 0.986 Perioli et al., 2011

† This publication is dedicated to the memory of our mentor, friend and colleague, Prof. István Pálinkó, who passed away shortly after the submission of the current manuscript

*corresponding author

sipos@chem.u-szeged.hu (Pál Sipos)

(2)

2

5 10 15 20 25 30 35 40 45 50 55 60

2 theta /

dehydroxylation-rehydration

Intensity /a.u. (32 nm)

87.5% v/v ethanol 12.5% v/v water 75% v/v ethanol 25% v/v water 50% v/v ethanol 50% v/v water 25% v/v ethanol 75% v/v water

400C heat treated CaFe-LDH

LDH Ca2Fe2O5

(35 nm)

(18 nm)

(8 nm)

CaCO3

Fig. S1 X-ray diffractometry patterns of diclofenac anion-intercalated LDH samples intercalated in ethanol-water mixtures of varying compositions (1:1 Fe(III):diclofenac anion molar ratio, 25°C) and the as-prepared LDH after calcination at 400°C.

5 10 15 20 25 30 35 40 45 50 55 60

2 theta /

dehydroxylation-rehydration

LDH

Intensity /a.u.

75C

50C

25C (35 nm)

CaCO3

Fig. S2 X-ray diffraction patterns of solids obtained at varying stirring temperature (1:1 Fe(III):diclofenac anion molar ratio, 25% v/v ethanol-water mixture).

(3)

3

5 10 15 20 25 30 35 40 45 50 55 60

2 theta /

dehydroxylation-rehydration

(35 nm)

(27 nm) (32 nm)

LDH

Intensity /a.u.

1:2 Fe(III):diclofenac anion

1:1 Fe(III):diclofenac anion

2:1 Fe(III):diclofenac anion

CaCO3

Fig. S3 X-ray diffraction patterns of the LDH composites at different Fe(III):diclofenac anion molar ratios (25% v/v ethanol-water mixture, 25°C).

(4)

4

Table S2

Crystal, size, heterogeneity parameters and zeta potential of pristine and organic CaFe-LDH solids (average predominant solvodynamic diameter – Zavg., polydispersity index – PDI, average zeta potential – avg.).

Samples d-value

(nm)x a

(nm)y Zavg. (nm) PDI avg. (mV)

CaFe−NO3-LDH 0.854 0.586 255 ± 60 0.42 −12.9 ± 1.6

co-precipitation LDH−diclofenac 2.291 0.586 1220 ± 330 0.13 −9.5 ± 1.1 direct anion exchange LDH−diclofenac 2.304 0.582 1140 ± 330 0.17 −9.3 ± 2.7 dehydroxylation-rehydration LDH−diclofenac 2.271 0.586 675 ± 185 0.35 −11.5 ± 3.4 mechanochemically-aided intercalation LDH−diclofenac 2.276 0.584 540 ± 170 0.21 −12.4 ± 1.8 co-precipitation LDH−naproxen 1.943 0.586 760 ± 180 0.46 −4.7 ± 1.5 direct anion exchange LDH−naproxen 1.935 0.586 2280 ± 605 0.22 −5.4 ± 3.4 dehydroxylation-rehydration LDH−naproxen 1.926 0.584 2770 ± 760 0.22 −2.5 ± 1.3 mechanochemically-aided intercalation LDH−naproxen 1.902 0.584 3125 ± 585 0.45 −3.9 ± 1.4

x d-value = d001 or the first reflections

y Lattice parameter a is calculated by estimation: a = 2d110

(5)

5

1800 1600 1400 1200 1000 800 600 400 200

A

Intensity /a.u.

Raman shift /cm1 co-precipitation

direct anion exchange dehydroxylation-rehydration

mechanochemically-aided intercalation initial CaFeNO3-LDH

diclofenac sodium

510

1055 715 355

1800 1600 1400 1200 1000 800 600 400 200

B

Raman shift /cm1

510 1055

Intensity /a.u.

co-precipitation direct anion exchange dehydroxylation-rehydration mechanochemically-aided intercalation

initial CaFeNO3-LDH

naproxen sodium

715 355

Fig. S4 Raman spectra of the diclofenac (A) and naproxen (B) anion-intercalated LDH samples and those of the as-prepared CaFe-LDH and starting drugs.

(6)

6

5 10 15 20 25 30 35 40 45 50 55 60

20.69

29.54

19.84

27.02

22.46

27.8

26.98

23.43

17.12

15.12

8.48

6.02

17.52

13.07

4.42

Intensity /a.u.

2 theta /

diclofenac sodium

naproxen sodium

Fig. S5 X-ray diffractograms of the naproxen and diclofenac sodium salts.

Fig. S6 Energy dispersive X-ray analysis spectrum of diclofenac anion−CaFe-LDH composite (signals of silicon and aluminium are originated from the adhesive tape/sample holder).

(7)

7

Fig. S7 SEM (A) and elemental map (B and C) images from the diclofenac anion−CaFe-LDH.

A B

C

(8)

8

100 200 300 400 500 600 700 800 900

60 65 70 75 80 85 90 95 100

Mass /%

Furnace temperature /C

Deriv. Mass /%/min

CaFe-NO3 LDH

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

690

245 125

515

100 200 300 400 500 600 700 800 900 1000

0 20 40 60 80 100

Furnace temperature /C

-0.4 -0.3 -0.2 -0.1 0.0

Mass /%

620 515 diclofenac sodium

285

315 870

Deriv. Mass /%/min

100 200 300 400 500 600 700 800 900 1000

0 20 40 60 80 100

Furnace temperature /C

750

800

Mass /%

naproxen sodium

75

380 450

720

Deriv. Mass /%/min

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

Fig. S8 Thermal behaviour of the pristine CaFe-LDH and sodium salts of diclofenac and naproxen.

(9)

9 4000 3750 3500 3250 3000 2750 1750 1500 1250 1000 750

adsorbed CO2

Wavenumber /cm1

Absorbance /a.u.

CaFe-LDH  diclofenac 400C diclofenac sodium 400C CaFe-LDH  diclofenac 350C

diclofenac sodium 350C CaFe-LDH  diclofenac 300C

diclofenac sodium 300C CaFe-LDH  diclofenac 250C

diclofenac sodium 250C CaFe-LDH  diclofenac 200C CaFe-LDH  diclofenac initial

diclofenac sodium initial

disappearing OH network and CH, CO, CC vibrations in LDHs

4000 3750 3500 3250 3000 2750 1500 1250 1000 750

disappearing OH network and CH, CO, CC vibrations in LDHs

CaFe-LDH  naproxen 350C

CaFe-LDH  naproxen 300C

CaFe-LDH  naproxen 250C

CaFe-LDH  naproxen 200C CaFe-LDH  naproxen initial

naproxen sodium initial naproxen sodium 350C

naproxen sodium 300C

naproxen sodium 250C CaFe-LDH  naproxen 400C

naproxen sodium 400C

Absorbance /a.u.

Wavenumber /cm1adsorbed CO2

Fig. S9 Infrared spectra of diclofenac, naproxen sodium salts and drug-intercalated (by the dehydroxylation-rehydration technique) LDH solids after heat treatments at various temperatures.

(10)

10

100 1000

0 5 10 15 20 25

Diameter (nm)

intercalated diclofenac anion

CaFe-NO3-LDH co-precipitation direct anion exchange dehydroxylation-rehydration mechanochemically-aided intercalation

Number (%)

1150 1060 620 260 510

1000 10000

0 5 10 15 20 25

5000

Number (%)

Diameter (nm)

co-precipitation direct anion exchange

dehydroxylation-rehydration mechanochemically-aided intercalation 710

3240

2700 2200 intercalated

naproxen anion

Fig. S10 The number-weighed size distribution patterns of the as-prepared (nitrate-containing), the diclofenac and the naproxen anion-intercalated CaFe-LDH particles (the numbers show the predominant solvodynamic diameters).

(11)

11

0 100 200 300 400 500 600 700 800 900 1000

1 5 10 25 50 75 100 200 400 600 800 0.1%

0.4% 0.1%

0.9% 1.5%

1.8%

6.2%

20.7%

47.9%

20.1%

co-precipitation naproxenLDH

Area /mm2

Number of particles

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

1 5 10 25 50 75 100 200 400 600 800 0.04%

0.02%

1.1% 0.4%

2.4% 0.9%

7.7%

28.8%

43.4%

15.4%

direct anion exchange naproxenLDH

Area /mm2

Number of particles

0 100 200 300 400 500 600 700 800 900 1000

1 5 10 25 50 75 100 200 400 600 800 0.2% 0%

2.6% 1.4%

1.2% 1.5%

4.9%

14.9%

47.4%

26.0%

dehydroxylation-rehydration naproxenLDH

Area /mm2

Number of particles

0 100 200 300 400 500 600 700 800 900 1000

1 5 10 25 50 75 100 200 400 600 800 0.5% 0.2%

2% 1.1%

2.1% 1.5%

9.7%

24.1%

43.9%

14.5%

mechanochemically-aided intercalation naproxenLDH

Area /mm2

Number of particles

Fig. S11 Particle size distribution histograms of the naproxen anion-intercalated CaFe-LDH solids dispersed in hydrogels.

Ambrogi, V., Fardella, G., Grandolini, G., Perioli, L., Tiralti, M.C., 2002. Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, II: Uptake of diclofenac for a controlled release formulation. AAPS PharmSciTech. 3, 26.

https://doi.org/10.1208/pt030326

Ambrogi, V., Perioli, L., Ricci, M., Pulcini, L., Nocchetti, M., Giovagnoli, S., Rossi, C., 2008.

Eudragit and hydrotalcite-like anionic clay composite system for diclofenac colonic

delivery. Micropor. Mesopor. Mat. 115, 405–415.

https://doi.org/10.1016/j.micromeso.2008.02.014

Carriazo, D., del Arco, M., Martín, C., Ramos, C., Rives, V., 2010. Influence of the inorganic matrix nature on the sustained release of naproxen. Micropor. Mesopor. Mat. 130, 229–238.

https://doi.org/10.1016/j.micromeso.2009.11.014

Joy, M., Iyengar, S.J., Chakraborty, J., Ghosh, S., 2017. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium. Front. Mater. Sci. 11, 395–408. https://doi.org/10.1007/s11706-017- 0400-1

Perioli, L., Posati, T., Nocchetti, M., Bellezza, F., Costantino, U., Cipiciani, A., 2011.

Intercalation and release of antiinflammatory drug diclofenac into nanosized ZnAl hydrotalcite-like compound. Appl. Clay Sci. 53, 374–378.

https://doi.org/10.1016/j.clay.2010.06.028

Rojas, R, Jimenez-Kairuz, A.F., Manzo, R.H., Giacomelli, C.E., 2014. Release kinetics from LDH-drug hybrids: Effect of layers stacking and drug solubility and polarity. Colloid.

Surface. A 463, 37–43. https://doi.org/10.1016/j.colsurfa.2014.09.031

(12)

12

Wang, H., Wu, J., Zheng, L., Cheng, X., 2019. Preparation and properties of ZnAl layered double hydroxide/polycaprolactone nanocomposites for use in drug delivery, Polym-Plast.

Technol. 58,1027–1035. https://doi.org/10.1080/03602559.2018.1493121

Ábra

Fig.  S2  X-ray  diffraction  patterns  of  solids  obtained  at  varying  stirring  temperature  (1:1  Fe(III):diclofenac anion molar ratio, 25% v/v ethanol-water mixture)
Fig. S3 X-ray diffraction patterns of the LDH composites at different Fe(III):diclofenac anion  molar ratios (25% v/v ethanol-water mixture, 25°C)
Fig. S4 Raman spectra of the diclofenac (A) and naproxen (B) anion-intercalated LDH samples  and those of the as-prepared CaFe-LDH and starting drugs
Fig. S5 X-ray diffractograms of the naproxen and diclofenac sodium salts.
+6

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The analgesic effect of EP-enhanced delivery was comparable to that of the oral administration and manifested in decreased nociceptive sensitivity, reduced joint swelling, and

In this study, the effects of three non-steroidal anti inflammatory drugs (NSAIDs: diclofenac, diflunisal and mefenamic acid) on growth, cyst formation and astaxanthin

In the upper marble unit, calc-silicate rock samples occur, which contain varying amounts of amphibole due to their different chemical bulk compositions as well as the P, T, and

A nem-specifikus és a specifikus migrén rohamgyógyszerek közül az NSAID- ok (aspirin, diclofenac, ibuprofen, naproxen), a paracetamol és a triptánok magas szintű A-típusú

The crystallinity changes and recrystallization process of amorphous samples were investigated by hot-humidity stage X-ray powder diffractometry (HH-XRPD) with fresh

XRD patterns of pristine and heat-treated CaFe-LDH, in- dole-2-carboxylate and cysteinate intercalated CaFe-LDHs and of those from which the drugs were released are shown

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

We characterized in vitro and in vivo electrophysiological effects of diclofenac: (i) the drug at high concentration inhibits both inward – depolarizing – and outward – repolarizing