• Nem Talált Eredményt

89

90

5. Főkomponens-elemzéssel bemutattam, hogy a fás és lágyszárú biomassza minták termogravimetria módszerével mért hőbomlási paraméterei és az energiatartalmuk között összefüggés figyelhető meg. A minták energiatartalma növekszik a hőbomlás maximális sebességének (DTGmax) és a termikus degradáció végső hőmérsékletének (Tend) a növekedésével, és csökken a szenes maradék relatív mennyiségének a növekedésével. (3. közlemény)

6. A termogravimetria/tömegspektrometria mérések alapján megállapítottam, hogy a minták szervetlen és szerves komponensei reagálhatnak egymással a hőbomlás során. A lágyszárú mintákban viszonylag sok a szervetlen kloridion (0,20,3 m/m %), amely reagál a szerves komponensekből származó metil-csoportokkal és metil-klorid képződik. (3. közlemény)

91

6 Irodalomjegyzék

1. Zs. Kádár, Zs. Szengyel, K. Réczey, Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol, Industrial Crops and Products 20 (2004) 103-110

2. M. Cantarella, L. Cantarella, A. Gallifuoco, A. Spera, F. Alfani, Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF, Process Biochemistry 39 (2004) 1533-1542

3. J. Lee, Biological conversion of lignocellulosic biomass to ethanol, Journal of Biotechnology 56 (1997) 1-24

4. R. Sun, J.M. Lawther, W.B. Banks, Influence of alkaline pre-treatments on the cell wall components of wheat straw, Industrial Crops and Products 4 (1995) 127-145

5. A.S. da Silva, H. Inoue, T. Endo, S. Yano, E.P.S. Bon, Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation, Bioresource Technology 101 (2010) 7402-7409

6. I. Tanczos, Gy. Pokol, J. Borsa, T. Tóth, H. Schmidt, The effect of tetramethylammonium hydroxide in comparison with the effect of sodium hydroxide on the slow pyrolysis of cellulose, Journal of Analytical and Applied Pyrolysis 68-69 (2003) 173-185

7. E. Mészáros, E. Jakab, G. Várhegyi, P. Szepesváry, B. Marosvölgyi, Comparative study of the thermal behavior of wood and bark of young shoots obtained from an energy plantation, Journal of Analytical and Applied Pyrolysis 72 (2004) 317-328 8. Az Európai Parlament 2008. január 31-i állásfoglalása az energiahatékonysági

cselekvési tervről: a lehetőségek kihasználása (2007/2106(INI)) Az Európai Unió Hivatalos Lapja C68 (2009) 18-25

9. Európai Bizottság, A Bizottság közleménye az Európai Parlamentnek és a Tanácsnak, Megújuló energia: A 2020-ra szóló célkitűzés teljesítése terén tett előrehaladás (2011)

10. Magyar Köztársaság, Közlekedési, Hírközlési és Energiaügyi Minisztérium, Előjelzési dokumentum, A 2020-ig terjedő megújuló energiahordozó felhasználás alakulásáról, (2009. december)

11. Simon T., A biomassza jelene és jövője Magyarországon, E-Gépész Online Szaklap 2010. 08. 31. http://www.e-gepesz.hu (2013. 05. 03.)

12. Czupy I., Vágvölgyi A., Mezőgazdasági (növénytermesztés. állattartás, erdészeti) hulladékok kezelése és hasznosítása, Pannon Egyetem, Környezetmérnöki Intézet, 2011

http://www.tankonyvtar.hu (2013. 11. 07.) 13. http://www.plantarium.hu (2014. 05. 08.)

14. http://www.geo.arizona.edu/palynology/geos462/09dendrochron.html (2014. 05.

08.)

15. http://cronodon.com/BioTech/Plant_Transport.html (2014. 05. 08.)

16. E. Sjöström, Wood chemistry, Fundamentals and Applications, Academic Press, London 1981

17. F.M. Gíro, C. Fonseca, F. Carvalheiro, L.C. Duarte, S. Marques, R. Bogel-Łukasik, Hemicelluloses for fuel ethanol: A review, Bioresource Technology 101 (2010) 4775-4800

18. H. Nimz, Beech lignin – Proposal of a constitutional scheme, Angewandte Chemie, 13/5 (1974) 313-321

92

19. E. Mészáros, E. Jakab, G. Várhegyi, TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia, Journal of Analytical and Applied Pyrolysis 79 (2007) 61-70

20. Pécsi Tudományegyetem Természettudományi Kar, Gombaélettan Mikológia Jegyzet Internetes hivatkozás (2013. 09. 15.)

21. L. Mojović, S. Nikolić, M. Rakin, M. Vukasinović, Production of bioethanol from corn meal hydrolyzates, Fuel 85 (2006) 1750-1755

22. L.A. Rodríguez, M.E. Toro, F. Vazquez, M.L. Correa-Daneri, S.C. Gouiric, M.D.

Vallejo, Bioethanol production from grape and sugar beet pomaces by solid-state fermentation, International Journal of Hydrogen Energy 35 (2010) 5914-5917 23. Sebestyén Z., Barta Zs., Jakab E., Bioetanol, a megújuló energiaforrás, Kémiai

Panoráma 7 (2011) 49-52

24. S. Brethauer, C.E. Wyman, Review: Continuous hydrolysis and fermentation for cellulosic ethanol production, Bioresource Technology 101 (2010) 4862-4874 25. B. Sipos, E. Kreuger, S-E. Svensson, K. Réczey, L. Björnsson, G. Zacchi, Steam

pretreatment of dry and ensiled industrial hemp for ethanol production, Biomass and Bioenergy 34 (2010) 1721-1731

26. Zs. Barta, J.M. Oliva, I. Bellesteros, D. Dienes, M. Ballesteros, K. Réczey, Refining hemp hurds into fermentable sugars or ethanol, Chemical and Biochemical Engineering Quarterly 24/3 (2010) 331-339

27. M. Cantarella, L. Cantarella, A. Gallifuoco, A. Spera, F. Alfani, Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF, Process Biochemistry 39 (2004) 1533-1542

28. A.K Mathew, K. Chaney, M. Crook, A.C. Humphries, Alkaline pre-treatment of oilseed rape straw for bioethanol production: Evaluation of glucose yield and pre-treatment energy consumption, Bioresource Technology 102 (2011) 6547-6553 29. Varga E., Kukoricaszár előkezelése és enzimes hidrolízise üzemanyagcélú alkohol

előállításához, Budapesti Műszaki és Gazdaságtudományi Egyetem (2003) Ph.D.

dolgozat

30. G. Han, J. Deng, S. Zhang, P. Bicho, Q. Wu, Effect of steam explosion treatment on characteristics of wheat straw, Industrial Crops and Products 31 (2010) 28-33 31. J. Li, G. Gellerstedt, Kai Toven, Steam explosion lignins; their extraction,

structure and potential as feedstock for biodiesel and chemicals, Bioresource Technology 100 (2009) 2556-2561

32. E. Kreuger, B. Sipos, G. Zacchi, S-E. Svensson, L. Björnsson, Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production, Bioresource Technology 102 (2011) 3457-3465

33. K. Kemppainen, J. Inkinen, J. Uusitalo, T. Nakari-Setälä, M. Siika-aho, Hot water extraction and steam explosion as pretreatments for ethanol production from spruce bark, Bioresource Technology 117 (2012) 131-139

34. I. Ballesteros, M.J. Negro, J.M. Oliva, A.Cabañas, P. Manzanares, M. Ballesteros, Ethanol production from steam-explosion pretreated wheat straw, Applied Biochemistry and Biotechnology 129-132 (2006) 496-508

35. A. Emmel, A.L. Mathias, F. Wypych, L.P. Ramos, Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion, Bioresource Technology 86 (2003) 105-115

36. C. Carrasco, H.M. Baudel, J. Sendelius, T. Modig, C. Roslander, M. Galbe, B.

Hahn-Hägerdal, G. Zacchi, G. Lidén, SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse, Enzyme and Microbial Technology 46 (2010) 64-73.

93

37. R.P. Overend, E. Chornet, Fractionation of lignocellulosics by steam aqueous pretreatment, Philosophical Transaction of the Royal Society: A 321 (1987) 523-536

38. L. Shen, Y. Gao, J. Xiao, Simulation of hydrogen production from biomass gasification in interconnected fluidized beds, Biomass and Bioenergy 32 (2008) 120-127

39. A. Abuadala, I. Dincer, Efficiency evaluation of dry hydrogen production from biomass gasification, Thermochimica Acta 507-508 (2010) 127-134

40. S. Rapagná, N. Jand, A. Kiennemann. P.U. Foscolo, Steam-gasification of biomass in a fludised-bed of olivine particles, Biomass and Bioenergy 19 (2000) 187-197

41. F. Yan, S. Luo, Z. Hu, B. Xiao, G. Cheng, Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: Influence of temperature and steam on hydrogen yield and syngas composition, Bioresource Technology 101 (2010) 5633-5637

42. F. Merquez-Montesinos, T. Cordero, J. Rodríguez-Mirasol, J.J. Rodríguez, CO2 and steam gasification of a grapefruit skin char, Fuel 81 (2002) 423-429

43. F. Shafizadeh, Pyrolysis and combustion of cellulosic materials, Advances in Carbohydrate Chemistry and Biochemistry, 23 (1968) 419-474

44. A.V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass and Bioenergy 38 (2012) 68-94

45. D. Meier, O. Faix, State of the art of applied fast pyrolysis of lignocellulosic materials – a review, Bioresource Technology 68 (1999) 71-77

46. H. Qinglan, W. Chang, L. Dingqiang, W. Yao, L. Dan, L. Guiju, Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature, International Journal of Hydrogen Energy 35 (2010) 8884-8890

47. A.A. Lappas, M.C. Samolada, D.K. Iatridis, S.S. Voutetakis, I.A. Vasalos, Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals, Fuel 81 (2002) 2087-2095

48. A. R. Fernandez-Akarregi, J. Makibar, G. Lopez, M. Amutio, M. Olazar, Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis, Fuel Processing Technology 112 (2013) 48-56

49. M.J.C. van der Stelt, H. Gerhauser, J.H.A. Kiel, K.J. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels: A review, Biomass and Bioenergy 35 (2011) 3748-3762

50. W-H. Chen, P-C. Kuo, A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry, Energy 35 (2010) 2580-2586

51. J. Park, J. Meng, K.H. Lim, O.J. Rojas, S. Park, Transformation of lignocellulosic biomass during torrefaction, Journal of Analytical and Applied Pyrolysis 100 (2013) 199-206

52. G. Várhegyi, M.J. Antal Jr., T. Székely, F. Till, E. Jakab, Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. 1. Avicel Cellulose in the presence and absence of catalysts, Energy and Fuels 2 (1988) 267-272

53. A. Basch, M. Lewin, The influence of fine structure on the pyrolysis of cellulose. I.

Vacuum pyrolysis, Journal of Polymer Science 11 (1973) 3071-3093

54. G-J. Kwon, D-Y. Kim, S. Kimura, S. Kuga, Rapid-cooling, continuous-feed pyrolyzer for biomass processing, Preparation of levoglucosan from cellulose and starch, Journal of Analytical and Applied Pyrolysis 80 (2007) 1-5

55. P.W. Arisz, J.J. Boon, Pyrolysis mechanisms of O-(2-hydroxyethyl) celluloses, Journal of Analytical and Applied Pyrolysis 25 (1993) 371-385

94

56. R.G. Graham, M.A. Bergougnou, R.P. Overend, Fast pyrolysis of biomass, Journal of Analytical and Applied Pyrolysis 6 (1984) 95-135

57. J. Piskorz, D. Radlein, D.S. Scott, On the mechanism of the rapid pyrolysis of cellulose, Journal of Analytical and Applied Pyrolysis 9 (1986) 121-137

58. C.J. Knill, J.F. Kennedy, Degradation of cellulose under alkaline conditions, Carbohydrate Polymers 51 (2003) 281-300

59. R.J. Helleur, Characterization of the saccharide composition of heteropolysaccharides by pyrolysis-capillary gas chromatography-mass spectrometry, Journal of Analytical and Applied Pyrolysis 11 (1987) 297-311 60. E. Jakab, O. Faix, F. Till, T. Székely, Thermogravimetry/mass spectrometry

study of six lignins within the scope of an international round robin test, Journal of Analytical and Applied Pyrolysis 35 (1995) 167-179

61. O. Faix, D. Meier, I. Grobe, Studies on isolated lignins and lignins in woody materials by pyrolysis-gas chromatography-mass spectrometry and off-line pyrolysis-gas chromatography with flame ionization detection, Journal of Analytical and Applied Pyrolysis 11 (1987) 403-416

62. W. Genuit, J.J. Boon, O. Faix, Characterization of beech milled wood lignin by pyrolysis-gas chromatography-photoionization mass spectrometry, Analytical Chemistry 59 (1987) 508-513

63. Z. Sebestyén, E. Jakab, Z. May, B. Sipos, K. Réczey, Thermal behavior of native, washed and steam exploded biomass samples, Journal of Analytical and Applied Pyrolysis 101 (2013) 61-71

64. W. DeGroot, F. Shafizadeh, The influence of exchangeable cations on the carbonization of biomass, Journal of Analytical and Applied Pyrolysis 6 (1984) 217-232

65. G. Várhegyi, M.J. Antal Jr., T. Székely, F. Till, E. Jakab, P. Szabó, Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. 2. Sugar cane bagasse in the presence and absence of catalysts, Energy and Fuels 2 (1988) 273-277

66. H. Kawamoto, H. Morisaki, S. Saka, Secondary decomposition of levoglucosan in pyrolytic production from cellulosic biomass, Journal of Analytical and Applied Pyrolysis 85 (2009) 247-251

67. D.J. Nowakowski, C.R. Woodbridge, J.M. Jones, Phosphorus catalysis in the pyrolysis behaviour of biomass, Journal of Analytical and Applied Pyrolysis 83 (2008) 197-204

68. G. Dobele, I. Urbanovich, A. Zhurins, V. Kampars, D. Meier, Application of analytical pyrolysis for wood fire protection control, Journal of Analytical and Applied Pyrolysis 79 (2007) 47-51

69. G.N. Richards, F. Shafizadeh, T.T. Stevenson, Influence of sodium chloride on volatile products formed by pyrolysis of cellulose: Identification of hydroxybenzenes and 1-hydroxy-2-propanone as major products, Carbohydrate Research 117 (1983) 322-327

70. D.J. Nowakowski, J.M. Jones, Uncatalysed and potassium catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds, Journal of Analytical and Applied Pyrolysis 83 (2008) 12-25

71. H. Hwang, S. Oh, T-S. Cho, I-G. Choi, J.W. Choi Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products, Bioresource Technology 150 (2013) 359-366

72. M. Nishimura, S. Iwasaki, M. Horio, The role of potassium carbonate on cellulose pyrolysis, Journal of the Taiwan Institute of Chemical Engineers 40 (2009) 630-637

95

73. D. Zhao, Y. Dai, K. Chen, Y. Sun, F. Yang, K. Chen, Effect of potassium inorganic and organic salts on the pyrolysis kinetics of cigarette paper, Journal of Analytical and Applied Pyrolysis 102 (2013) 114-123

74. E. Jakab, O. Faix, F. Till, Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry, Journal of Analytical and Applied Pyrolysis 40-41 (1997) 171-186

75. E. Jakab, O. Faix, F. Till, T. Székely, The effect of cations on the thermal decomposition of lignins, Journal of Analytical and Applied Pyrolysis 25 (1993) 185-194

76. I. Tanczos, J. Borsa, I. Sajó, K. László, Z.A. Juhász, T. Tóth, Effect of tetramethylammonium hydroxide on cotton cellulose compared to sodium hydroxide, Macromolecular Chemistry and Physics 201 (2000) 2550-2556

77. H-P. Fink, B. Philipp, Models of cellulose physical structure from the viewpoint of the cellulose I II transition, Journal of Applied Polymer Science 30 (1985) 3779-3790

78. N. Jacquet, N. Quiévy, C. Vanderghem, S. Janas, C. Blecker, B. Wathelet, J.

Devaux, M. Paquot, Influence of steam explosion on the thermal stability of cellulose fibers, Polymer Degradation and Stability 96 (2011) 1582-1588

79. N. Jacquet, C. Vanderghem, S. Danthine, N. Quiévy, C. Blecker, J. Devaux, M.

Paquot, Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers, Bioresource Technology 121 (2012) 221-227

80. L.P. Ramos, The chemistry involved in the steam treatment of lignocellulosic materials, Química Nova 26 (2003) 863-871

81. A.K. Biswas, K. Umeki, W. Yang, W. Blasiak, Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment, Fuel Processing Technology 92 (2011) 1849-1854

82. B. Keresztesi, Breeding and cultivation of black locust, Robinia pseudoacacia in Hungary, Forest Ecology and Management 6 (1983) 217-244

83. S. González-García, M.T. Moreira, G. Feijoo, R.J. Murphy, Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar), Biomass and Bioenergy 39 (2012) 378-388

84. R. Rawat, B.K. Kumbhar, L. Tewari, Optimization of alkali pretreatment for bioconversion of poplar (Populus deltoides) biomass into fermentable sugars using response surface methodology, Industrial Crops and Products 44 (2013) 220-226 85. M. Cui, Z. Yuan, X. Zhi, L. Wei, J. Shen, Biohydrogen production from poplar

leaves pretreated by different methods using anaerobic mixed bacteria, International Journal of Hydrogen Energy 35 (2010) 4041-4047

86. B. Marosvölgyi, L. Halupa, I. Wesztergom, Poplars as biological energy sources in Hungary, Biomass and Bioenergy 16 (1999) 245-247

87. R.A. Yunes, V.C. Filho, J. Ferreira, J.B. Calixto, The use of natural products as sources of new analgesic drugs, Studies in Natural Products Chemistry 30 (2005) 191-212

88. S. Monavari, M. Galbe, G. Zacchi, Influence of impregnation with lactic acid on sugar yields from steam pretreatment of sugarcane bagasse and spruce, for bioethanol production, Biomass and Bioenergy 35 (2011) 3115-3122

89. B. Sipos, M. Szilágyi, Z. Sebestyén, R. Perazzini, D. Dienes, E. Jakab, C. Crestini, K. Réczey, Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses, Comptes Rendus Biologies 334 (2011) 812-823

96

90. M. Pracella, D. Chionna, I. Anguillesi, Z. Kulinski, E. Piorkowska, Functionalization, compatibilization and properties of polypropylene composites with hemp fibers, Composites Science and Technology 66 (2006) 2218-2230 91. F. Vilaseca, A. López, X. Llauró, M.A. Pélach, P. Mutjé, Hemp strands as

reinforcement of polystyrene composites, Chemical Engineering Research and Design 82 (A11) 1425-1431

92. T. Prade, S-E. Svensson, J.E. Mattsson, Energy balances for biogas and solid biofuel production from industrial hemp, Biomass and Bioenergy 40 (2012) 36-52 93. J. Finnan, D. Styles, Hemp: A more sustainable annual energy crop for climate

and energy policy, Energy Policy 58 (2013) 152-162

94. R. Choudhary, A.L. Umagiliyage, Y. Liang, T. Siddaramu, J. Haddock, G.

Markevicius, Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse, Biomass and Bioenergy 39 (2012) 218-226

95. I.A. Panagiotopoulos, R.R. Bakker, T. de Vrije, E.G. Koukios, P.A.M. Claassen, Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus, International Journal of Hydrogen Energy 35 (2010) 7738-7747

96. A. Prochnow, M. Heiermann, M. Plöchl, T. Amon, P.J. Hobbs, Bioenergy from permanent grassland – A review: 2. Combustion, Bioresource Technology 100 (2009) 4945-4954

97. S. Petrik, Zs. Kádár, I. Márová, Utilization of hydrothermal pretreated wheat straw for production of bioethanol and carotene-enriched biomass, Bioresource Technology 133 (2013) 370-377

98. Zs. Benkő, M. Siika-aho, L. Viikari, K. Réczey, Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates, Enzyme and Microbial Technology 43 (2008) 109-114

99. Z. Sebestyén, F. Lezsovits, E. Jakab, G. Várhegyi, Correlation between heating values and thermogravimetric data of sewage sludge, herbaceous crops and wood samples, Journal of Thermal Analysis and Calorimetry 110 (2012) 1501-1509 100. Sebestyén Zoltán, Kender lúgos előkezelésének vizsgálata bioetanol előállítás

céljából (Diplomamunka), Budapesti Műszaki és Gazdaságtudományi Egyetem 2008

101. Borosy A.P., Héberger K., Horvai Gy., Kolossváry I., Lengyel A., Paksy L., Rajkó R., Szepesváry P., Sokváltozós adatelemzés (kemometria), Nemzeti Tankönyvkiadó, Budapest 2001

102. K. Héberger, K. Milczewska, A. Voelkel, Principal component analysis of polymer-solvent and filler-polymer-solvent interactions by inverse gas chromatogrphy, Colloids and Surfaces A: Physicochem Eng Aspects 260 (2005) 29-37

103. K. Héberger, A. Németh, L. Cotarca, P. Delogu, Principal component analysis of data on the catlytic oxidation of toluene, Applied Catalysis A: General 119 (1994) 7-12

104. B.M. Silva, P.B. Andrade, R.C. Martins, R.M. Seabra, M.A. Ferreira, Principal component analysis as tool of characterization of quince (Cydonia oblonga Miller) jam, Food chemistry 94 (2006) 504-512.

105. A. Rachini, M. Le Troedec, C. Peyratout, A. Smith, Comparison of the thermal degradation of natural, alkali-treated and silanetreated hemp fibers under air and inert atmosphere, Journal of Applied Polymer Science 112 (2009) 226-234 106. Z. Sebestyén, Z. May, K. Réczey, E. Jakab, The effect of alkaline pretreatment on

the thermal decomposition of hemp, Journal of Thermal Analysis and Calorimetry 105 (2011) 1061-1069

97

107. O. Faix, D. Meier, I. Fortmann, Thermal degradation products of wood – A collection of electron-impact (EI) mass spectra of monomeric lignin derived products, Holz Roh Werkst. 48 (1990) 351-354

108. O. Faix, D. Meier, I. Fortmann, Thermal degradation products of wood – A collection of electron-impact (EI) mass spectra of polysaccharide derived products, Holz Roh Werkst. 49 (1991) 299-304

109. J.J.M. Órfão, F.J.A. Antunes, J.L. Figueiredo, Pyrolysis kinetics of lignocellulosic materials – three independent reactions model, Fuel 78 (1999) 349-358

110. K. Raveendran, A. Ganesh, K.C. Khilar, Pyrolysis characteristics of biomass and biomass components, Fuel 75 No. 8 (1996) 987-998

111. J.M. Calo, M.T. Perkins, A heterogeneous surface model for the “steady-state”

kinetics of the Boudouard reaction, Carbon 25 No. 3 (1987) 395-407

112. Y.K. Rao, A. Adjorlolo, J.H. Haberman, On the mechanism of catalysis of the Boudouard reaction by alkali-metal compounds, Carbon 20 No.3 (1982) 207-212

98

Publikációs lista

A dolgozat alapjául szolgáló publikációk

A doktori dolgozat az alábbi négy publikáción alapszik. Ezek közül három hatásfaktorral (IF) rendelkező referált folyóiratban jelent meg. A cikkek a dolgozat végén teljes terjedelmükben megtalálhatóak. Az idézettségi adatok (I) kizárólag a független hivatkozásokat tartalmazzák.

1. Zoltán Sebestyén, Zoltán May, Kati Réczey, Emma Jakab, The effect of alkaline pretreatment on the thermal decomposition of hemp, Journal of Thermal Analysis and Calorimetry 105 (2011) 1061-1069 (IF: 1,982 I:4)

2. Zoltán Sebestyén, Emma Jakab, Zoltán May, Bálint Sipos, Kati Réczey, Thermal behavior of native, washed and steam exploded lignocellulosic biomass samples, Journal of Analytical and Applied Pyrolysis 101 (2013) 61-71 (IF: 2.560 I:0)

3. Zoltán Sebestyén, Ferenc Lezsovits, Emma Jakab, Gábor Várhegyi, Correlation between heating values and thermogravimetric data of sewage sludge, herbaceous crops and wood samples, Journal of Thermal Analysis and Calorimetry 110 (2012) 1501-1509 (IF: 1,982 I:3)

4. Sebestyén Zoltán, Barta Zsolt, Jakab Emma, Bioetanol, a megújuló energiaforrás, Kémiai Panoráma 7 (2011) 49-52

99

Egyéb, a dolgozat témájához kapcsolódó publikációk

5. Bálint Sipos, Mátyás Szilágyi, Zoltán Sebestyén, Raffaella Perazzini, Dóra Dienes, Emma Jakab, Claudia Crestini, Kati Réczey, Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses, Comptes Rendus Biologies 334 (2011) 812-823 (IF:

1,804 I:4)

6. Gábor Várhegyi, Zoltán Sebestyén, Zsuzsanna Czégény, Ferenc Lezsovits, Sándor Könczöl, Combustion kinetics of biomass materials in the kinetic regime, Energy and Fuels 26 (2012) 1313-1335 (IF: 2,853 I:9)

7. Galina Dobele, Emma Jakab, Aleksandrs Volperts, Zoltán Sebestyén, Aivars Zhurins, Galina Telysheva, Formation of nanoporous carbon materials in conditions of thermocatalytic synthesis, Journal of Analytical and Applied Pyrolysis 103 (2013) 173-180 (IF: 2,560 I:0)

Egyéb, a dolgozat témájához nem kapcsolódó publikációk

8. Miklós Mohai, Ilona Mohai, Zoltán Sebestyén, András Gergely, Péter Németh, János Szépvölgyi, Surface characterisation of boron nitride layers on multiwalled carbon nanotubes, Surface and Interface Analysis, 42 (2010) 1148-1151 (IF: 1,220 I:0)

9. Ilona Mohai, Miklós Mohai, Imre Bertóti, Zoltán Sebestyén, Péter Németh, Irina Z. Babievskaya, János Szépvölgyi, Formation of thin boron nitride coating on multiwall carbon nanotube surfaces, Diamond and Related Materials 20 (2011) 227-231 (IF: 1,709 I:5) 10. György Mink, Péter Szabó, Éva Fekete, Béla Lengyel, Zoltán

Sebestyén, Technology plan for the destruction and energy utilisation of PCBs and other chlorinated POPs, Proceedings of the Energy and Climate Symposium, Energy and the Environment 2010, Engineering for a low-carbon future, Opatija, Horvátország pp. 427-438

100

Szóbeli előadások

1. Sebestyén Zoltán, May Zoltán, Jakab Emma, Lúgos előkezelések hatása a kender (Cannabis sativa L.) hőbomlására, Műszaki Kémiai Napok ’09 (Veszprém, 2009. április 21-23.)

2. Sebestyén Zoltán, Pekkerné Jakab Emma, Sipos Bálint, Réczey Istvánné, Gőzrobbantott biomassza minták termikus viselkedése, XIII. Kálmán Erika Doktori Konferencia (Balatonkenese, 2010.

április 21-23.)

3. Sebestyén Zoltán, Lezsovits Ferenc, Jakab Emma, Várhegyi Gábor, Biomassza minták termikus analízise, 1. MKE Nemzeti Konferencia (Sopron, 2011. május 22-25)

4. Sebestyén Zoltán, Pekkerné Jakab Emma, May Zoltán, Sipos Bálint, Réczey Istvánné, Gőzrobbantás hatásának vizsgálata fás- és lágyszárú biomassza minták szerkezetén termoanalitikai módszerek alkalmazásával, XV. Kálmán Erika Doktori Konferencia (Mátraháza, 2012. szeptember 18-20.)

5. Sebestyén Zoltán, Biomassza anyagok vizsgálata termikus analízis és analitikai pirolízis segítségével, AKT Matematikai és Természettudományi Szakbizottsági meghallgatás (Budapest, 2012. november 6.)

6. Sebestyén Zoltán, Pekkerné Jakab Emma, May Zoltán, Várhegyi Gábor, Sipos Bálint, Réczey Istvánné, Különböző eljárásokkal előkezelt biomassza minták vizsgálata termoanalitikai módszerekkel, MTA TTK Kutatóközponti Tudományos Napok (Budapest, 2012. november 28.)

7. Sebestyén Zoltán, Biomassza anyagok vizsgálata termikus analízis és analitikai pirolízis segítségével (Doktori értekezés alapjául szolgáló kutatási eredmények bemutatása), MTA TTK Anyag- és Környezetkémiai Intézeti Szeminárium (Budapest, 2013. május 14.)

8. Sebestyén Zoltán, Biomassza minták kiválasztása és jellemzése „A megújuló energiaforrások újszerű felhasználására és korszerű energiatárolási eszközök fejlesztésére alkalmas innovatív eljárások tudományos megalapozása” című KTIA AIK projekt 1.

munkaszakaszának beszámolója (Budapest, 2013. október 25.)

101

Poszter előadások

9. Zoltán Sebestyén, Zoltán May, Kati Réczey, Emma Jakab, Effect of alkaline pretreatments on the thermal decomposition of hemp, 10th Conference on Calorimetry and Thermal Analysis and 2nd Joint Czech-Hungarian-Polish-Slovakian Thermoanalytical Conference (Lengyelország, Zakopane, 2009. augusztus 30-szeptember 3.)

10. Bálint Sipos, Zoltán Sebestyén, Zsolt Somorai, Dóra Dienes, Emma Jakab, Gábor Várhegyi, Kati Réczey, Effect of poly(ethylene glycol) on enzymatic hydrolysis of different lignocellulosic substrates, Italic 5 and Third European Workshop on Biotechnology for Lignocellulose Biorefineries (Olaszország, Varenna, (2009. szeptember 1-4.)

11. Sebestyén Zoltán, May Zoltán, Réczey Istvánné, Jakab Emma, Kenderminták jellemzése termikus módszerekkel és főkomponens elemzéssel, BME Oláh György Doktori Iskola, VII. Doktoráns Konferencia (Budapest, 2010. február 4.)

12. Zoltán Sebestyén, Emma Jakab, Bálint Sipos, Kati Réczey, Thermal behavior of steam exploded biomass samples, 18th European Biomass Conference and Exhibition (Franciaország, Lyon, 2010. május 1-6.)

13. Zoltán Sebestyén, Emma Jakab, Zoltán May, Kati Réczey, Principal component analysis of thermoanalytical data, 5th International Symposium on Computer Applications and Chemometrics in Analytical Chemistry, (Budapest, 2010. június 21-25.)

14. Zoltán Sebestyén, Emma Jakab, Zoltán May, Bálint Sipos, Kati Réczey, Thermal characterization of steam exploded lignocellulosic raw materials, The Fourth Annual Workshop of COST FP0602 Biotechnical Processing of Lignocellulosic Raw Materials (Törökország, Cesme, 2010. szeptember 22-24.)

15. Sebestyén Zoltán, Jakab Emma, May Zoltán, Sipos Bálint, Réczey Istvánné, Gőzrobbantott biomassza minták jellemzése termoanalitikai módszerekkel, BME Oláh György Doktori Iskola, VIII. Doktoráns Konferencia (Budapest, 2011. február 3.)

102

16. Galina Dobele, Emma Jakab, Zoltán Sebestyén, Aleksandrs Volperts, Aivars Zhurins, Galina Telysheva, Formation of nanoporous carbon materials in thermocatalytic synthesis conditions, 19th International Symposium on Analytical and Applied Pyrolysis (Ausztria, Linz, 2012. május 21-25.)

17. Zoltán Sebestyén, Zoltán May, Bálint Sipos, Kati Réczey, Emma Jakab, Structural characterization of steam exploded biomass samples by thermal methods, 19th International Symposium on Analytical and Applied Pyrolysis (Ausztria, Linz, 2012. május 21-25.)

103

NYILATKOZAT

Alulírott Sebestyén Zoltán kijelentem, hogy ezt a doktori értekezést magam készítettem és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint, vagy azonos tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Budapest, 2014. május 30.

aláírás

1

The effect of alkaline pretreatment on the thermal decomposition of hemp

Zolta´n Sebestye´nZolta´n May Kati Re´czey Emma Jakab

Received: 22 July 2010 / Accepted: 14 September 2010 / Published online: 7 October 2010 ÓAkade´miai Kiado´, Budapest, Hungary 2010

Abstract The goal of this study was to clarify the effect of alkaline pretreatments on the thermal decomposition and composition of industrial hemp (Cannabis sativa L.) sam-ples. Thermogravimetric/mass spectrometric measure-ments (TG/MS) have been performed, on untreated, hot water washed, and alkali-treated hemp samples. The main differences between the thermal decomposition of the samples are interpreted in terms of the different alkali ion contents which have been determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) method. Principal component analysis (PCA) has been used to find statistical correlations between the data. Cor-relations have been obtained between the parameters of the thermal decomposition and the alkali ion content as well as the altered chemical structure of the samples. The differ-ences in the thermal behavior of the samples are explained by the different K? and Na? contents and the changed structure of the hemicellulose component of the samples due to the pretreatments. The more alkali ions remain in the hemp samples after the alkali treatment, the more ash, char and lower molecular products are formed during thermal decomposition.

Keywords HempAlkaline pretreatment Thermogravimetry Thermal decomposition Principal component analysis

Introduction

Areas of the tropical and temperate zone, just like the main part of the Earth, possess very suitable local conditions to cultivate industrial hemp (Cannabis sativaL.). It has been cultivated for thousands of years, because its strong fibers take the humidity extremely well. Nowadays, the hemp is utilized by the textile industry, producing technical textiles, sail-clothes, and ropes. Recently, the application in fiber-reinforced composite materials [1, 2] and energetic utili-zation of the plant [3] have been studied extensively. Hemp can become one of the main substrates of the second generation bioethanol fermentation due to its high cellulose content [4–6]. Lignocellulosic natural materials after chemical and biological conversions can be used as a replacement of fossil fuels.

Thermo- and biochemical processes are used for con-verting the non-food crops, plant, and waste biomass into energy. Nowadays, the second generation—lignocellu-losic—bioethanol production represents an important research area [7–9]. The cellulose and hemicellulose component of biomass can be hydrolyzed to produce monomeric sugars, which can be fermented to ethanol. If cellulolytic enzymes are added to the biomass samples, the conversion of cellulose to sugar will be extremely slow since the cellulose is well protected by the matrix of hemicellulose and lignin. Therefore, pretreatment of the raw material is necessary to expose the cellulose or modify the pores in the material to allow the enzymes to penetrate into the fibers and hydrolyse the cellulose to monomeric Z. Sebestye´n (&)Z. MayE. Jakab

Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, P.O. Box 17, Budapest 1525, Hungary

e-mail: zoltan.sebestyen@chemres.hu K. Re´czey

Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gelle´rt te´r 4, Budapest 1111, Hungary

123

J Therm Anal Calorim (2011) 105:1061–1069 DOI 10.1007/s10973-010-1056-6

KAPCSOLÓDÓ DOKUMENTUMOK