• Nem Talált Eredményt

4. SUMMARY AND OUTLOOK

Lightweight and compact structures can be designed by merging different functions of carbon fiber reinforced composites. Carbon fibers, besides their mechanical load-bearing capability, can be used for secondary tasks based on their electrical properties. Examples are given in Table 1 and are categorized according to their function. One of the most important aspects in choosing a secondary role is the material used. In most examples, long carbon fiber reinforced epoxy matrix composites were used. In some cases, however, a thermoplastic matrix proved to be a better choice. In order to improve efficiency, nano-sized carbon particles, such as carbon black, CNTs or carbon nanofibers were added to the composite.

Two different methods for connecting the composite part to the electric circuit exist:

induction or direct physical contact. The effect of induction is local; therefore, it is suitable for the heat treatment of the joints (e.g. bonds and welds). By direct contact whole composite parts or structures can be electrified; in this case, low contact resistance is needed between the carbon fibers and the electrical circuit. For this, the fibers first have to be exposed either during fabrication (a dry fiber bundle sticking out, or a laminated conductive foil) or after curing (matrix burning or grinding). For the sake of good contact, usually a metallic block or foil (copper, nickel, gold) is pressed against the fibers or another conductive layer (evaporated gold, silver-filled paint or adhesive) is applied on the fibers.

Table 1 is a useful tool from two aspects. Firstly, it helps the designer of a multifunctional structure to choose a secondary function. Secondly, the necessary layout and materials can be determined with it. The roles, based on the electrical properties of carbon fibers, cover the whole life of a composite part. These multifunctional structures can be used in manufacturing (graphitization of carbon fiber, matrix curing, process control), assembly (bonding, welding) and application (deformation, temperature and humidity sensing) until failure (micro cracks, delamination, fiber breakage), besides structural load bearing.

Resistance-based state monitoring is proven to work well with CFRP, but can be used in insulating glass fiber reinforced composites or even in existing structures. Several researchers [22,76–79] investigated electrically insulating glass fiber reinforced epoxy composite sheets by measuring their resistance. To make the test specimens conductive, they added nanoparticles (multiwalled carbon nanotube, carbon black). They proved that a basically insulating material could be modified to measure the electrical resistance of the samples, thus continuous and in situ structural state monitoring can be achieved. As a consequence, failure can be predicted. In the case of finished parts, state monitoring can be performed by applying a conductive film layer [79].

In order to meet the efficiency standards of the energy and transportation industry, lightweight structures are essential. Merging functions, creating and using multifunctional materials promote weight reduction in these industries. Weight can be reduced significantly

with the use of the electrical properties of the CFRP to substitute electrical instruments.

Adding energy storage functions to body parts (e.g. trunk lid, body stiffener) creates a structural supercapacitor, which merges functions and creates free space in the underhood area [55]. In a car a serious amount of wires are used to operate devices or to gather information from sensors. The reinforcing carbon fibers could be used to transmit electrical signals, therefore a reserve network can be formed, or cable cords could be replaced completely [80]. Adding sensing capability as a secondary function converts conventional materials into raw materials for Industry 4.0 and autonomous vehicles, which will need increasing amounts of multifunctional carbon fiber reinforced composites.

5. ACKNOWLEDGEMENTS

This work was supported by the OTKA (K 116070 and K 120592) and NVKP (NVKP_16-1-2016-0046) projects of the National Research, Development and Innovation Office (NKFIH), and by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame of Nanotechnology research area of Budapest University of Technology and Economics (BME FIKP-NANO).

6. REFERENCES

[1] Witten E, Kraus T, K(hnel M. Composites Market Report 2016 2016.

[2] Hung C-C, Dillehay ME, Stahl M. A heater made from graphite composite material for potential deicing application. J Aircr 1987;24:725–30. doi:10.2514/3.45513.

[3] Wang FS, Ji YY, Yu XS, Chen H, Yue ZF. Ablation damage assessment of aircraft carbon fiber/epoxy composite and its protection structures suffered from lightning strike.

Compos Struct 2016;145:226–41. doi:10.1016/j.compstruct.2016.03.005.

[4] Li Y, Li R, Lu L, Huang X. Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike. Compos Part A Appl Sci Manuf 2015;79:164–75. doi:10.1016/j.compositesa.2015.09.019.

[5] Shirshova N, Qian H, Shaffer MSP, Steinke JHG, Greenhalgh ES, Curtis PT, et al.

Structural composite supercapacitors. Compos Part A Appl Sci Manuf 2013;46:96–107.

doi:10.1016/j.compositesa.2012.10.007.

[6] Shirshova N, Qian H, Houlí M, Steinke JHG, Kucernak ARJ, Fontana QP V, et al.

Multifunctional structural energy storage composite supercapacitors. Faraday Discuss 2014;172:81–103. doi:10.1039/c4fd00055b.

[7] Park S-J. Carbon Fibers. Dordrecht: Springer Netherlands; 2015. doi:10.1007/978-94-017-9478-7.

[8] Carbon Fibers Market (Precursor Type- Pitch Based Carbon Fiber and PAN Based Carbon Fiber) Market By Precursor Type (Pitch Based Carbon Fiber, PAN Based Carbon Fiber, Others (Polyolefin Based Carbon Fiber; Rayon Based Carbon Fiber, etc.)), By Application( n.d. http://www.credenceresearch.com/report/carbon-fiber-market (accessed July 4, 2017).

[9] Morgan P. Carbon fibers and their composites. Buca Raton: CRC Press; 2005.

[10] Mathur RB, Bahl OP, Matta VK, Nagpal KC. Modification of pan precursor - its influence on the reaction kinetics. Carbon N Y 1988;26:295–301.

[11] Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 2007;92:1421–32. doi:10.1016/j.polymdegradstab.2007.03.023.

[12] Qin X, Lu Y, Xiao H, Wen Y, Yu T. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers. Carbon N Y 2012;50:4459–69. doi:10.1016/j.carbon.2012.05.024.

[13] Edie DD. The effect of processing on the structure and properties of carbon fibers.

Carbon N Y 1998;36:345–62. doi:10.1016/S0008-6223(97)00185-1.

[14] Huang Y, Young RJ. Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres. Carbon N Y 1995;33:97–107. doi:10.1016/0008-6223(94)00109-D.

[15] Cho D-H, Yoon S-B, Cho C-W, Park J-K. Effect of additional heat-treatment temperature on chemical, microstructural, mechanical, and electrical properties of commercial PAN-based carbon fibers. Carbon Lett 2011;12:223–8.

doi:10.5714/CL.2011.12.4.223.

[16] Watt W, Perov B V. Strong Fibers. Amszterdam: Elsevier Science Publishers B.V.; 1985.

[17] Emmerich FG. Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers. Carbon N Y 2014;79:274–93. doi:10.1016/j.carbon.2014.07.068.

[18] Zantout AE, Zhupanska OI. On the electrical resistance of carbon fiber polymer matrix composites. Compos Part A Appl Sci Manuf 2010;41:1719–27.

doi:10.1016/j.compositesa.2010.08.010.

[19] Hou M, Ye L, Mai Y-W. An experimental study of resistance welding of carbon fibre fabric reinforced polyetherimide (CF Fabric/PEI) composite material. Appl Compos

Mater 1999;6:35–49. doi:10.1023/A:1008879402267.

[20] Hayes SA, Lafferty AD, Altinkurt G, Wilson PR, Collinson M, Duchene P. Direct electrical cure of carbon fiber composites. Adv Manuf Polym Compos Sci 2015;1:112–

9. doi:10.1179/2055035915Y.0000000001.

[21] Chung DDL. Damage detection using self-sensing concepts. Proc Inst Mech Eng Part G J Aerosp Eng 2007;221:509–20. doi:10.1243/09544100JAERO203.

[22] Gallo GJ, Thostenson ET. Electrical characterization and modeling of carbon nanotube and carbon fiber self-sensing composites for enhanced sensing of microcracks. Mater Today Commun 2015;3:17–26. doi:10.1016/j.mtcomm.2015.01.009.

[23] Shen L, Li J, Liaw BM, Delale F, Chung JH. Modeling and analysis of the electrical resistance measurement of carbon fiber polymer-matrix composites. Compos Sci Technol 2007;67:2513–20. doi:10.1016/j.compscitech.2006.12.020.

[24] Joseph C, Viney C. Electrical resistance curing of carbon-fibre/epoxy composites.

Compos Sci Technol 2000;60:315–9. doi:10.1016/S0266-3538(99)00112-8.

[25] Eveno EC, Gillespie JW. Resistance welding of graphite polyetheretherketone composites: An experimental investigation. J Thermoplast Compos Mater 1988;1:322–

38. doi:10.1177/089270578800100402.

[26] Jong Se Park, Takahashi K, Guo Z, Wang Y, Bolanos E, Hamann-Schaffner C, et al.

Towards development of a self-healing composite using a mendable polymer and resistive heating. J Compos Mater 2008;42:2869–81. doi:10.1177/0021998308097280.

[27] Park JS, Kim HS, Thomas Hahn H. Healing behavior of a matrix crack on a carbon fiber/mendomer composite. Compos Sci Technol 2009;69:1082–7.

doi:10.1016/j.compscitech.2009.01.031.

[28] Park JS, Darlington T, Starr AF, Takahashi K, Riendeau J, Thomas Hahn H. Multiple healing effect of thermally activated self-healing composites based on Diels-Alder reaction. Compos Sci Technol 2010;70:2154–9. doi:10.1016/j.compscitech.2010.08.017.

[29] Serway RA, Jewett JW. Physics for Scientists and Engineers with Modern Physics.

Belmont, USA: Thomson Brooks/Cole; 2008.

[30] Bayerl T, Duhovic M, Mitschang P, Bhattacharyya D. The heating of polymer composites by electromagnetic induction - A review. Compos Part A Appl Sci Manuf 2014;57:27–40. doi:10.1016/j.compositesa.2013.10.024.

[31] Frauenhofer M, Kunz H, Dilger K. Fast curing of adhesives in the field of CFRP. J

[32] Pappadà S, Salomi A, Montanaro J, Passaro A, Caruso A, Maffezzoli A. Fabrication of a thermoplastic matrix composite stiffened panel by induction welding. Aerosp Sci Technol 2015;43:314–20. doi:10.1016/j.ast.2015.03.013.

[33] Yarlagadda S, Kim HJ, Gillespie JW, Shevchenko NB, Bruce K. A study on the induction heating of conductive fiber reinforced composites. J Compos Mater 2002;36:401–21. doi:10.1106/002199802023171.

[34] Hoa S V. Principles of the manufacturing of composite materials. Lancaster, USA:

DEStech Publications; 2009. doi:10.2307/3000.

[35] Abliz D, Duan Y, Steuernagel L, Xie L, Li D, Ziegmann G. Curing methods for advanced polymer composites - A review. Polym Polym Compos 2013;21:341–8.

[36] Schulte K, Baron C. Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Compos Sci Technol 1989;36:63–76. doi:10.1016/0266-3538(89)90016-X.

[37] Athanasopoulos N, Kostopoulos V. Resistive heating of multidirectional and unidirectional dry carbon fibre preforms. Compos Sci Technol 2012;72:1273–82.

doi:10.1016/j.compscitech.2012.04.018.

[38] Athanasopoulos N, Sotiriadis G, Kostopoulos V. A study on the effect of Joule-heating during the liquid composite molding (LCM) process and on the curing of CFRP composite laminates. ljLjth Int. Conf. Flow Process. Compos. Mater., Ascona, Svájcɣ 2010, p. p5.

[39] Fink BK, McKnight SH, Yarlagadda S, Gillespie JW. Non-polluting composites repair and remanufacturing for military applications: Induction-based repair of integral armor. Army Res Lab 2002.

[40] Enoki S, Iwamoto K, Harada R, Tanaka K, Katayama T. Heating properties of carbon fibers by using direct resistance heating. Inɣ de Wilde WP, Brebbia CA, Hernández S, editors. High Perform. Struct. Mater. VI, Southampton, UK: WIT Press; 2012, p. 239–

48. doi:10.2495/HPSM120211.

[41] Czvikovszky T, Nagy P, Gaál J. A polimertechnika alapjai. Budapestɣ Műegyetemi Kiadóɤ NJLjLjLj.

[42] McKnight SH, Holmes ST, Gillespie JW, Lambing CLT, Marinelli JM. Scaling issues in resistance- welded thermoplastic composite joints. Adv Polym Technol 1997;16:279–95.

doi:10.1002/(SICI)1098-2329(199711)16:4<279::AID-ADV3>3.0.CO;2-S.

[43] Tridech C, Maples HA, Robinson P, Bismarck A. High performance composites with active stiffness control. ACS Appl Mater Interfaces 2013;5:9111–9.

doi:10.1021/am402495n.

[44] Gong X, Liu L, Liu Y, Leng J. An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt. Smart Mater Struct 2016;25:1–

10. doi:10.1088/0964-1726/25/3/035036.

[45] Wang Q, Tian X, Huang L, Li D, Malakhov A V., Polilov AN. Programmable morphing composites with embedded continuous fibers by 4D printing. Mater Des 2018;155:404–

13. doi:10.1016/j.matdes.2018.06.027.

[46] Bergman SD, Wudl F. Mendable polymers. J Mater Chem 2008;18:41–62.

doi:10.1039/B713953P.

[47] Ezekiel HM, Spain RG. Preparation of graphite fibers from polymeric fibers. J Polym Sci Part C 1967;265:249–65. doi:10.1002/polc.5070190120.

[48] Bode R. Stretch-broken carbon fiber yarns for a heating device. US 20100051605 A1, 2010.

[49] Le HH, Hait S, Das A, Wießner S, Stöckelhuber KW, Böhme F, et al. Self-healing properties of carbon nanotube filled natural rubber / bromobutyl rubber blends.

Express Polym Lett 2017;11:230–42. doi:10.3144/expresspolymlett.2017.24.

[50] Chung DDL. Electrical applications of carbon materials. J Mater Sci 2004;39:2645–61.

doi:10.1023/B:JMSC.0000021439.18202.ea.

[51] Gagné M, Therriault D. Lightning strike protection of composites. Prog Aerosp Sci 2014;64:1–16. doi:10.1016/j.paerosci.2013.07.002.

[52] Welch JM. Repair Design, Test, and Process Considerations for Lightning Strikes.

CACRC/MIL-HDBK-17 Conf 2007.

[53] Molnár K, Szebényi G, Szolnoki B, Marosi G, Vas LM, Toldy A. Enhanced conductivity composites for aircraft applications: Carbon nanotube inclusion both in epoxy matrix and in carbonized electrospun nanofibers. Polym Adv Technol 2014;25:981–8.

doi:10.1002/pat.3339.

[54] Dong Q, Guo Y, Sun X, Jia Y. Coupled electrical-thermal-pyrolytic analysis of carbon fi ber / epoxy composites subjected to lightning strike. Polymer (Guildf) 2015;56:385–94.

doi:10.1016/j.polymer.2014.11.029.

[55] Ferreira ADBL, Nóvoa PRO, Marques AT. Multifunctional material systems: A state-of-the-art review. Compos Struct 2016;151:3–35. doi:10.1016/j.compstruct.2016.01.028.

duration. Compos Sci Technol 2008;68:639–49. doi:10.1016/j.compscitech.2007.09.019.

[57] Barakati A, Zhupanska OI. Mechanical response of electrically conductive laminated composite plates in the presence of an electromagnetic field. Compos Struct 2014;113:298–307. doi:10.1016/j.compstruct.2014.03.020.

[58] Maamar DB, Ramdane Z. Characterization of the mechanical behaviour of carbon fiber composite laminate under low velocity impact. Period Polytech Mech Eng 2016;60:142–

51. doi:10.3311/PPme.8633.

[59] Todoroki A. Electric resistance change method for cure/strain/damage monitoring of

CFRP laminates. Key Eng Mater 2004;270–273:1812–20.

doi:10.4028/www.scientific.net/KEM.270-273.1812.

[60] Owston CN. Electrical properties of single carbon fibres. J Phys D Appl Phys 1970;3:1615–26. doi:10.1088/0022-3727/3/11/309.

[61] Prasse T, Michel F, Mook G, Schulte K, Bauhofer W. A comparative investigation of electrical resistance and acoustic emission during cyclic loading of CFRP laminates.

Compos Sci Technol 2001;61:831–5. doi:10.1016/S0266-3538(00)00179-2.

[62] Abry JC, Choi YK, Chateauminois A, Dalloz B, Giraud G, Salvia M. In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements. Compos Sci Technol 2001;61:855–64. doi:10.1016/S0266-3538(00)00181-0.

[63] Vavouliotis A, Paipetis A, Kostopoulos V. On the fatigue life prediction of CFRP laminates using the Electrical Resistance Change method. Compos Sci Technol 2011;71:630–42. doi:10.1016/j.compscitech.2011.01.003.

[64] Angelidis N, Khemiri N, Irving PE. Experimental and finite element study of the electrical potential technique for damage detection in CFRP laminates. Smart Mater Struct 2005;14:147–54. doi:10.1088/0964-1726/14/1/014.

[65] Todoroki A, Tanaka M, Shimamura Y. Electrical resistance change method for monitoring delaminations of CFRP laminates: Effect of spacing between electrodes.

Compos Sci Technol 2005;65:37–46. doi:10.1016/j.compscitech.2004.05.018.

[66] Todoroki A, Omagari K, Shimamura Y, Kobayashi H. Matrix crack detection of CFRP using electrical resistance change with integrated surface probes. Compos Sci Technol 2006;66:1539–45. doi:10.1016/j.compscitech.2005.11.029.

[67] Rebouillat S, Lyons MEG. Measuring the electrical conductivity of single fibres. Int J Electrochem Sci 2011;6:5731–40.

[68] Wang S, Kowalik DP, Chung DDL. Self-sensing attained in

matrix structural composites by using the interlaminar interface as a sensor. Smart Mater Struct 2004;13:570–92. doi:10.1088/0964-1726/13/3/017.

[69] Chung DDL. Continuous carbon fiber polymer-matrix composites and their joints, studied by electrical measurements. Polym Compos 2001;22:250–70.

doi:10.1002/pc.10536.

[70] Wang S, Mei Z, Chung DDL. Interlaminar damage in carbon fiber polymer-matrix composites, studied by electrical resistance measurement. Int J Adhes Adhes 2001;21:465–71. doi:10.1163/156855402753642890.

[71] Grammatikos SA, Kordatos EZ, Matikas TE, David C, Paipetis AS. Current injection phase thermography for low-velocity impact damage identification in composite laminates. Mater Des 2014;55:429–41. doi:10.1016/j.matdes.2013.09.019.

[72] Friedrich K, Breuer U. Multifunctionality of polymer composites: challenges and new solutions. William Andrew; 2015.

[73] Muñoz-Vélez MF, Valadez-González A, Herrera-Franco PJ. Effect of fiber surface treatment on the incorporation of carbon nanotubes and on the micromechanical properties of a single-carbon fiber-epoxy matrix composite. Express Polym Lett 2017;11:704–18. doi:10.3144/expresspolymlett.2017.68.

[74] Grammatikos SA, Paipetis AS. On the electrical properties of multi scale reinforced composites for damage accumulation monitoring. Compos Part B Eng 2012;43:2687–

96. doi:10.1016/j.compositesb.2012.01.077.

[75] Park JM, Kim DS, Kim SJ, Kim PG, Yoon DJ, DeVries KL. Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using electrical resistance measurement and micromechanical technique. Compos Part B Eng 2007;38:847–61. doi:10.1016/j.compositesb.2006.12.004.

[76] Böger L, Wichmann MHG, Meyer LO, Schulte K. Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos Sci Technol 2008;68:1886–94. doi:10.1016/j.compscitech.2008.01.001.

[77] Gao L, Thostenson ET, Zhang Z, Byun J-H, Chou T-W. Damage monitoring in fiber-reinforced composites under fatigue loading using carbon nanotube networks. Philos Mag 2010;90:4085–99. doi:10.1080/14786430903352649.

[78] Tallman TN, Gungor S, Wang KW, Bakis CE. Damage detection via electrical impedance tomography in glass fiber/epoxy laminates with carbon black filler. Struct Heal Monit An Int J 2015;14:100–9. doi:10.1177/1475921714554142.

a self strain-monitoring carbon nanotube film and carbon fibers under flexural loading by electrical resistance changes. J Phys Conf Ser 2015;628:12098. doi:10.1088/1742-6596/628/1/012098.

[80] Maryanka Y, Meidar MI, Curless RA. Method of signal transmission using fiber composite sandwich panel, US 8903311, USA patent, 2014.

KAPCSOLÓDÓ DOKUMENTUMOK