• Nem Talált Eredményt

Thesis 3.2 Dynamic indirect lighting with precomputed light paths

9.3 Thesis Group 3. Ray reuse with virtual light sources

9.3.2 Thesis 3.2 Dynamic indirect lighting with precomputed light paths

points to reference points, and the light appearing at reference points due to unit irradiance arriving at an entry point is stored in a precomputed Light Path Map. The computation of the LPM uses the virtual light sources method itself. When rendering the scene, LPM entries can be combined according the to actual lighting, yielding indirect illumination results at reference points. For surface points between reference points, the results are interpolated. The algorithm works on the GPU, offering real-time indirect illumination. [I1, J1, I7, D4, B1]

Own publications

[B1] L. Szirmay-Kalos, L. Sz´ecsi, and M. Sbert. GPU-based Techniques for Global Illumination Effects. Morgan & Claypool, San Francisco, USA, 252 pps. 2008.

Citations: 2.

[D1] L. Sz´ecsi. An Effective Implementation of the K-D Tree. in Graphics Pro-gramming Methods (editor: Jeff Lander), Charles River Media, Hingham, Massachusetts, pp 315-325, 2003. Citations: 5.

[D2] L. Sz´ecsi. Alias-free Hard Shadows with Geometry Maps. in ShaderX5: Advanced Render-ing Techniques (editor: Wolfgang Engel), Charles River Media, HRender-ingham, Massachusetts, pp 219-237, 2007.

[D3] L. Sz´ecsi. and K. Arman. Procedural Ocean Effects. in ShaderX6: Advanced Rendering Techniques (editor: Wolfgang Engel), Charles River Media, Hingham, Massachusetts, pp 331-350, 2008.

[D4] L. Sz´ecsi, L. Szirmay-Kalos, and M. Sbert. Interactive Global Illumina-tion with Precomputed Radiance Maps. in ShaderX6: Advanced Rendering Techniques (editor: Wolfgang Engel), Charles River Media, Hingham, Mas-sachusetts, pp 401-410, 2008.

[D5] L. Sz´ecsi. Instant Radiosity with GPU Photon Tracing and Approximate Indirect Shadows. in ShaderX7: Advanced Rendering Techniques (editor:

Wolfgang Engel), Charles River Media, Hingham, Massachusetts, pp 479-494, 2009.

[F1] A. Barsi, L. Szirmay-Kalos, and L. Sz´ecsi. Image-based Illumination on the GPU. Machine Graphics and Vision, Vol 14., No 2., pp 159-169, 2006. Citations: 3.

[F2] M. Sbert, L. Sz´ecsi, and L. Szirmay-Kalos. Real-time Light Animation. Com-puter Graphics Forum, Vol 23., No 3., pp 291-299, 2004. Citations: 8. IF:

0.801

[F3] L. Sz´ecsi, M. Sbert, and L. Szirmay-Kalos. Combined Correlated and Impor-tance Sampling in Direct Light Source Computation and Environment Map-ping. Computer Graphics Forum, Vol 23., No 3., pp 585-593, 2004. Citations:

12. IF: 0.801

[F4] L. Sz´ecsi and L. Szirmay-Kalos. Efficient Approximate Visibility Testing Using Occluding Spheres. Journal of WSCG, Vol 12., No 3., pp 435-442, 2004.

[F5] L. Sz´ecsi, L. Szirmay-Kalos, and Cs. Kelemen. Variance Reduction for Russian Roulette. Journal of WSCG, Vol 11. No 3., pp 456-463, 2003.

[F6] L. Szirmay-Kalos, T. Umenhoffer, B. T´oth, L. Sz´ecsi and M. Sbert. Volumetric Ambient Occlusion. IEEE Computer Graphics and Applications, pp. 1-13.

2009. IF: 1.398

90

OWN PUBLICATIONS 91 [F7] L. Szirmay-Kalos, T. Umenhoffer, G. Patow, L. Sz´ecsi and M. Sbert. Specular Effects on

the GPU: State of the Art. Computer Graphics Forum, 26:1 pp. 1-24. 2009. IF: 1.107 [F8] L. Szirmay-Kalos and L. Sz´ecsi. Deterministic Importance Sampling with Error Diffusion.

Computer Graphics Forum, 28:4 pp. 1-11. 2009.

[I1] L. Sz´ecsi, L. Szirmay-Kalos, and M. Sbert. Light Animation with Precomputed Light Paths on the GPU. Graphics Interface 2006, Quebeck, Canada. pp 187-194. 2006. Citations: 4.

[I2] L. Sz´ecsi. The hierarchical ray engine. Proceedings of WSCG (Full papers), 2006.

[I3] Sz. Czuczor, L. Szirmay-Kalos and L. Sz´ecsi. Photon map gathering on the GPU. Pro-ceedings of Eurographics (short papers), pp 117-120. 2005. Citations: 1.

[I4] L. Sz´ecsi and L. Szirmay-Kalos. Improved Indirect Photon Mapping with Weighted Im-portance Sampling. Proceedings of Eurographics (short paper), pp 45-52. 2003.

[I5] L. Sz´ecsi and B. Benedek. Accelerating Animation Through Verification of Shooting Walks.

Spring Conference on Computer Graphics, Budmerice, pp 255-261. 2003. Citations: 3.

[I6] L. Szirmay-Kalos, V. Havran, B. Benedek, and L. Sz´ecsi. On the Efficiency of Ray-shooting Acceleration Schemes. Spring Conference on Computer Graph-ics, Budmerice, pp 255-261. 2003. Citations: 21.

[I7] T. Umenhoffer, L. Szirmay-Kalos, L. Sz´ecsi, B. T´oth, and M. Sbert. Partial, Multi-scale Precomputed Radiance Transfer. Spring Conference on Computer Graphics, Budmerice, pp. 87-94. 2008.

[I8] L. Szirmay-Kalos, L. Sz´ecsi, and A. Penzov. Importance Sampling with Floyd-Steinberg Halftoning. Proceedings of Eurographics (short papers), pp 69-72. 2008.

[J1] L. Sz´ecsi. Conservative rasterization of texture atlases. III. Hungarian Con-ference on Computer Graphics and Geometry, Budapest, Hungary, pp 79-85.

2005.

[J2] L. Sz´ecsi and B. Benedek. Improvements on the kd-tree. I. Hungarian Confer-ence on Computer Graphics and Geometry, Budapest, Hungary, pp 165-172.

2002.

[J3] B. Benedek and L. Sz´ecsi. Performance Improvements of Rendering Caustics using Photon Maps in Interactive Ray Tracing. I. Hungarian Conference on Computer Graphics and Geometry, Budapest, Hungary, pp 207-211. 2002.

[J4] L. Sz´ecsi. Procedural Ocean Waves. IV. Hungarian Conference on Computer Graphics and Geometry, Budapest, Hungary, pp 80-87. 2007.

[J5] L. Sz´ecsi and K. Ralovich. Loose kd-trees on the GPU. IV. Hungarian Con-ference on Computer Graphics and Geometry, Budapest, Hungary, pp 94-101.

2007.

[J6] L. Sz´ecsi, L. Szirmay-Kalos, P. Anton. Environment mapping with halftoning 7th Con-ference of the Hungarian Association for Image Processing and Pattern Recognition. Bu-dapest, Hungary, pp. 1-9. 2009.

[H1] L. Szirmay-Kalos, L. Sz´ecsi, and M. Sbert. GPUGI: Global Illumination Effects on the GPU. Eurographics Tutorial, 2006. Citations: 4.

Bibliography

[AK89] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. In Andrew S. Glassner, editor,An Introduction to Ray Tracing, pages 201–262. Academic Press, London, 1989.

[AK90] J. Arvo and D. Kirk. Particle transport and image synthesis. InComputer Graphics (SIG-GRAPH ’90 Proceedings), pages 63–66, 1990.

[ARBJ03] S. Agarwal, R. Ramamoorthi, S. Belongie, and H. W. Jensen. Structured importance sam-pling of environment maps. ACM Trans. Graph., 22(3):605–612, 2003.

[ASK00] G. Antal and L. Szirmay-Kalos. Finding Good Termination Probability for Random-walks.

InSpring Conference of Computer Graphics ’00, 2000.

[Bea93] Ph. Bekaert and et al. Renderpark. Technical report, 1993.

http://www.cs.kuleuven.ac.be/cwis/ research/graphics/RENDERPARK/.

[Bek99] P. Bekaert. Hierarchical and stochastic algorithms for radiosity. PhD thesis, University of Leuven, 1999.

[Bow81] A. Bowyer. Computing Dirichlet tessellations*.The Computer Journal, 24(2):162–166, 1981.

[BP01] G. Besuievsky and X. Pueyo. A Monte Carlo method for accelerating the computation of animated radiosity sequences. InProceedings of Computer Graphics International 2001, pages 201–208, 2001.

[BS96] G. Besuievsky and M. Sbert. The multi-frame lighting method - a Monte-Carlo based solution for radiosity in dynamic environments. InRendering Techniques ’96, pages pp 185–194, 1996.

[BSH02] P. Bekaert, M. Sbert, and J. Halton. Accelerating path tracing by re-using paths. In Proceedings of Workshop on Rendering, pages 125–134, 2002.

[Che90] S. E. Chen. Incremental Radiosity: An Extension of Progressive Radiosity to an Inter-active Image Synthesis System. Computer Graphics (ACM SIGGRAPH ’90 Proceedings), 24(4):135–144, August 1990.

[CHH02] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In Proc. Graph. Hw.

2002, pages 1–10, 2002.

[Chr00] P. Christensen. Faster photon map global illumination.Journal of Graphics Tools, 4(3):1–10, 2000.

[CLSS97] P. H. Christensen, D. Lischinski, E. J. Stollnitz, and D. H. Salesin. Clustering for glossy global illumination. ACM Transactions on Graphics, 16(1):3–33, 1997.

[CW88] J. Cleary and G. Wywill. Analysis of an algorithm for fast ray tracing using uniform space subdivision. The Visual Computer, 4(2):65–83, 1988.

[dB92] M. de Berg.Efficient Algorithms for Ray Shooting and Hidden Surface Removal. PhD thesis, Rijksuniversiteit te Utrecht, The Nederlands, 1992.

[DBMS02] K. Dmitriev, S. Brabec, K. Myszkowski, and H-P. Seidel. Interactive global illumination using selective photon tracing. InRendering Techniques 2002 (Proceedings of the Thirteenth Eurographics Workshop on Rendering), June 2002.

[Deb98] P. Debevec. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. InComputer Graphics (ACM SIGGRAPH ’98 Proceedings), pages 189–198, 1998.

92

BIBLIOGRAPHY 93 [DKNY96] Y. Dobashi, K. Kaneda, H. Nakatani, and H. Yamashita. Method for Calculation of Sky Light Luminance Aiming at an Interactive Architectural Design. Computer Graphics Forum, 15(3):C109–C118, 1996.

[DS97] D. Drettakis and F. X. Sillion. Interactive update of global illumination using a line-space hierarchy. Computer Graphics (ACM SIGGRAPH ’97 Proceedings), 31(3):57–64, 1997.

[FS05] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a gpu raytracer. In HWWS ’05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-ics hardware, pages 15–22, New York, NY, USA, 2005. ACM Press.

[FTK86] A. Fujimoto, T. Takayuki, and I. Kansei. Arts: Accelerated ray-tracing system. IEEE Computer Graphics and Applications, 6(4):16–26, 1986.

[Gla84] A. S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and Appli-cations, 4(10):15–22, 1984.

[Gla89] A. S. Glassner. An Introduction to Ray Tracing. Academic Press, London, 1989.

[Gla95] A. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers, Inc., San Francisco, 1995.

[Hav01] V. Havran. Heuristic Ray Shooting Algorithms. Czech Technical University, Ph.D. disserta-tion, 2001.

[HS67] H. C. Hottel and A. F. Sarofin. Radiative Transfer. McGraw-Hill, New-York, 1967.

[HSHH07] D.R. Horn, J. Sugerman, M. Houston, and P. Hanrahan. Interactive kd tree GPU raytracing.

InProceedings of the 2007 symposium on Interactive 3D graphics and games, pages 167–174.

ACM New York, NY, USA, 2007.

[Hub96] P.M. Hubbard. Approximating polyhedra with spheres for time-critical collision detection.

ACM Transactions on Graphics (TOG), 15(3):179–210, 1996.

[Jen96] H. W. Jensen. Global illumination using photon maps. In Rendering Techniques ’96, pages 21–30, 1996.

[JSP+01] H. W. Jensen, M. Stark, S. Premoze, P. Shirley, F. Durand, and J. Dorsey. A physically-based night sky model. InComputer Graphics Proceedings, Annual Conference Series (SIGGRAPH 2001), August 2001.

[Kaj86] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–150, 1986.

[Kel97a] A. Keller. Instant radiosity. Fachbereich Informatik, Univ., 1997.

[Kel97b] A. Keller. Instant radiosity.Computer Graphics (SIGGRAPH ’97 Proceedings), pages 49–55, 1997.

[Kel01a] A. Keller. Correlated sampling. Closing section of the Dagstuhl Seminar on Stochastic Methods in Rendering, No. 01261, 2001.

[Kel01b] A. Keller. Hierarchical Monte Carlo image synthesis. Mathematics and Computers in Sim-ulation, 55(1–3):79–92, 2001.

[KHM+98] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE transactions on Visualization and Computer Graphics, 4(1):21–36, 1998.

[KK03] T. Kollig and A. Keller. Efficient illumination by high dynamic range images. InEurographics Symposium on Rendering, pages 45–51, 2003.

[KM85] RG Karlsson and JI Munro. Proximity on a grid. In Proceedings on STACS 85 2nd an-nual symposium on theoretical aspects of computer science table of contents, pages 187–196.

Springer-Verlag New York, Inc. New York, NY, USA, 1985.

[KSC76] PE King-Smith and D. Carden. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. Journal of the Optical Society of America, 66(7):709–717, 1976.

BIBLIOGRAPHY 94 [LGS05] S.K. L´aszl´o, A. Gy¨orgy, and M. Sbert. Go with the Winners Strategy in Path Tracing.

Journal of WSCG, 2005.

[LK97] T.K. Lau and I. King. Comparison of several partitioning methods for information retrieval in image databases. In Proceedings of the 1997 International Symposium on Multimedia Information Processing (ISMIP’97, pages 215–220, 1997.

[LW94] E. Lafortune and Y. D. Willems. Using the modified Phong reflectance model for physically based rendering. Technical Report RP-CW-197, Department of Computing Science, K.U.

Leuven, 1994.

[M´ar95] G. M´arton. Stochastic Analysis of Ray Tracing Algorithms. PhD thesis, Department of Process Control, Technical University of Budapest, Budapest, Hungary, 1995.

[Max91] Nelson L. Max. Unified Sun and Sky Illumination for Shadows Under Trees. CVGIP:

Graphical Models and Image Processing, 53(3):223–230, May 1991.

[MGK05] J. Meseth, M. Guthe, and R. Klein. Interactive fragment tracing. The Visual Computer, 21(8):591–600, 2005.

[MPT03] Ignacio Martn, Xavier Pueyo, and Dani Tost. Frame-to-frame coherent animation with two-pass radiosity. IEEE Transactions on Visualization and Computer Graphics, 9(1):70–84, 2003.

[MT97] T. M¨oller and B. Trumbore. Fast, minimum storage ray-triangle intersection. Journal of Graphics Tools, 2(1):21–28, 1997.

[MTAS01] K. Myszkowksi, T. Tawara, H. Akamine, and H-P. Seidel. Perception-guided global illumina-tion soluillumina-tion for animaillumina-tion. InComputer Graphics Proceedings, Annual Conference Series, 2001 (ACM SIGGRAPH 2001 Proceedings), pages 221–230, August 2001.

[NDR96] J. Nimeroff, J. Dorsey, and H. Rushmeier. Implementation and analysis of a global illu-mination framework for animated environments. IEEE Transactions on Visualization and Computer Graphics, 2(4), 1996.

[Nie92] H. Niederreiter.Random number generation and quasi-Monte Carlo methods. SIAM, Pennsil-vania, 1992.

[NNPP98] L. Neumann, A. Neumann, J. Prikryl, and W. Purgathofer. The constant radiance term.

Machine Graphics & Vision, 7(3):535–549, 1998.

[NRH+77] F.E. Nicodemus, J.C. Richmond, J.J. Hsia, IW Ginsberg, and T. Limperis. Geometrical considerations and nomenclature for reflectance. National Bureau of Standards Washington, DC, 1977.

[RAH07] D. Roger, U. Assarson, and N. Holzschuch. Whitted ray-tracing for dynamic scenes using a ray-space hierarchy on the GPU. Rendering Techniques, pages 99–110, 2007.

[RGK+08] T. Ritschel, T. Grosch, MH Kim, HP Seidel, C. Dachsbacher, and J. Kautz. Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph.(Proc.

of SIGGRAPH ASIA 2008), 27(5), 2008.

[RL00] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system for large meshes. InProceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 343–352. ACM Press/Addison-Wesley Publishing Co. New York, NY, USA, 2000.

[RW80] S.M. Rubin and T. Whitted. A 3-dimensional representation for fast rendering of complex scenes. In Proceedings of the 7th annual conference on Computer graphics and interactive techniques, pages 110–116. ACM New York, NY, USA, 1980.

[SACM96] M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta. A standard default color space for the Internet–sRGB. Microsoft and Hewlett-Packard Joint Report, Version, 1, 1996.

[San04] L.A. Santalo.Integral geometry and geometric probability. Cambridge University Press, 2004.

[SCH04] M. Sbert, F. Castro, and J. Halton. Reuse of paths in light source animation. In CGI Conference, 2004.

BIBLIOGRAPHY 95 [SK99] L. Szirmay-Kalos. Monte-Carlo Methods in Global Illumination. Institute of Computer Graphics, Vienna University of Technology, Vienna, 1999. http:

//www.iit.bme.hu/˜szirmay/script.pdf.

[SKALP05] L´aszl´o Szirmay-Kalos, Barnab´as Asz´odi, Istv´an Laz´anyi, and M´aty´as Premecz. Approximate ray-tracing on the gpu with distance impostors. InComputer Graphics Forum, Proceedings of Eurographics 2005, volume 24, Dublin, Ireland, 2005. Eurographics, Blackwell.

[SKCA01] L. Szirmay-Kalos, F. Csonka, and Gy. Antal. Global illumination as a combination of con-tinuous random walk and finite-element based iteration. Computer Graphics Forum (Euro-graphics’2001), 20(3):288–298, 2001.

[SKe95] L. Szirmay-Kalos (editor). Theory of Three Dimensional Computer Graphics. Akad´emia Kiad´o, Budapest, 1995. http://www.iit.bme.hu/˜szirmay.

[SKKA01] L. Szirmay-Kalos, L. Kov´acs, and A. Abbas. Testing global illumination algorithms with analytically computable scenes. InWinter School of Computer Graphics 2001, Plzen, Czech Republic, 2001. http//www.iit.bme.hu/˜szirmay.

[SKM98] L. Szirmay-Kalos and G. M´arton. Worst-case versus average-case complexity of ray-shooting.

Journal of Computing, 61(2):103–131, 1998.

[Sob91] I. Sobol. Die Monte-Carlo Methode. Deutscher Verlag der Wissenschaften, 1991.

[SSG+00] M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G. Drettakis, and F. Sillion.

Efficient glossy global illumination with interactive viewing. Computer Graphics Forum, 19(1):13–25, 2000.

[SSH03] P.P. Sloan, J.M. Snyder, and J.D. Hall. Clustered principal components for precomputed radiance transfer, August 15 2003. US Patent App. 10/641,472.

[SWZ96] P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo techniques for direct lighting calcu-lations. ACM Transactions on Graphics, 15(1):1–36, 1996.

[Tha00] U. Thatcher. Loose octrees. Game Programming Gems, pages 444–453, 2000.

[TPWG02] P. Tole, F. Pellicini, B. Walter, and D. P. Greenberg. Interactive global illumination in dynamic scenes. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2002 Annual Conference), 21(3):537–546, 2002.

[Vea97] E. Veach.Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University, http://graphics.stanford.edu/papers/veach thesis, 1997.

[VG95] E. Veach and L. Guibas. Optimally combining sampling techniques for Monte Carlo render-ing. InComputer Graphics Proceedings, Annual Conference Series, 1995 (ACM SIGGRAPH

’95 Proceedings), pages 419–428, 1995.

[Wal04] Ingo Wald.Realtime Ray Tracing and Interactive Global Illumination. PhD thesis, Computer Graphics Group, Saarland University, 2004.

[War91] G. Ward. Real pixels. In James Arvo, editor, Graphics Gems II, pages 80–83. Academic Press, Boston, 1991.

[Wat81] DF Watson. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes*. The computer journal, 24(2):167–172, 1981.

[WFA+05] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D.P. Greenberg. Lightcuts: a scalable approach to illumination. Proceedings of ACM SIGGRAPH 2005, 24(3):1098–1107, 2005.

[Whi80] T. Whitted. An improved illumination model for shaded display. Communications of the ACM, 23(6):343–349, 1980.

[WK06] C. W¨achter and A. Keller. Instant ray tracing: The bounding interval hierarchy. InRendering Techniques 2006: Eurographics Symposium on Rendering, Nicosia, Cyprus, June 26-28, 2006, page 139. Eurographics Association, 2006.

[WKB+02] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slussalek. Interactive global illumination using fast ray tracing. In13th Eurographics Workshop on Rendering, 2002.

BIBLIOGRAPHY 96 [WMS06] S. Woop, G. Marmitt, and P. Slusallek. B-kd trees for hardware accelerated ray tracing of dynamic scenes. InGraphics Hardware 2006: Eurographics Symposium Proceedings, Vienna, Austria, September 3-4, 2006, page 67. Eurographics Association, 2006.

[WRC88] G. Ward, F. Rubinstein, and R. Clear. A Ray Tracing Solution for Diffuse Interreflection.

Computer Graphics (ACM SIGGRAPH ’88 Proceedings), 22(4):85–92, August 1988.

Index

albedo, 7

balance heuristics, 11, 19, 67 barycentric coordinates, 37 bi-directional path tracing, 65

Bidirectional Reflectance Distribution Function, 6 BIH, 40

bounding interval hierarchy, 40 bounding volume hierarchy, 40 BRDF, 6

BVH, 40 clustered, 80

combined sample distribution, 11 compact representation, 41 conical-directional reflectance, 7 control variates, 25

Correlated sampling, 25

decomposition and importance sampling, 17 dependent sampling, 72

differential radiant power, 8

directional-hemispherical reflectance, 7 discontinuity buffer, 65

entry points, 75 fragmentation, 41 gathering walks, 8

generalized shadowing surface area, 48 importance sampling, 10

instant radiosity, 12, 65 inverse scattering density, 7 irradiance caching, 65 items, 75

IVM, 38 joining, 70 leaf list, 42

light path map, 75, 77 light paths, 8

light source sampling, 8 LPM, 75, 77

LPM pane, 75 luminance, 20

luminosity function, 20 main part separation, 25

multiple importance sampling, 11, 17, 18, 66, 67

next event estimation, 9 node texture, 42

PCA, 80 photon hit, 12 photon map, 65

point-to-polygon form-factor, 29 principal component analysis, 80 randomized reflected radiance, 12 ray casting, 6

ray shooting, 6

recursive ray tracing, 6 reference points, 75 root mean square, 4

sample importance resampling, 86 scattering density, 8

shooting walks, 8 splitting, 70 surface area, 46

teapot in the stadium, 40 unified shader architecture, 63 virtual light sources, 14, 65 virtual light sources method, 5 virtual point lights, 14

visibility factor, 8 weighted combination, 17

97

Nomenclature

α(f) weight of light paths from framef

αi(u) weighting functions of multiple importance sampling

Γ visibility masked geometric factor Λ number of representative wavelengths λ wavelength index; combination weight

~z(fi ) theith node of a light path from frame f

~zi theith node of a light path s shooting path

u point in multidimensional space

W(λ)i combined scattering density of sampling tech-niqueiat wavelength λ

y vector of light samples z light path

L domain of light surface points U multidimensional integral domain Z domain of light paths

differential radiant power

vpl differential radiant power arrving at a vir-tual point light

ν(~x, ω) environment visibility

ν(~x, ~y) point to point visibility factor domain of directions

ω direction

P solid angle of measurement Φ radiant power

Φe emitted radiant power Pr{·} probability

θ outgoing light angle θ0 incoming light angle

˜

a average albedo

~b barycentric coordinate vector

~b? barycentric coordinates of intersection

~c sphere center d~ ray direction

~e eye position

~n plane normal

~o ray origin

~q plane parameter vector

~q)† geometric inverse of the plane parameter vector with respect to the unit sphere

~vi position vector of theith vertex of a triangle

~x shaded point

~x? intersection point

~y light sample point

ξ geometric attenuation factor

a albedo

d distance D2[·] variance E[·] expected value f frame index

fr bidirectional reflection distribution function (BRDF)

G geometric factor g(u) main part function

h(~x, ω) directional visibility function

H(λ) luminosity weight of representative wave-lengthλ

L radiance

l length of a gathering path Le emitted radiance

Lrd radiance reflected due to direct illumination Lri radiance reflected due to indirect

illumina-tion

98