• Nem Talált Eredményt

The growing population of Earth requires more and more energy. However, a large part of this energy is produced from fossil fuels that are non–renewable resources and their amount is shrinking rapidly. In order to address this energy consumption problem, many researchers investigate alternative ways that can help in our future. One promising way is to improve fuel cell systems, because, in general, these work with hydrogen, methanol, ethanol etc. instead of fossil fuels. Moreover, the extraction of energy stored in chemical bonds is more efficient using fuel cells, because – in contrast with conventional engines– there is no mechanical energy conversion step involved. One of the main components of fuel cells is the catalyst layer.

Nowadays, many researchers work on developing cheaper and more durable catalysts with better tolerance against envinronmental impurities, because these could help in solving problems that hinder the spreading of fuel cells.

During my doctoral work, we tried to contribute to the spreading of fuel cell systems by developing and investigating catalysts that promote the oxygen reduction reaction on the fuel cell cathode side.

In the first part of my work, we prepared platinum decorated nitrogen doped graphene composites by annealing the mixture of the precursors in ammonia atmosphere. The nanoparticles and the nitrogen doped graphene were formed simultaneously during the synthesis. The as–prepared composites contained the same amount of precious metal, but they were annealed at different temperatures. In the next step, the catalysts were characterized by transmission electron microscopy, and it was found that the average particle size increased with the annealing temperature. Even so, it still remained close to the optimum diameter range determined for the oxygen reduction reaction by theoretical and experimental works.

X-ray photoelectron spectroscopy results revealed the presence of platinum in +2 and +4 oxidation states besides the zero-valent form. One of the possible explanations for this is the high percentage of surface atoms that can interact with the oxygen molecules of the air. Another possible explanation is that graphene has higher electronaffinity close to the moieties formed during the doping process. This can make electron donation from the platinum nanoparticles more efficient, which in turn results in a stronger interaction between the support and the particles.

Oxygen reduction activity was tested in a three electrode system in acidic and also in alkaline media. It was found, that the composites have higher electrocatalytic activity at high pH because lower overpotential was needed for the reduction of oxygen and higher current densities were measured compared to the data measured in low pH electrolyte. According to the electron transfer numbers, reduction current densities and onset potentials, higher activity was reached in case of the composites prepared at 500 and 600 °C when 0.1 M perchloric acid was used, while better performance was reached on the composite annealed at 700 °C when the electrolyte was 0.1 M potassium hydroxide.

During the second part of my PhD work, we prepared non-noble metal catalysts using a nitrogen doped graphene support decorated with cobalt- or iron nitride particles. As with the previous catalysts, the precursor mixture was annealed in ammonia atmosphere in order to prepare the composites. The annealing temperature was constant and the transition metal content was varied.

According to X-ray diffraction analysis, Co4N, and a mixture of FeN and Fe2N phases was formed during thermal annealing at 600 °C in ammonia atmosphere. Transmission electron microscopy results showed that the nanoparticles dispersed well, without aggregation on the surface of the two-dimensional support up to a certain cobalt and iron content. It was also found that the size of the particles increased with increasing transition metal amount. The average diameter of cobalt nitride particles was 14.3 ± 7.1 and 43.1 ± 17.4 nm in case of 5 and 10 wt%

of cobalt content, while aggregated particles with the size of 205.2 ± 165.9 nm were found in case of 20 wt%. In case of composites containing iron nitride, the average particle size was determined to be 23.4 ± 9.2, 78.2 ± 33.6, 105.1 ± 56.4, and 127.0 ± 41.8 nm in case of 5, 10, 20 and 50 wt%, respectively. The aggregation was also discernible but only in the 50 wt% case.

X-ray photoelectron spectroscopy results evidenced that the nitrogen/carbon ratio in the support was increased from 0.062 to 0.086 upon increasing the cobalt content up to 10 wt%, whereas higher transition metal contents did not cause any significant changes in the ratio.

Higher nitrogen/carbon atom ratios could be achieved in the composites in which iron nitride particles were formed. The N/C ratio increased from 0.098 to 0.122 when increasing the iron content from 5 to 20 wt%. Further increase in the transition metal content did not improve the N/C ratio any further.

The oxygen reduction reaction activity was tested by using electrochemical methods. In case of the Co4N/NG composites, the onset potential of linear sweep voltammograms was shifted to more positive values by decreasing the average particle size, which refers to the improvement of the electrocatalytic activity. According to the current densities measured by linear sweep voltammetry by applying the same rotation rate and the electron transfer numbers calculated by using the Koutecky–Levich equation, it is the composite with 10 wt% cobalt content that has the highest activity towards oxygen reduction reaction, and not the one with 5 wt% cobalt content. The reason for this is that the nitrogen content of the support is higher in case of 10 wt%, and this could cause higher support activity and also higher composite activity compared to the 5 wt% sample, even if the particle size was bigger.

According to the electrochemical results, the properties of our composites are close to the electrocatalytic activity of the most commonly used amorphous carbon supported platinum nanoparticle systems.

The electrochemical properties of FeNx/NG samples were also tested. The optimal iron content was found to be 20 wt% based on the onset potentials, the reduction current densities of the measured LSV curves, and the electron transfer numbers determined from the K-L equation.

We suggest that the increased amount of nitrogen in the support resulted in higher composite catalytic activity here, even though the particle size of iron nitride was larger compared than that of the 5 and 10 wt% samples.

The catalytic activity of our non-noble metal catalysts was also tested in the presence of methanol. The chronoamperometric measurement of the most commonly used platinum catalyst showed that the current decreased to 40% of its initial value when methanol was added to the electrolyte in this refernce system. Notably, the measured current did not change when methanol was added to a system using our non-noble metal catalysts.

Köszönetnyilvánítás

Elsősorban köszönettel tartozom témavezetőimnek, Dr. Kónya Zoltán tanszékvezető egyetemi tanárnak és Dr. Haspel Henrik egyetemi tanársegédnek, hogy tanácsaikkal, biztató szavaikkal végigvezettek a doktori fokozat megszerzéséig vezető rögös úton. Köszönöm Dr.

Kukovecz Ákos egyetemi docensnek a publikációim megírásához adott tanácsait és tevékeny segítségét. Munkájával nagy mértékben hozzájárult írói készségem fejlesztéséhez ezáltal pedig publikációim színvonalának emeléséhez. Szeretném továbbá megköszönni Dr. Kónya Zoltán tanszékvezetőnek, hogy lehetőséget biztosított számomra az Alkalmazott és Környezeti Kémiai Tanszéken folytatott munkám megkezdéséhez.

Szeretném megköszönni Dr. Oszkó Albertnek a röntgen fotoelekton spektroszópiás mérérseket és a spektrumok kiértékelését, melyek nagyban hozzájárultak a disszertációm színvonalának emeléséhez.

Köszönöm Dr. Szűcs Árpádnak, hogy biztosította számomra az elektrokémiai vizsgálatokhoz elengedhetetlen forgó korongelektródos rendszert.

Köszönöm korábbi hallgatóimnak és jelenlegi kollégáimnak, Varga Ágnes Timeának, Vásárhelyi Líviának és Ballai Gergőnek, hogy munkájukkal hozzájárultak a disszertációhoz szükséges eredmények eléréséhez.

Szeretném megköszönni Nagy Lászlónak, hogy a kísérletek során felmerülő technikai problémák megoldása érdekében bátran fordulhattam hozzá tanácsokért. Szeretném megköszönni továbbá Buchholcz Balázsnak, Juhász Koppány Leventének, Dr. Pusztai Péternek, és az Alkalmazott és Környezeti Kémiai Tanszék összes volt és jelenlegi dolgozójának, akik valamilyen formában hozzájárultak a munkám eredményességéhez.

Végül, de nem utolsó sorban szeretnék nagy köszönetet mondani páromnak, Nagy Krisztinának, továbbá szüleimnek, és az egész családomnak, hogy hittek bennem, kitartottak mellettem, támogattak és biztattak még a legnehezebb időszakokban is. Nélkületek nem sikerült volna!

Irodalomjegyzék

[1] https://www.iea.org/statistics, Utolsó megtekintés: 2019.01.29.

[2] R. Yadav, A. Subhash, N. Chemmenchery, B. Kandasubramanian, Graphene and Graphene Oxide for Fuel Cell Technology, Industrial & Engineering Chemistry Research 57(29) (2018) 9333–9350.

[3] A. Kirubakaran, S. Jain, R.K. Nema, A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews 13(9) (2009) 2430–2440.

[4] R. O'Hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, Wiley 2009.

[5] V. Mazumder, Y. Lee, S. Sun, Recent Development of Active Nanoparticle Catalysts for Fuel Cell Reactions, Advanced Functional Materials 20(8) (2010) 1224–1231.

[6] J.M. Andújar, F. Segura, Fuel cells: History and updating. A walk along two centuries, Renewable and Sustainable Energy Reviews 13(9) (2009) 2309–2322.

[7] A. Boudghene Stambouli, E. Traversa, Fuel cells, an alternative to standard sources of energy, Renewable and Sustainable Energy Reviews 6(3) (2002) 295–304.

[8] N. Ramaswamy, S. Mukerjee, Influence of Inner- and Outer-Sphere Electron Transfer Mechanisms during Electrocatalysis of Oxygen Reduction in Alkaline Media, The Journal of Physical Chemistry C 115(36) (2011) 18015–18026.

[9] K.A. Mauritz, R.B. Moore, State of Understanding of Nafion, Chemical reviews 104(10) (2004) 4535–4586.

[10] A. Sarapuu, E. Kibena-Põldsepp, M. Borghei, K. Tammeveski, Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells, Journal of Materials Chemistry A 6(3) (2018) 776–804.

[11] K.I. Ozoemena, Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: catalyst design, principles and applications, RSC Advances 6(92) (2016) 89523–

89550.

[12] N. Seselj, C. Engelbrekt, J. Zhang, Graphene-supported platinum catalysts for fuel cells, Science Bulletin 60(9) (2015) 864–876.

[13] D. He, Y. Rong, M. Carta, R. Malpass-Evans, N.B. McKeown, F. Marken, Fuel cell anode catalyst performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity (PIM), RSC Advances 6(11) (2016) 9315–9319.

[14] C. Lamy, E.M. Belgsir, J.M. Léger, Electrocatalytic oxidation of aliphatic alcohols:

Application to the direct alcohol fuel cell (DAFC), Journal of Applied Electrochemistry 31(7) (2001) 799–809.

[15] N.V. Rees, R.G. Compton, Sustainable energy: a review of formic acid electrochemical fuel cells, Journal of Solid State Electrochemistry 15(10) (2011) 2095–2100.

[16] M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Review: Direct ethanol fuel cells, International Journal of Hydrogen Energy 38(22) (2013) 9438–9453.

[17] K.-B. Ma, D.-H. Kwak, S.-B. Han, H.-S. Park, D.-H. Kim, J.-E. Won, S.-H. Kwon, M.-C.

Kim, S.-H. Moon, K.-W. Park, Direct Ethanol Fuel Cells with Superior Ethanol-Tolerant Nonprecious Metal Cathode Catalysts for Oxygen Reduction Reaction, ACS Sustainable Chemistry & Engineering 6(6) (2018) 7609–7618.

[18] G.A. El-Nagar, M.A. Hassan, I. Lauermann, C. Roth, Efficient Direct Formic Acid Fuel Cells (DFAFCs) Anode Derived from Seafood waste: Migration Mechanism, Scientific reports 7(1) (2017) 17818.

[19] Y. Li, W. Gao, L. Ci, C. Wang, P.M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon 48 (4) (2010) 1124–1130.

[20] Y. Gao, G.Q. Sun, S.L. Wang, S. Zhu, Carbon nanotubes based gas diffusion layers in direct methanol fuel cells, Energy 35(3) (2010) 1455–1459.

[21] F. Şen, G. Gökaǧaç, Different Sized Platinum Nanoparticles Supported on Carbon:  An XPS Study on These Methanol Oxidation Catalysts, The Journal of Physical Chemistry C 111(15) (2007) 5715–5720.

[22] J.J. Hwang, Review on development and demonstration of hydrogen fuel cell scooters, Renewable and Sustainable Energy Reviews 16(6) (2012) 3803–3815.

[23] E.L.V. Eriksson, E.M. Gray, Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review, Applied Energy 202 (2017) 348–364.

[24] V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, P. Siano, Recent advances and challenges of fuel cell based power system architectures and control – A review, Renewable and Sustainable Energy Reviews 73 (2017) 10–18.

[25] S. Wang, S.P. Jiang, Prospects of fuel cell technologies, National Science Review 4(2) (2017) 163–166.

[26] D.-H. Lim, J. Wilcox, Mechanisms of the Oxygen Reduction Reaction on Defective Graphene-Supported Pt Nanoparticles from First-Principles, The Journal of Physical Chemistry C 116(5) (2012) 3653–3660.

[27] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H.

Jónsson, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, The Journal of Physical Chemistry B 108(46) (2004) 17886–17892.

[28] L. Yu, X. Pan, X. Cao, P. Hu, X. Bao, Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study, Journal of Catalysis 282(1) (2011) 183–190.

[29] X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong, Z. Liu, Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts, ACS Catalysis 5 (8) (2015) 4643–4667.

[30] H. Taube, II - DESCRIPTION OF THE ACTIVATED COMPLEXES FOR ELECTRON TRANSFER, in: H. Taube (Ed.), Electron Transfer Reactions of Complex Ions in Solution, Academic Press1970, pp. 27–47.

[31] A.J. Bard, Inner-Sphere Heterogeneous Electrode Reactions. Electrocatalysis and Photocatalysis: The Challenge, Journal of the American Chemical Society 132(22) (2010) 7559–7567.

[32] A. Bard, L. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc2001.

[33] https://www.pineresearch.com/shop/knowledgebase/pine-rotating-electrode-theory/, Utolsó megtekintés: 2019.01.30.

[34] W.Y. Wong, W.R.W. Daud, A.B. Mohamad, A.A.H. Kadhum, K.S. Loh, E.H. Majlan, Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications, International Journal of Hydrogen Energy 38(22) (2013) 9370–9386.

[35] M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity, Nano letters 11 (9) (2011) 3714–3719.

[36] K. Kinoshita, Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes, Journal of The Electrochemical Society 137(3) (1990) 845–848.

[37] I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion, Angewandte Chemie International Edition 53 (1) (2014) 102–121.

[38] L. Cui, H. Wang, S. Chen, J. Zhang, Y. Xiang, S. Lu, An efficient cluster model to describe the oxygen reduction reaction activity of metal catalysts: a combined theoretical and experimental study, Physical Chemistry Chemical Physics 20(41) (2018) 26675–26680.

[39] P. Trogadas, T.F. Fuller, P. Strasser, Carbon as catalyst and support for electrochemical energy conversion, Carbon 75 (2014) 5–42.

[40] K.H. Kangasniemi, D.A. Condit, T.D. Jarvi, Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions, Journal of The Electrochemical Society 151 (4) (2004) 125–132.

[41] R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, PEM fuel cell electrocatalyst durability measurements, Journal of Power Sources 163 (1) (2006) 76–81.

[42] B. Cao, G.M. Veith, R.E. Diaz, J. Liu, E.A. Stach, R.R. Adzic, P.G. Khalifah, Cobalt molybdenum oxynitrides: synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction, Angewandte Chemie 52(41) (2013) 10753–10757.

[43] J.H. Jung, H.J. Park, J. Kim, S.H. Hur, Highly durable Pt/graphene oxide and Pt/C hybrid catalyst for polymer electrolyte membrane fuel cell, Journal of Power Sources 248 (2014) 1156–

1162.

[44] S.H. Cho, H.N. Yang, D.C. Lee, S.H. Park, W.J. Kim, Electrochemical properties of Pt/graphene intercalated by carbon black and its application in polymer electrolyte membrane fuel cell, Journal of Power Sources 225 (2013) 200–206.

[45] X. Wang, L. Zhi, N. Tsao, Z. Tomovic, J. Li, K. Mullen, Transparent carbon films as electrodes in organic solar cells, Angewandte Chemie 47(16) (2008) 2990–2992.

[46] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials 6 (2007) 183.

[47] B. Seger, P.V. Kamat, Electrocatalytically Active Graphene-Platinum Nanocomposites.

Role of 2-D Carbon Support in PEM Fuel Cells, The Journal of Physical Chemistry C 113(19) (2009) 7990–7995.

[48] X. Wang, L. Zhi, K. Müllen, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells, Nano letters 8(1) (2008) 323–327.

[49] E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, I. Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano letters 8(8) (2008) 2277–2282.

[50] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-Based Ultracapacitors, Nano letters 8(10) (2008) 3498–3502.

[51] A. Dimiev, D.V. Kosynkin, L.B. Alemany, P. Chaguine, J.M. Tour, Pristine graphite oxide, Journal of the American Chemical Society 134(5) (2012) 2815–2822.

[52] K. Toda, R. Furue, S. Hayami, Recent progress in applications of graphene oxide for gas sensing: A review, Analytica chimica acta 878 (2015) 43–53.

[53] Y.J. Oh, J.J. Yoo, Y.I. Kim, J.K. Yoon, H.N. Yoon, J.-H. Kim, S.B. Park, Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor, Electrochimica Acta 116 (2014) 1187–128.

[54] S. Woo, J. Lee, S.-K. Park, H. Kim, T.D. Chung, Y. Piao, Electrochemical codeposition of Pt/graphene catalyst for improved methanol oxidation, Current Applied Physics 15 (3) (2015) 219–225.

[55] L.I. Şanlı, V. Bayram, B. Yarar, S. Ghobadi, S.A. Gürsel, Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: Effect of support type and impregnation–reduction methods, International Journal of Hydrogen Energy 41 (5) (2016) 3414–3427.

[56] Y.S. Yun, D. Kim, Y. Tak, H.-J. Jin, Porous graphene/carbon nanotube composite cathode for proton exchange membrane fuel cell, Synthetic Metals 161(21) (2011) 2460–2465.

[57] K. Jukk, J. Kozlova, P. Ritslaid, V. Sammelselg, N. Alexeyeva, K. Tammeveski, Sputter-deposited Pt nanoparticle/multi-walled carbon nanotube composite catalyst for oxygen reduction reaction, Journal of Electroanalytical Chemistry 708 (2013) 31–38.

[58] M. Ates, A.A. Eker, B. Eker, Carbon nanotube-based nanocomposites and their applications, Journal of Adhesion Science and Technology 31(18) (2017) 1977–1997.

[59] N.O. Ramoraswi, P.G. Ndungu, Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites, Nanoscale research letters 10(1) (2015) 427.

[60] L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, Y. Cui, Highly conductive paper for energy-storage devices, Proceedings of the National Academy of Sciences of the United States of America 106(51) (2009) 21490–21494.

[61] S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.S. Kim, P.T. Hammond, Y. Shao-Horn, High-power lithium batteries from functionalized carbon-nanotube electrodes, Nature nanotechnology 5(7) (2010) 531–537.

[62] J. Ma, A. Habrioux, Y. Luo, G. Ramos-Sanchez, L. Calvillo, G. Granozzi, P.B. Balbuena, N. Alonso-Vante, Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction, Journal of Materials Chemistry A 3 (22) (2015) 11891–11904.

[63] T. Holme, Y. Zhou, R. Pasquarelli, R. O'Hayre, First principles study of doped carbon supports for enhanced platinum catalysts, Physical Chemistry Chemical Physics 12(32) (2010) 9461–9468.

[64] C.R. Raj, A. Samanta, S.H. Noh, S. Mondal, T. Okajima, T. Ohsaka, Emerging new generation electrocatalysts for the oxygen reduction reaction, Journal of Materials Chemistry A 4(29) (2016) 11156–11178.

[65] Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, Y. Lin, Nitrogen-doped graphene and its electrochemical applications, Journal of Materials Chemistry 20 (35) (2010) 7491–7496.

[66] L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells, ACS Nano 4 (3) (2010) 1321–1326.

[67] J. Zhang, J. Zhou, L. Hou, F. Gao, High oxygen-reduction activity and durability of nitrogen and sulfur dual doped porous carbon microspheres, Dalton transactions 45(23) (2016) 9582–9589.

[68] J. Zhu, C. He, Y. Li, S. Kang, P.K. Shen, One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction, Journal of Materials Chemistry A 1(46) (2013) 14700-14705.

[69] J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance, Angewandte Chemie 51(46) (2012) 11496–11500.

[70] R. Nie, X. Bo, C. Luhana, A. Nsabimana, L. Guo, Simultaneous formation of nitrogen and sulfur-doped carbon nanotubes-mesoporous carbon and its electrocatalytic activity for oxygen reduction reaction, International Journal of Hydrogen Energy 39(24) (2014) 12597–12603.

[71] T.C. Nagaiah, S. Kundu, M. Bron, M. Muhler, W. Schuhmann, Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium, Electrochemistry Communications 12(3) (2010) 3387–341.

[72] D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygen-reduction activity and durability of nitrogen-doped graphene, Energy & Environmental Science 4(3) (2011) 760.

[73] G.A. Ferrero, K. Preuss, A.B. Fuertes, M. Sevilla, M.M. Titirici, The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres, Journal of Materials Chemistry A 4(7) (2016) 2581–2589.

[74] N. Alexeyeva, E. Shulga, V. Kisand, I. Kink, K. Tammeveski, Electroreduction of oxygen on nitrogen-doped carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions, Journal of Electroanalytical Chemistry 648 (2) (2010) 169–175.

[75] N. Daems, X. Sheng, I.F.J. Vankelecom, P.P. Pescarmona, Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction, Journal of Materials Chemistry A 2(12) (2014) 4085–4110.

[76] L. Zhang, Z. Xia, Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells, The Journal of Physical Chemistry C 115 (22) (2011) 11170–11176.

[77] L. Zhang, J. Niu, L. Dai, Z. Xia, Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells, Langmuir : the ACS journal of surfaces and colloids 28 (19) (2012) 7542–7550.

[78] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S.

Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy & Environmental Science 5(7) (2012) 7936.

[79] H. Kim, K. Lee, S.I. Woo, Y. Jung, On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons, Physical Chemistry Chemical Physics 13(39) (2011) 17505–17510.

[80] T. Sharifi, G. Hu, X. Jia, T. Wågberg, Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes, ACS Nano 6(10) (2012) 8904–8912.

[81] B. Zheng, J. Wang, F.-B. Wang, X.-H. Xia, Synthesis of nitrogen doped graphene with high electrocatalytic activity toward oxygen reduction reaction, Electrochemistry Communications 28 (2013) 247–26.

[82] L. Tao, S. Dou, Z. Ma, A. Shen, S. Wang, Simultaneous Pt deposition and nitrogen doping of graphene as efficient and durable electrocatalysts for methanol oxidation, International Journal of Hydrogen Energy 40 (41) (2015) 14371-14377.

[83] J. Zhu, M. Xiao, X. Zhao, K. Li, C. Liu, W. Xing, Nitrogen-doped carbon-graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation, Chemical Communications 50 (81) (2014) 12201–12203.

[84] S. Dou, L. Tao, J. Huo, S. Wang, L. Dai, Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis, Energy & Environmental Science 9(4) (2016) 1320–1326.

[85] X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous Nitrogen Doping and Reduction of Graphene Oxide, Journal of the American Chemical Society 131 (43) (2009) 15939–15944.

[86] S. Dou, X. Li, L. Tao, J. Huo, S. Wang, Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen

[86] S. Dou, X. Li, L. Tao, J. Huo, S. Wang, Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen