• Nem Talált Eredményt

Színkeverési módok

In document 3D megjelenítési technikák (Pldal 53-58)

technikák optikai és interferometriai háttere

1. A háromdimenziós megjelenítők - a feladat megfogalmazásamegfogalmazása

3.5. Színkeverési módok

A színkeverés során különböző spektrális összetételű elektromágneses sugárzásokat hozunk egymással kapcsolatba azzal a céllal, hogy újabb színeket hozzunk létre. A színkeverés két fő típusát különböztetjük meg, az additív (összeadó) és a szubtraktív (kivonó) színkeverést. Megjegyzendő, hogy a szakirodalom több fajta –

A háromdimenziós technikák optikai és interferometriai háttere

nem igazán elterjedt – színkeverést is megkülönböztet [2.11.]. Párhuzamos színkeverés esetén, két vagy több szűrővel létrehozott akromatikus színinger egyidejűleg esik egy síknak ugyanarra a pontjára, és ezt látja az észlelő. Soros színkeverésnél egyetlen akromatikus fényinger két vagy több színes rétegen, egymás után halad át, az észlelő ezt is egy sík ugyanazon pontjában figyeli meg. Időbeli színkeverés esetén színingerek felváltva lépnek be a megfigyelő szemébe, de olyan frekvenciával, hogy az csak a keveréküket észleli. Foltok színkeverésekor kis alakzatokat készítünk úgy, hogy a megfigyelő nem tudja őket felbontani, így csak a színingerek keverékét látja.

3.5.1. Az additív színkeverés

Az additív színkeverés minden esetben színes fények keverését jelenti úgy, hogy további fény esetén világosabb fényt kapunk. Mivel az ilyen színes fények összeadódnak, összeadó színkeverésnek is nevezzük ezt az esetet.

Szemléltetésének legegyszerűbb módja, ha három vetítőegység elé külön-külön sugárutakba vörös, zöld és kék üveget helyezünk, és ezeket egy fehér felületre vetítjük úgy, hogy a színes alakzatok részben fedjék egymást.

Ebben az esetben az egymásra kerülő színek egy világosabb színt hoznak létre, a három szín pedig egymással keverve fehéret ad. A vörös és zöld összeadása sárgát, a vörös és kék bíbort, míg a zöld és kék türkizt eredményez. Mivel itt a sugárzások, vagyis a színek, és nem színes anyagok keverednek, az additív színkeverést optikai színkeverésnek is nevezzük. Additív színkeverés valósul meg akkor is, amikor a szem érzékelőjének ugyanazon helyét gyors időközökben, váltakozó színű fénysugarak érik, vagy a különféle színű felületrészeket a felbontóképességnél kisebb látószög alatt nézzük. Ekkor a szem a színeket már nem tudja különválasztani. A nyomdaiparban alkalmazott többszínnyomás felületén a szem nem ismeri fel a raszterpontok színét külön-külön, hanem csak a keverékszínt.

Összefoglalva, az additív, vagy más néven összeadó színkeverés elnevezése onnan származik, hogy a jelenség létrehozása szempontjából kiindulásnak tekinthető alapszínek fényenergiái összeadódnak. Az ilyen típusú színkeverés leggyakrabban tapasztalható esete például az optikai rendszerű, több vetítőegységből egy közös ernyőre történő vetítés. Ennek az esetnek feleltethető meg a színes monitor vagy televízió is, amelynél a forrásból kilépő elektronok vezérelt pályákon haladva a képcső elülső üvegfala belső felületén található speciális anyagnak ütközve színpontokat hoznak létre. Ha az additív színkeverés alapszíneinek megfelelő anyagokat gerjesztünk, akkor megfelelő elrendezés és méret esetén, kellő távolságból szemlélve, és a részleteket már nem felbontva additív keverékszínek jönnek létre a szemben. Hasonló a helyzet az autotípia (rácsfelbontásos) nyomtatásnál is, amikor az alapszínekkel nyomtatott pontok, azok közelsége miatt nem bonthatók fel az emberi szem által. Kicsit más eset, amikor a színes felületrészek gyors időbeni váltásakor,a tehetetlenség miatt jön létre az additív színkeverés. Az összeadó színkeverés mindegyik változatára jellemző, és az bennük a közös, hogy a különböző alapszínekből származó fénysugarak a szemben gyakorlatilag egy időben egy színérzékelő elemet ingerelnek.

2.3. ábra - Az additív színkeverés

3.5.2. A Grassmann-törvények

A Grassmann-törvények [2.12.] a színek additív keverésének törvényszerűségeit írják le. Kimondják,

• hogy a színjellemzők meghatározására három független változó szükséges és elegendő,

• hogy az additív színkeverés szempontjából a színek jellemzői számítanak, és nem azok spektrális összetétele,

• ha a színek additív színkeverésében egy vagy több összetevőt folyamatosan változtatunk, az eredményül kapott jellemzők is folyamatosan változnak.

A Grassmann-törvények nem alkalmazhatók a perifériás, illetve a mezopos látás esetére, és akkor sem érvényesek, ha a vakítás jelensége lép fel. A jelentőségük megértése szempontjából értelmezésük különleges fontossággal bír. Az 1853-ban publikált Grassmann törvények azt jelentik a számunkra, hogy a keverékfény színét az összetevők színe szabja meg, és nem függ azok spektrális összetételétől. A gyakorlatban ez például azt jelenti, hogy a vörös és a zöld színek additív keverésével létrehozható sárga nem függ attól, hogy a létrehozó színkomponensek monokromatikusak-e, vagy sem, például keverékszínek. Minden színt három, matematikailag értelmezhető paraméterrel, a színezettel, a telítettséggel és az intenzitással lehet meghatározni. A keverés során az egyik összetevő folytonos változtatásakor a keverékszín is folytonosan változik, diszkrét lépések nélkül.

Összefoglalva és kissé más megfogalmazásban tehát a Grassmann-törvények kimondják, hogy egy szín leírásához három egymástól független adat szükséges és elégséges. A gyakorlatban ez például a színezetet, a telítettséget és a világosságot jelenti. Az adatok számára vonatkozó megkötés szerint három adat azért szükséges, mert a színlátás folyamata három különböző spektrális érzékenységű detektáló elemhez köthető. Az jellemzők kölcsönös függetlensége biztosítja, hogy azok közül kettőből matematikai módszerekkel a harmadik ne legyen meghatározható. Megjegyzendő, hogy a példaként említett világosság a három érzékelő elemtípus összegzett ingerültségi szintjét jelenti, valamint a becsapódó energia és a hozzá tartozó érzet logaritmikus összefüggést mutat. A fentebb tárgyalt metamer színek összeadó módszerrel kikevert színei szintén metamerek.

Ennek gyakorlati jelentősége különösen nagy, mivel ez biztosítja, hogy például nyomtatásnál az előírtnak megfelelő színt állítsuk elő akkor is, ha a spektrális összetételek különbözőek. A keverés során a paraméterek folyamatos változtatásakor tapasztalható, az eredményül kapott színre vonatkozó jellemzők szintén folyamatosan változnak. Ennek következménye, hogy az additív színkeverésnél az egyik színből mindig el tudunk jutni egy másikba, a köztük lévő színárnyalatokon keresztül.

2.4. ábra - Hermann Günther Grassmann (1809-1877) [2.26.]

3.5.3. A szubtraktív színkeverés

A kivonó, vagy szubtraktív színkeverés esetén a fénysugár útjába kerülő színes anyagok módosítják annak spektrális összetételét. Ebben az esetben – az additive színkeveréstől eltérően – már egy meglévő fehér színből indulunk ki, és annak tulajdonságait az adott spektrális tartományban elnyelő vagy szóró eszközzel módosítjuk.

Erre a célra a legtöbb esetben színszűrőket alkalmazunk, melyekre jellemző, hogy az összes színárnyalatot tartalmazó fehér fényből bizonyos hullámhossztartományokat átengednek, a többit viszont elnyelik, tehát a fehérből azokat kivonják, ez az új szín keletkezésének módja. A szubtraktív színkeverés törvényszerűségei természetesen az additív változaton alapulnak, arra vezethetők vissza.

A háromdimenziós technikák optikai és interferometriai háttere

A szubtraktív színkeverés leggyakrabban a festékek keverése, vagy azok egymásra történő nyomtatása során jön létre. A kivonó színkeverés egyik legismertebb, és szinte mindenki által megtapasztalható esete a színes film, illetve a színes fénykép keletkezése. Az alapszínek a cián, a magenta (bíborvörös) és a sárga, melyek teljes keveréke a fekete színt adja. A színhívásos elven működő színes filmek esetén a hordozóra egymás felett, az egyes additív színekre érzékeny anyaggal kevert zselatinréteget visznek fel. A fényérzékeny anyag általában valamilyen ezüsthalogén, mely az expozíció során energiát nyel el, és az érzékenységének megfelelő tartományban beérkező sugárzás hatására benne fotofizikai változások következnek be. Ennek során az ezüsthalogénben elemi ezűstcsíra gócok keletkeznek az elnyelt energiával arányos mennyiségben. Ez az úgynevezett látens kép, melyet egy színhívásnak vetnek alá, amely során az adott rétegben, a keletkezett elemi ezüstcsíra gócok mentén, az expozíció mennyiségével arányosan ezüst redukálódik ki, és a réteg érzékenységének megfelelő kiegészítő színű színezék is keletkezik. Következő lépésben az ezüstöt eltávolítva, megmarad a keletkezett színezék, amely a rajta áthaladó fehér fényből az eredeti szín kiegészítőjét hozza létre.

A fenti esetben negatív filmet kapunk. A pozitív, az úgynevezett diakidolgozás esetén, az első lépés egy egyszerű redukció, amely során a rétegekben a beexponált helyeken ezüst keletkezik. Az ezüst eltávolítását követően a rétegekben az összes megmaradt ezüsthalogént beexponálják, majd ezután következik a színhívás, amely így az eredeti színeket fogja eredményezni, azaz pozitív kép keletkezik.

2.5. ábra - A szubtraktív színkeverés

Nyomdatechnikában negyedik színként általában a feketét használják, mivel a nyomtatásban viszonylag sok a fekete színű felület. A három alapszínből történő összenyomásnál jobb minőségű a feketével történő nyomtatás.

A valóságban általában nem tisztán additív vagy szubtraktív színkeveréssel magyarázhatjuk a színek keletkezését, hanem a kettő keveredésével. A nyomdatechnikában gyakran készítenek olyan színes nyomatokat, amelyek esetében az egymásra hordott festékek nem tökéletesen fedik egymást, azaz nem takarják ki az alattuk lévő színt, hanem átlátszóak.

A szubtraktív színkeverés alapkísérlete az egymás után elhelyezett – a feladatnak megfelelően megválasztott spektrális tulajdonságokkal rendelkező – színszűrőkkel vagy úgynevezett színes optikai ékekkel vitelezhető ki.

Az egymás után elhelyezett szűrők esetén a fényforrás fehér fényéből az első színszűrő kivon egy részt azáltal, hogy a megfelelő rész elnyelődik. Ezután a megmaradó nyalábból a következő szűrő szintén kivon egy részt.

Amennyiben ezeket, az egymást követő szűrőket sárga, bíbor és zöldeskék színűnek választjuk, akkor ezen szubtraktív alapszínek keverésével az additív színeket és a fekete színt is elő tudjuk állítani.

Például, a bíbor és zöldeskék szűrő kivonó jellegű alkalmazásával a kék additív színt kapjuk. Megjegyzendő, hogy ebben az esetben a példa nem általánosítható, mivel a kivonó színkeverés eredménye – nem úgy, mint az összeadó színkeverés esetén – függ az egyes szubtraktív szűrők spektrális eloszlásának tulajdonságaitól. A festékiparban elterjedt festéktípusok színes részecskéi, az úgynevezett pigmentek keveredésénél, azaz a festékkeverésnél a kivonó színkeverésnek megfelelően keletkezik az eredő szín. Például fehér alap esetén sárga és kék festék keverésével nem az összeadó keverés tulajdonságainak megfelelő fehér, hanem a szubtraktív módon létrejövő zöld keletkezik. Általános szabályként fogalmazható meg, hogy az észlelt tárgyszín mindig a felület által elnyelt szín kiegészítő színe lesz.

2.6. ábra - A bíbor szín szubtraktív keverésének módja

2.7. ábra - A sárga szín szubtraktív keverésének módja

2.8. ábra - A kékeszöld (türkiz) szín szubtraktív keverésének módja

2.9. ábra - A vörös szín szubtraktív keverésének módja

2.10. ábra - A zöld szín szubtraktív keverésének módja

2.11. ábra - A kék szín szubtraktív keverésének módja

A háromdimenziós technikák optikai és interferometriai háttere

In document 3D megjelenítési technikák (Pldal 53-58)