• Nem Talált Eredményt

3. Fenometria

3.2. Sztómák és funkciójuk

A mérsékelt égövben termesztett növények levélmérete rendkívül változó. A levéllemez nagyságáról és alakjáról már az előzőekben összefoglaló áttekintést nyújtottunk. A természetes fajösszetételű növényállományok levélzetéhez képest a szántóföldi növények levéllemeze vékony, de meglehetősen bonyolult szöveti felépítésű növényi szerv. A levelek élettani funkciója igen sokrétű. A következőkben csupán a gázcsereforgalommal kapcsolatos szervtani ismereteket rendszerezzük. A levéllemez vastagsága általában 2-4 mm, melyben a vízszállító szövetek igen változatosak, de tárgyalásuk nem feladatunk. Kizárólag a levéllemez külső fedőszövetével foglalkozunk, mert e szövetbe ágyazódnak a külső légtér és a növény belső terének

összekapcsolására szolgáló tracheák, vagy csatornák, amelyeken keresztül a gázcsere zajlik. A növényállomány vízforgalmában kiemelt fontosságú a levélből a légkörbe irányuló vízgőzáramlás, vagy transzspiráció. A másik fontos gázcsere a széndioxid-forgalom, amely a vízgőz mozgásával ellentétes irányban, a külső légtérből a színtestekhez, szállít széndioxidot, amelyet a növény a fotoszintézis során használ fel. A gázcsere levélmorfológiai képlete a sztóma. A sztóma élettanilag és ökológiailag szabályozott mozgást végez. A sztómamozgás a szubsztomatikus üregek feletti zárósejtek nyílásában, illetőleg záródásában nyilvánul meg.

A levél sztómasűrűsége növényfajonként, fajtánként változó. Tápanyag-ellátási kísérletek szerint a sztómasűrűség - viszonylag szűk értéktartományban - módosítható. Az azonos felső és alsó szövettani felépítettségű levéllemez esetén sztómák mindkét oldalon találhatók a bőrszövetben, az ún. epidermiszben.

Viszont, ha a levéllemez szöveti felépítése aszimmetrikus, sztómák csak a levéllemez egyik oldalán találhatók.

Amikor a sztómák a levéllemez alsó vagy hátoldalán - abaxiális – helyezkedéssel találhatók, a levéllemez felső oldalán - az adaxiális felületen - sztómák nincsenek. Vannak növényfajok, amelyeken a sztómák a levél mindkét oldalán megvannak. A 16. táblázat tájékoztatást nyújt a különböző termesztett növények sztómáinak elhelyezkedéséről és sűrűségéről.

A 16. táblázat szerint a sztómák eloszlása, illetve sűrűsége változó és fontos faji tulajdonság. A sztómamozgások élettani mechanizmusa összetett, amelyben elsődleges irányító szerepet a zárócellák és a szomszédos epidermisz-sejtek közötti turgor-differencia képezi. Amikor a zárócella turgorja növekszik a zárósejtek kinyílnak, turgor csökkenéskor pedig zárulnak. A turgornyítás és zárás tehát aktív iontranszport következtében létrejövő ozmoregulációs folyamat eredménye. Amikor a káliumionok a sztóma körüli cellákból a zárósejtekbe szállítódnak, a sztómák kinyílnak. A zárósejtek mozgásában és szabályozásában különböző kationok, illetőleg anionok (pl. Ca, Cl) játszanak szerepet. Az ionmozgásokat fitohormonok szabályozzák. A sztómák nyitása és záródása napszakos jelenség, de azt a növény alkalmazkodó-képessége és fejlettségi állapota is jelentős mértékben befolyásolja. A sztómákra gyakorolt hatások irányítják a CO2és a H2O körforgalmát is. A CO2körforgalomban a sztómákon a növény széndioxid-felvétele történik, míg a fotoszintézis során felszabaduló oxigén is a sztómákon távozik. A gázok mozgásirányát – így a vízgőzét is - a külső és belső parciális hőmérséklet emelkedésével a nappali nyitottság mértéke nő, majd a fajspecifikus, un. optimális hőmérséklet felett a sztómák fokozatosan bezárulnak. A termikus hatás nagyobb relatív nedvességtartalom esetén erőteljesebb, míg alacsonyabb nedvességtartalom mellett a nappali nyitottság már kisebb mértékű. A sztómamozgás közvetlenül hat a nettó fotoszintézisre. A 17. táblázat nyújt tájékoztatást a környezeti tényezők sztóma nyitottságra gyakorolt hatásáról.

A táblázat adatiból látható, hogy a növény vízforgalmában a levelek sztóma állapota és dinamikája jelentős szerepet játszik. A sztómák szerepe elsősorban a vízleadást szabályozza, mert a vízfelvétel a talajban játszódik le. A növény sztomatikus aktivitása és a transzspirációs vízmennyiség között szoros összefüggés van. A sztómatevékenység jellemzésével az optimális feltételek, továbbá a stressz-helyzetet kialakító környezeti tényezők jellemzése válik lehetővé.

Az energiaigényes transzspiráció a sztómazárósejtek alatti szubsztomatikus üregekben megy végbe, ahol a cseppfolyós víz gőz halmazállapotúvá válik és diffundálódik a légtér felé. A levél nedvességállapotának jellemzésére a vízpotenciál értéket alkalmazzák. A levélben a vízpotenciál a következő módon írható fel:

A talaj-növény-levegő rendszerben a gyökértől a légkör felé - a gyökéren, száron és levélen - a vízpotenciál gradiens folyamatosan növekszik, ami a víz növényi szerveken keresztüli levegőbe jutását eredményezi. A vízpotenciál értéke a levegőben akár -1 000 000 kPa-t is elérheti. A levél mezofilumában a víz még cseppfolyós halmazállapotú, majd gőzfázisban jut a szubsztomatikus térbe. A halmazállapot-változás energia felhasználással történik. Ettől kezdve a vízgőz mozgás sebességét a vízpotenciál már csak részben szabályozza, a sztómákból kilépő vízgőz terjedési sebességét pedig már tisztán aerodinamikai törvények szabályozzák. A fito- és aerotranszfer folyamatokkal írható tehát le a transzspiráció. A leíráshoz a rendszer nedvességállapotát leíró fizikai mérőszámok és értékek szükségesek. A bonyolult folyamat leírásához egyszerűsítő feltételek is szükségesek. Az egyik egyszerűsítő feltétel az ún. egyenáramú analóg modell érvényességének az elfogadása.

Az analóg modell az Ohm-törvényére épül:

ahol: a potenciálkülönbségen vízpotenciál-különbséget értünk, vagy általában olyan tulajdonság gradienst, amely az áramlást, az anyagáthelyeződést fenntartja. Minthogy az anyag áthelyeződéskor különböző ellenállások lépnek fel (súrlódási, hidraulikai, elektromos, stb.), az ellenállás növekedése az áramlás sebességét csökkenti, ezáltal az áramlás, vagy az anyagáthelyeződés:

Az áramlás értelmezésünk szerint a transzspirációt, a vízgőz áthelyeződését, a potenciálkülönbség a vízpotenciál gradiensét, az ellenállás pedig a sztómanyitottságát jelenti. Minél kisebb a sztómanyitottság, az ellenállás vele arányosan megnő. Ezen az alapon beszélünk sztomatikus diffúziós ellenállásról a sztóma tevékenység aktivitásával kapcsolatosan. A növény vízforgalmi szempontból heterogén felépítésű és sztomatikus ellenállása pontról-pontra változik.

A levél vízleadása azonban nemcsak a sztómákon keresztül megy végbe, hanem az epidermiszen át is diffundál csekély mennyiségű vízgőz a levegőbe. Ezt a vízleadást kutikuláris diffúziónak nevezik, és intenzitását a kutikuláris diffúziós ellenállással írják le. Minél kisebb az ozmotikus potenciál, annál nagyobb a kutikuláris diffúziós ellenállás. A sztomatikus és a kutikuláris diffúzió együttesét tekintjük a levél transzspirációs folyamatának, amelyben a kutikuláris vízveszteség csak néhány százalékra tehető.

Míg a gyökér vízfelvételének mennyisége és sebessége a gyökér - talaj kölcsönhatás, a vízleadás nagysága és intenzitása pedig a levél és a környező levegő kölcsönhatásának függvénye. Ennek értelmében a levél transzspirációja:

A sztomatikus ellenállás megállapítása nem egyszerű. Általában porometrikus méréssel állapítják meg.

Az eddig felsorolt ellenállások mellett még a bőrszöveten keresztüli vízleadás sebességét szabályozó kutikuláris diffúziós ellenállást (rc) szükséges megemlíteni. Értéke a termesztett növényeknél nagy – eléri, vagy meghaladja a több száz s cm-1értéket:

A jobb oldali második tag a teljes nedves növényi felületre vonatkoztatott transzspiráció. Említést érdemel a sztómák alatti terek sejtfalának diffúziós ellenállása (rw), valamint a sejtfalak és a szubsztomatikus tér közötti ellenállás (ri), amelyek a vízpotenciálok hányadosával arányosak.

A növény transzspirációját meghatározó teljes rlellenállás az alábbi összefüggéssel írható fel:

Az összefüggésben szereplő diffúziós ellenállás értékek tág határok között változnak. A 18. táblázatban közöljük a különböző ellenállások értékeit. Minthogy a különböző ökológiai feltételekhez alkalmazkodott növények diffúziós ellenállása jelentősen eltér, a szárazságtűrő (xerofita) és a mérsékelt vízigényű (mezofita) növénycsoportokra jellemző értékek tartományát adjuk meg.

A növényi diffúziós ellenállások közül a sztomatikus ellenállás értéke a xerofiták a mezofiták esetében is viszonylag kicsi és így nem akadályozza a vízleadást. Ez azonban csak akkor van így, ha a talaj felvehető vízkészlete a transzspirációt csak kismértékben korlátozza. Gardner és Slatyer (1965) szerint a talaj kapilláris potenciája (ψt) és a levél vízpotenciájának (ψl) különbsége, valamint a talaj és a növény diffúziós ellenállásának (Rt, Rn) összege reprezentálja a növény vízellátottságát:

Minél kisebb a két ellenállás összege, annál jobb a vízellátottság. Az ellenállások változásának szabályos napi menete van. Sokrétű vizsgálat bizonyítja, hogy a délutáni órákban a levélellenállás jelentős mértékben növekszik. Amennyiben a talaj nedvességtartalma megfelelő, az ellenállás-növekedés csak a késő délutáni órákban következik be. Ha a talaj száraz és az ellenállás a kora reggeli órákban még minimális 0,2-0,8 [s m-1] értéke a délutáni napszakban már a sokszorosára emelkedik.

A fenti összefüggések alapján látható, hogy a növényállományok sztomatikus diffúziós ellenállását célszerű megállapítani. Nem a növényegyed, hanem a növényállomány diffúziós ellenállása alkalmas a növényállomány

vízforgalmának jellemzésére. A növényállomány és a légkör közötti kölcsönhatás és a vízellátottság kifejezésére az ún. állomány-ellenállás (Canopy Resistance) használatos, amelyet Monteith vezetett be 1963-ban:

Ezen a módon jellemezhető legegyszerűbben és fizikailag a legmegalapozottabban a sztómarendszer állapota és állapotának időbeli dinamikája.

Az utóbbi időben az ellenállás reciprokát is alkalmazzák a sztómatevékenység jellemzésére, melyet konduktanciának (m s-1) neveznek. A konduktancia fejezi ki, hogy a sztómák nyitottsága milyen mértékben segíti elő a széndioxid beáramlást, illetve a vízgőz kiáramlást.