• Nem Talált Eredményt

[1] „Internet Live Stats,” https://www.internetlivestats.com.

[2] T. Lan and M. Chiang, „An axiomatic theory of fairness in resource allocation,”

available online: http://www.princeton.edu/~chiangm/fairness.pdf, 2012.

[3] A. B. Atkinson, „On the measurement of inequality,” Journal of Economic Theory, vol. 2, no. 3, pp. 244 – 263, 1970. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0022053170900396

[4] H. R. Varian, „Equity, envy, and efficiency,” Journal of economic theory, vol. 9, no. 1, pp. 63–91, 1974.

[5] J. F. Nash Jr, „The bargaining problem,” Econometrica: Journal of the Econometric Society, pp. 155–162, 1950.

[6] L. S. Shapley, „A value for n-person games,” Contributions to the Theory of Games, vol. 2, no. 28, pp. 307–317, 1953.

[7] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, „Multiresource allocation:

Fairness-efficiency tradeoffs in a unifying framework,” IEEE/ACM Transac-tions on Networking, vol. 21, no. 6, pp. 1785–1798, 2013.

[8] J. M. Jaffe, „Bottleneck flow control,” IEEE Transactions on Communications, vol. 29, no. 7, pp. 954–962, Jul. 1981.

[9] E. L. Hahne, „Round-robin scheduling for max-min fairness in data networks,”

IEEE Journal on Selected Areas of Communication, vol. 9, no. 7, pp. 1024–

1039, Sep. 1991.

[10] J. C. R. Bennett and H. Zhang, „WF2Q: Worst-case fair weighted fair queueing,” in IEEE INFOCOM, vol. 1, 1996, pp. 120–128.

[11] A. Demers, S. Keshav, and S. Shenker, „Analysis and simulation of a fair queueing algorithm,” in ACM SIGCOMM, 1989, pp. 1–12.

[12] M. Shreedhar and G. Varghese, „Efficient fair queuing using deficit round-robin,” IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 375–385, 1996.

[13] I. Stoica, S. Shenker, and H. Zhang, „Core-stateless fair queueing: Achieving approximately fair bandwidth allocations in high speed networks,” in ACM SIGCOMM, 1998, pp. 118–130.

[14] E. Danna, A. Hassidim, H. Kaplan, A. Kumar, Y. Mansour, D. Raz, and M. Segalov, „Upward max-min fairness,” J. ACM, vol. 64, no. 1, pp. 1–24, 2017.

[15] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica,

„Dominant resource fairness: Fair allocation of multiple resource types,” in USENIX NSDI, 2011, pp. 323–336.

[16] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, „Choosy: Max-min fair sharing for datacenter jobs with constraints,” in ACM EuroSys, 2013, pp.

365–378.

[17] A. F. T. Committee, „Traffic Management Specification - Version 4.0,” ATM Forum/95-0013R13, Feb 1996.

[18] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, „Rate control for communication networks: Shadow prices, proportional fairness and stability,” Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–252, Mar 1998.

[19] R. Jain, D.-M. Chiu, and W. R. Hawe,A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Eastern Research Laboratory, Digital Equipment Corporation Hudson, MA, 1984, vol. 38.

[20] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and H. Zheng, „Group ratio round-robin: O(1) proportional share scheduling for uniprocessor and multiprocessor systems,” in USENIX Annual Technical Conference, 2005, pp. 337–352.

[21] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E. Gehrke, and C. G.

Plaxton, „A proportional share resource allocation algorithm for real-time, time-shared systems,” inIEEE Real-Time Systems Symposium, 1996, pp. 288–

299.

[22] J. Axboe, „Linux block IO – present and future,” inOttawa Linux Symp, 2004, pp. 51–61.

[23] A. K. Agrawala and R. M. Bryant, „Models of memory scheduling,” in SOSP, 1975, pp. 217–222.

[24] D. Zarchy, D. Hay, and M. Schapira, „Capturing resource tradeoffs in fair multi-resource allocation,” in IEEE INFOCOM, 2015, pp. 1062–1070.

[25] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, „Multi-resource allocation:

Fairness-efficiency tradeoffs in a unifying framework,” in IEEE INFOCOM, 2012, pp. 1206–1214.

[26] D. P. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, New Jersey: Prentice-Hall, 1987.

[27] J. Le Boudec, „Rate adaptation, congestion control and fairness: A tutorial,”

available online: http://ica1www.epfl.ch/PS_files/LEB3132.pdf, Feb 2005.

[28] R. Denda, „The fairness challenge in computer networks,” Department for Mathematics and Computer Science, University of Mannheim, Tech. Rep.

TR-00-006, 2000.

[29] J. Le Boudec and B. Radunovic, „A unified framework for max-min and min-max fairness with applications,” in Annual Allerton Conference on Communication, Control, and Computing, Oct 2002.

[30] D. G. Cantor and M. Gerla, „Optimal routing in a packet-switched computer network,” IEEE Transactions on Computer, vol. 23, no. 10, pp. 1062–1069, 1974.

[31] B. Fortz, J. Rexford, and M. Thorup, „Traffic engineering with traditional IP routing protocols,” IEEE Communications Magazine, vol. 40, no. 10, pp.

118–124, Oct 2002.

[32] L. G. Valiant and G. J. Brebner, „Universal schemes for parallel communica-tion,” in ACM symposium on Theory of computing, ser. STOC ’81, 1981, pp.

263–277.

[33] H. Räcke, „Minimizing congestion in general networks,” in IEEE Symposium on Foundations of Computer Science, ser. FOCS ’02, 2002, pp. 43–52.

[34] H. Räcke, „Optimal hierarchical decompositions for congestion minimization in networks,” in ACM symposium on Theory of computing, ser. STOC ’08, 2008, pp. 255–264.

[35] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Räcke, „Optimal oblivious routing in polynomial time,” inACM symposium on Theory of computing, ser.

STOC ’03, 2003, pp. 383–388.

[36] D. Applegate and E. Cohen, „Making intra-domain routing robust to changing and uncertain traffic demands: Understanding fundamental tradeoffs,” in ACM SIGCOMM, 2003, pp. 313–324.

[37] M. Englert and H. Räcke, „Oblivious Routing for the Lp-norm,” IEEE Foundations of Computer Science, pp. 32–40, 2009.

[38] H. Räcke, „Survey on oblivious routing strategies,” in Conference on Comp-utability in Europe: Mathematical Theory and Computational Practice, ser.

CiE ’09, 2009, pp. 419–429.

[39] J. He, M. Bresler, M. Chiang, and J. Rexford, „Towards robust multi-layer traffic engineering: Optimization of congestion control and routing,” Selected Areas in Communications, IEEE Journal on, vol. 25, no. 5, pp. 868–880, June 2007.

[40] S. Kandula, D. Katabi, B. Davie, and A. Charny, „Walking the Tightrope:

Responsive Yet Stable Traffic Engineering,” inACM SIGCOMM, August 2005.

[41] S. Fischer, N. Kammenhuber, and A. Feldmann, „REPLEX: Dynamic traffic engineering based on wardrop routing policies,” in CoNEXT’06, 2006, pp.

1–12.

[42] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg, „COPE:

traffic engineering in dynamic networks,” SIGCOMM Comput. Commun.

Rev., vol. 36, no. 4, pp. 99–110, 2006.

[43] R. Gallager, „A minimum delay routing algorithm using distributed computa-tion,” Communications, IEEE Transactions on, vol. 25, no. 1, pp. 73–85, jan 1977.

[44] D. P. Bertsekas, „Dynamic behavior of shortest path routing algorithms for communication networks,” IEEE Trans. on Automatic Control, vol. 27, pp.

60–74, 1982.

[45] F. Kelly and T. Voice, „Stability of end-to-end algorithms for joint routing and rate control,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 2, pp. 5–12, 2005.

[46] J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, „Non-convex optimization and rate control for multi-class services in the Internet,” IEEE/ACM Trans. Netw., vol. 13, no. 4, pp. 827–840, 2005.

[47] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, „The explicit linear quadratic regulator for constrained systems,” Automatica, vol. 38, pp. 3–20, January 2002.

[48] J. Rawlings and K. Muske, „The stability of constrained receding horizon control,” IEEE Transactions on Automatic Control, vol. 38, no. 10, pp. 1512–

1516, 1993.

[49] P. Grieder, M. Kvasnica, M. Baotic, and M. Morari, „Low complexity control of piecewise affine systems with stability guarantee,” in American Control Conference, vol. 2, June 2004.

[50] P. Grieder and M. Morari, „Complexity reduction of receding horizon control,”

IEEE Conference on Decision and Control, vol. 3, December 2003.

[51] Z. Wang and J. Crowcroft, „Quality-of-service routing for supporting multime-dia applications,” IEEE Journal of Selected Areas in Communications, vol. 14, no. 7, pp. 1228–1234, 1996.

[52] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi, „Quality of service based routing: A performance perspective,” inACM SIGCOMM, 1998, pp. 17–28.

[53] Q. Ma and P. Steenkiste, „On path selection for traffic with bandwidth guarantees,” in International Conference on Network Protocols (ICNP ’97), 1997, p. 191.

[54] O. Younis and S. Fahmy, „Constraint-based routing in the Internet: Basic principles and recent research,” Communications Surveys Tutorials, IEEE, vol. 5, no. 1, pp. 2–13, 2003.

[55] W. Lee, M. Hluchyi, and P. Humblet, „Routing subject to quality of service constraints in integrated communication networks,” IEEE Network Magazine, vol. 9, no. 4, pp. 46–55, July-August 1999.

[56] M. Caesar and J. Rexford, „BGP routing policies in ISP networks,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/CSD-05-1377, 2005. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/

TechRpts/2005/6507.html

[57] P. Fraigniaud and C. Gavoille, „Memory requirement for universal routing schemes,” in ACM Symposium on Principles of Distributed Computing, ser.

PODC ’95, 1995, pp. 223–230.

[58] C. Gavoille and S. Pérennès, „Memory requirement for routing in distributed networks,” in ACM Symposium on Principles of Distributed Computing, ser.

PODC ’96, 1996, pp. 125–133.

[59] L. Cowen, „Compact routing with minimum stretch,” in ACM-SIAM SO-DA’99, 1999, pp. 255–260.

[60] M. Thorup and U. Zwick, „Compact routing schemes,” in ACM SPAA’01, 2001, pp. 1–10.

[61] C. Gavoille, „Routing in distributed networks: Overview and open problems,”

ACM SIGACT News, vol. 32, no. 1, p. 52, 2001.

[62] D. Krioukov, kc claffy, K. Fall, and A. Brady, „On compact routing for the Internet,” ACM Comp. Comm. Review, vol. 37, no. 3, pp. 41–52, 2007.

[63] C. Gavoille, „An overview on compact routing,” in Workshop on Peer-to-Peer, Routing in Complex Graphs, and Network Coding, 2007.

[64] J. Sobrinho, „Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet,” IEEE/ACM Trans. Netw., vol. 10, pp. 541–550, August 2002.

[65] J. Sobrinho, „Network routing with path vector protocols: Theory and applications,” in ACM SIGCOMM, 2003, pp. 49–60.

[66] T. Griffin and J. Sobrinho, „Metarouting,” in ACM SIGCOMM, 2005, pp.

1–12.

[67] A. Gurney and T. Griffin, „Lexicographic products in metarouting,” inNetwork Protocols, IEEE International Conference on, 2007, pp. 113–122.

[68] C.-K. Chau, R. Gibbens, and T. G. Griffin, „Towards a unified theory of policy-based routing,” in IEEE INFOCOM, 2006, pp. 1–12.

[69] M. Gondran and M. Minoux, Graphs, Dioids and Semirings: New Models and Algorithms, 1st ed., ser. Operations Research/Computer Science Interfaces Series. New York: Springer Publishing Company, 2008.

[70] W. Wu, Packet Forwarding Technologies. Auerbach, 2008.

[71] A. McAuley and P. Francis, „Fast routing table lookup using CAMs,” in IEEE INFOCOM, 1993, pp. 1382–1391.

[72] S. Nilsson and G. Karlsson, „IP-address lookup using LC-tries,” IEEE JSAC, vol. 17, no. 6, pp. 1083 –1092, 1999.

[73] G. Cheung and S. McCanne, „Optimal routing table design for IP address lookups under memory constraints,” in IEEE INFOCOM, 1999, pp. 1437–

1444.

[74] M. Bando, Y.-L. Lin, and H. J. Chao, „FlashTrie: Beyond 100-Gb/s IP route lookup using hash-based prefix-compressed trie,” IEEE/ACM Trans. Netw., vol. 20, no. 4, pp. 1262–1275, 2012.

[75] P. Gupta, B. Prabhakar, and S. P. Boyd, „Near optimal routing lookups with bounded worst case performance,” inIEEE INFOCOM, 2000, pp. 1184–1192.

[76] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, „Small forwarding tables for fast routing lookups,” in ACM SIGCOMM, 1997, pp. 3–14.

[77] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, „Longest prefix matching using Bloom filters,” in ACM SIGCOMM, 2003, pp. 201–212.

[78] R. Draves, C. King, S. Venkatachary, and B. Zill, „Constructing optimal IP routing tables,” in IEEE INFOCOM, 1999.

[79] W. Eatherton, G. Varghese, and Z. Dittia, „Tree bitmap: Hardware/software IP lookups with incremental updates,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp. 97–122, 2004.

[80] S. Han, K. Jang, K. Park, and S. Moon, „PacketShader: a GPU-accelerated software router,” in ACM SIGCOMM, 2010, pp. 195–206.

[81] J. Hasan and T. N. Vijaykumar, „Dynamic pipelining: Making IP-lookup truly scalable,” in ACM SIGCOMM, 2005, pp. 205–216.

[82] I. Ioannidis and A. Grama, „Level compressed DAGs for lookup tables,”

Comput. Netw., vol. 49, no. 2, pp. 147–160, 2005.

[83] Y. Liu, S. O. Amin, and L. Wang, „Efficient FIB caching using minimal non-overlapping prefixes,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 1, pp.

14–21, Jan. 2012.

[84] K. Sklower, „A tree-based packet routing table for Berkeley UNIX,” Technical Report, Berkeley, 1991.

[85] H. Song, J. Turner, and J. Lockwood, „Shape shifting tries for faster IP route lookup,” in IEEE ICNP, 2005, pp. 358–367.

[86] V. Srinivasan and G. Varghese, „Faster IP lookups using controlled prefix expansion,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 1, pp. 1–10, 1998.

[87] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh, J. Wang, and P. Francis, „SMALTA: Practical and near-optimal FIB aggregation,” in ACM CoNEXT, 2011, pp. 1–12.

[88] M. Zec, L. Rizzo, and M. Mikuc, „DXR: Towards a billion routing lookups per second in software,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 5, pp.

29–36, 2012.

[89] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, „Scalable high speed IP routing lookups,” inACM SIGCOMM, 1997, pp. 25–36.