• Nem Talált Eredményt

Potassium Chloride Sodium Potassium & Sodium -5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 4.14. Parallel coordinates visualization of the latent representations withL = 10in the Ion Channel dataset. Most dimensions separate at least one class from the others.

computations presented in this Chapter can be performed on a mid-range graphics card in a rea-sonable time. Figure 4.17 shows the runtime of GPU and CPU implementations as a function of the number of latent factors in a200×200matrix factorization problem. On an NVIDA Titan X graphics card, the speedup is found to be around30×as compared to the baseline CPU implementation, which utilized LAPACK and an Intel Core i7-4510U CPU. However, memory requirements in larger dimen-sions or with many latent factors still restrict the applicability of GPUs,i.e. scaling remains an open question. We developed a sparse implementation alongside the dense solver in order to decrease the memory footprint of the algorithm.

Although modern consumer-level GPUs provide excellent single precision performance, double precision performance typically lags far behind, around1/8−1/32, raising the issue of single preci-sion numerical stability. To address this issue, we also provide a QR factorization-based implementa-tion which is more stable but significantly slower than the default blocked Cholesky decomposiimplementa-tion method. The computational cost in VB-MK-LMF is dominated by the inversion in Eq. 4.19, which givesO(DL3max(I3, J3))for the total time complexity whereDis the number of iterations. Com-parison with the time complexity of NRLMF,O(DLIJ), clearly shows the burden of fully Bayesian inference and calls for the usage of approximative inversion techniques, which we consider as a future work.

an-0.0 2.5 5.0 7.5

1 2 3 4 5 6 7 8 9

# Targets

Expected value

Nuclear Receptor

0 10 20

0 5 10 15 20 25

# Targets

Expected value

GPCR

0 25 50 75 100 125

0 25 50 75 100 125

# Targets

Expected value

Ion Channel

0 25 50 75 100

0 25 50 75 100

# Targets

Expected value

Enzyme

0 10 20 30 40

0 10 20 30 40 50

# Targets

Expected value

Kinase

Figure 4.15. Number of known targets of each drug in the datasets (horizontal) vs. the expected number of interactions as predicted by VB-MK-LMF (vertical).

0 1 2 3 4 5

0 1 2 3 4

# Targets

# Predicted

Figure 4.16. Expected number of interactions as predicted by VB-MK-LMF for each drug in the GPCR dataset with a given number of known targets in a10×cross-validation setting.

alytic estimates or expert hints for the missing data, and extracting information from missingness patterns, whose effect is integrated consistently into the overall posterior.

We derived efficient Bayesian inference methods for both models, namely, variational approxi-mation and Gibbs sampling, respectively. The former is easy to parallelize and implement on the GPU, however, the computational complexity is dominated by the inversion of the precision matrix.

As a future work, we plan to investigate analytic and approximative solutions for inverting matrices with this special structure. The Gibbs sampling-based inference offers an efficient inference scheme in a practical dimension, but in general, scaling up is a difficult question due to the memory com-plexity of storing the kernels and the notoriously hard problem of scaling up Gibbs sampling itself.

We plan to investigate low-rank kernel approximations, alternative MCMC schemes and GPU-based implementations.

VB-MK-LMF and MK-BMF-MNAR achieved better predictive performance in standard bench-marks compared to other state-of-the-art methods. Although facilitating comparability, benchmark-ing the pure predictive performance on pre-defined datasets gives only a narrow view about real-world applicability. The possible utilizations of the DTI prediction methods in real-real-world scenarios are much more diverse; for example, the same algorithms could be applied in the quality control phase for anomaly detection, especially when merging different bioactivity values from public and private sources. Additional use-cases include screening design, hit triage and prioritization for further

vali-1 10 100

5 10 15 20

Latent factors

Time (s)

Device GPU CPU

Figure 4.17. Runtime of the GPU and CPU implementations in terms of the number of latent factors in a200×200matrix factorization task. The GPU implementation brings a30×speedup on an NVIDIA GTX Titan X graphics card.

dation [136], possibly in an active learning framework [20, 137]. Finally, DTI prediction methods may also provide important insights by supporting visualization and visual data analytics, as we demon-strated in a new range of dimensionality (10−20), which proved to be sufficient with our methods.

As a future work, we plan to utilize these tools to find plausible biochemical interpretations of the latent dimensions.

The explicit modeling of interaction probabilities in VB-MK-LMF allows the establishment of cred-ibility regions and the estimation of promiscuity and druggability through the expected number of hits in a dataset. In general, the predicted posteriors for the interactions can be utilized to develop new functionalities in post-processing, going beyond enrichment methods available for ranking meth-ods [92, 138]. To utilize the Bayesian predictions of our algorithms, we also plan to investigate their sequential, decision theoretic usage,e.g.in functional validations.

Further interesting research directions are the use of multiple instances of our models for context-specific, but overlapping DTI matrices, which are linked to each other by common observations, giv-ing rise to a multitask version of the algorithms, however, the availability of multiple interaction scores (i.e. multiple bioactivity data) and the selection of row-entities and column-entities (i.e. com-pounds and targets), remain open challenges.

Bibliography

[1] A. J. Williams, L. Harland, P. Groth, S. Pettifer, C. Chichester, E. L. Willighagen, C. T. Evelo, N. Blomberg, G. Ecker, C. Goble, and B. Mons. Open PHACTS: semantic interoperability for drug discovery. Drug Discov. Today, 17(21-22):1188–1198, Nov 2012.

[2] Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition, volume 31 ofApplications of Mathematics. Springer, corrected 2nd edition, 1997. missing.

[3] P. Pavlidis, J. Weston, J. Cai, and W. S. Noble. Learning gene functional classifications from multiple data types.J. Comput. Biol., 9(2):401–411, 2002.

[4] Christopher M Bishop. Pattern recognition. Machine Learning, 128:1–58, 2006.

[5] Robert Ghrist. Barcodes: The persistent topology of data. Technical report, 2007.

[6] Yunqian Ma and Yun Fu. Manifold Learning Theory and Applications. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2011. ISBN 1439871094, 9781439871096.

[7] Shun-ichi Amari.Information Geometry and Its Applications: Survey, pages 3–3. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-40020-9. doi: 10.1007/978-3-642-40020-9_

1. URLhttps://doi.org/10.1007/978-3-642-40020-9_1.

[8] Imre Risi Kondor. Group theoretical methods in machine learning. PhD thesis, Columbia Uni-versity, 2008.

[9] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001. ISBN 0262194759.

[10] Matthew J. Beal.Variational Algorithms for Approximate Bayesian Inference. PhD thesis, Gatsby Computational Neuroscience Unit, University College London, 2003. URLhttp://www.cse.

buffalo.edu/faculty/mbeal/thesis/index.html.

[11] Tom Minka. Divergence measures and message passing. Technical report, Jan-uary 2005. URL https://www.microsoft.com/en-us/research/publication/

divergence-measures-and-message-passing/.

[12] Tommi S. Jaakkola and Michael I. Jordan. Bayesian parameter estimation via variational meth-ods.Statistics and Computing, 10(1):25–37, 2000. ISSN 1573-1375. doi: 10.1023/A:1008932416310.

URLhttp://dx.doi.org/10.1023/A:1008932416310. 83

[13] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Automatic differentiation variational inference. J. Mach. Learn. Res., 18(1):430–474, January 2017. ISSN 1532-4435. URLhttp://dl.acm.org/citation.cfm?id=3122009.3122023.

[14] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M.

Blei. Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787, 2016.

[15] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis, volume 2. Chapman & Hall/CRC Boca Raton, FL, USA, 2014.

[16] Daniel Fink. A compendium of conjugate priors, 1997.

[17] E. L. Tobinick. The value of drug repositioning in the current pharmaceutical market. Drug News Perspect., 22(2):119–125, Mar 2009.

[18] István Kövesdi, Maria Felisa Dominguez-Rodriguez, László Ôrfi, Gábor Náray-Szabó, András Varró, Julius Gy Papp, and Peter Matyus. Application of neural networks in structure–activity relationships. Medicinal research reviews, 19(3):249–269, 1999.

[19] Robert Burbidge, Matthew Trotter, B Buxton, and Sl Holden. Drug design by machine learning:

support vector machines for pharmaceutical data analysis. Computers & chemistry, 26(1):5–14, 2001.

[20] Manfred K Warmuth, Jun Liao, Gunnar Rätsch, Michael Mathieson, Santosh Putta, and Chris-tian Lemmen. Active learning with support vector machines in the drug discovery process.

Journal of chemical information and computer sciences, 43(2):667–673, 2003.

[21] Peter Willett, John M Barnard, and Geoffrey M Downs. Chemical similarity searching.Journal of chemical information and computer sciences, 38(6):983–996, 1998.

[22] Claire MR Ginn, Peter Willett, and John Bradshaw. Combination of molecular similarity mea-sures using data fusion. InVirtual Screening: An Alternative or Complement to High Throughput Screening?, pages 1–16. Springer, 2000.

[23] Hao Ding, Ichigaku Takigawa, Hiroshi Mamitsuka, and Shanfeng Zhu. Similarity-based ma-chine learning methods for predicting drug-target interactions: a brief review. Briefings in bioinformatics, pages bbt056–, 2013. ISSN 1477-4054. doi: 10.1093/bib/bbt056. URL http:

//bib.oxfordjournals.org/content/early/2013/08/10/bib.bbt056.full.

[24] Douglas B Kitchen, Hélène Decornez, John R Furr, and Jürgen Bajorath. Docking and scoring in virtual screening for drug discovery: methods and applications.Nature reviews Drug discovery, 3(11):935–949, 2004.

[25] Sergio Filipe Sousa, Pedro Alexandrino Fernandes, and Maria Joao Ramos. Protein–ligand dock-ing: current status and future challenges. Proteins: Structure, Function, and Bioinformatics, 65 (1):15–26, 2006.

[26] Yoshihiro Yamanishi, Michihiro Araki, Alex Gutteridge, Wataru Honda, and Minoru Kanehisa.

Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24(13):232–240, 2008. ISSN 13674803. doi: 10.1093/bioinformatics/

btn162.

[27] Mehmet Gönen. Predicting drug–target interactions from chemical and genomic kernels using bayesian matrix factorization.Bioinformatics, 28(18):2304–2310, 2012.

[28] Xiaodong Zheng, Hao Ding, Hiroshi Mamitsuka, and Shanfeng Zhu. Collaborative matrix fac-torization with multiple similarities for predicting drug-target interactions. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’13, page 1025, 2013. doi: 10.1145/2487575.2487670. URLhttp://dl.acm.org/citation.cfm?

id=2487670{\%}5Cnhttp://dl.acm.org/citation.cfm?doid=2487575.2487670.

[29] Chris L Waller, Ajay Shah, and Matthias Nolte. Strategies to support drug discovery through integration of systems and data.Drug discovery today, 12(15):634–639, 2007.

[30] Sorel Muresan, Plamen Petrov, Christopher Southan, Magnus J. Kjellberg, Thierry Kogej, Chris-tian Tyrchan, Peter Varkonyi, and Paul Hongxing Xie. Making every SAR point count: The development of Chemistry Connect for the large-scale integration of structure and bioactivity data. Drug Discovery Today, 16(23-24):1019–1030, 2011. ISSN 13596446. doi: 10.1016/j.drudis.

2011.10.005.

[31] Dimitris K. Agrafiotis, Simson Alex, Heng Dai, An Derkinderen, Michael Farnum, Peter Gates, Sergei Izrailev, Edward P. Jaeger, Paul Konstant, Albert Leung, Victor S. Lobanov, Patrick Marichal, Douglas Martin, Dmitrii N. Rassokhin, Maxim Shemanarev, Andrew Skalkin, John Stong, Tom Tabruyn, Marleen Vermeiren, Jackson Wan, Xiang Yang Xu, and Xiang Yao. Ad-vanced Biological and Chemical Discovery (ABCD): Centralizing discovery knowledge in an in-herently decentralized world. Journal of Chemical Information and Modeling, 47(6):1999–2014, 2007. ISSN 15499596. doi: 10.1021/ci700267w.

[32] Antony J. Williams, Sean Ekins, and Valery Tkachenko. Towards a gold standard: Regarding quality in public domain chemistry databases and approaches to improving the situation.Drug Discovery Today, 17(13-14):685–701, 2012. ISSN 13596446. doi: 10.1016/j.drudis.2012.02.013.

URLhttp://dx.doi.org/10.1016/j.drudis.2012.02.013.

[33] Mehmet Gönen, Suleiman Khan, and Samuel Kaski. Kernelized bayesian matrix factorization.

InInternational Conference on Machine Learning, pages 864–872, 2013.

[34] Feixiong Cheng, Chuang Liu, Jing Jiang, Weiqiang Lu, Weihua Li, Guixia Liu, Weixing Zhou, Jin Huang, and Yun Tang. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Computational Biology, 8(5), 2012. ISSN 1553734X. doi: 10.

1371/journal.pcbi.1002503.

[35] Gang Fu, Ying Ding, Abhik Seal, Bin Chen, Yizhou Sun, and Evan Bolton. Predicting drug target interactions using meta-path-based semantic network analysis.BMC bioinformatics, 17(1):160, 2016.

[36] A. Arany, B. Bolgar, B. Balogh, P. Antal, and P. Matyus. Multi-aspect candidates for reposition-ing: data fusion methods using heterogeneous information sources. Curr. Med. Chem., 20(1):

95–107, 2013.

[37] Mark A Johnson and Gerald M Maggiora. Concepts and applications of molecular similarity. Wiley, 1990.

[38] P. Willett. Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today, 11 (23-24):1046–1053, Dec 2006.

[39] Hao Ding, Ichigaku Takigawa, Hiroshi Mamitsuka, and Shanfeng Zhu. Similarity-based ma-chine learning methods for predicting drug–target interactions: a brief review. Briefings in Bioinformatics, 15(5):734–747, 2013.

[40] B. Chen, C. Mueller, and P. Willett. Combination Rules for Group Fusion in Similarity-Based Virtual Screening. Mol Inform, 29(6-7):533–541, Jul 2010.

[41] M. J. Keiser, V. Setola, J. J. Irwin, C. Laggner, A. I. Abbas, S. J. Hufeisen, N. H. Jensen, M. B.

Kuijer, R. C. Matos, T. B. Tran, R. Whaley, R. A. Glennon, J. Hert, K. L. Thomas, D. D. Edwards, B. K. Shoichet, and B. L. Roth. Predicting new molecular targets for known drugs.Nature, 2009.

[42] Mu Gao and Jeffrey Skolnick. A comprehensive survey of small-molecule binding pockets in proteins. PLoS Comput Biol, 9(10):e1003302, 2013.

[43] M. Gonen. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 28(18):2304–2310, Sep 2012.

[44] Hanna Eckert and Jürgen Bajorath. Molecular similarity analysis in virtual screening: founda-tions, limitations and novel approaches. Drug discovery today, 12(5):225–233, 2007.

[45] Christopher A Lipinski. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1(4):337–341, 2004.

[46] Sheng Tian, Junmei Wang, Youyong Li, Dan Li, Lei Xu, and Tingjun Hou. The application of in silico drug-likeness predictions in pharmaceutical research. Advanced drug delivery reviews, 86:2–10, 2015.

[47] Mathias Rask-Andersen, Surendar Masuram, and Helgi B Schiöth. The druggable genome: eval-uation of drug targets in clinical trials suggests major shifts in molecular class and indication.

Annual review of pharmacology and toxicology, 54:9–26, 2014.

[48] Andrew L Hopkins. Network pharmacology: the next paradigm in drug discovery. Nature chemical biology, 4(11):682–690, 2008.

[49] B. Chen, R. F. Harrison, G. Papadatos, P. Willett, D. J. Wood, X. Q. Lewell, P. Greenidge, and N. Stiefl. Evaluation of machine-learning methods for ligand-based virtual screening.J. Comput.

Aided Mol. Des., 21(1-3):53–62, 2007.

[50] J. Hert, P. Willett, D. J. Wilton, P. Acklin, K. Azzaoui, E. Jacoby, and A. Schuffenhauer. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching. J Chem Inf Model, 46(2):462–470, 2006.

[51] R. N. Jorissen and M. K. Gilson. Virtual screening of molecular databases using a support vector machine. J Chem Inf Model, 45(3):549–561, 2005.

[52] Sandra Orchard, Bissan Al-Lazikani, Steve Bryant, Dominic Clark, Elizabeth Calder, Ian Dix, Ola Engkvist, Mark Forster, Anna Gaulton, Michael Gilson, Robert Glen, Martin Grigorov, Kim Hammond-Kosack, Lee Harland, Andrew Hopkins, Christopher Larminie, Nick Lynch,

Romeena K Mann, Peter Murray-Rust, Elena Lo Piparo, Christopher Southan, Christoph Stein-beck, David Wishart, Henning Hermjakob, John Overington, and Janet Thornton. Minimum information about a bioactive entity (MIABE). Nature reviews. Drug discovery, 10(9):661–669, 2011. ISSN 1474-1776. doi: 10.1038/nrd3503. URLhttp://dx.doi.org/10.1038/nrd3503. [53] Ubbo Visser, Saminda Abeyruwan, Uma Vempati, Robin P Smith, Vance Lemmon, and

Stephan C Schürer. BioAssay Ontology (BAO): a semantic description of bioassays and high-throughput screening results. BMC bioinformatics, 12(1):257, 2011. ISSN 1471-2105. doi:

10.1186/1471-2105-12-257. URLhttp://www.biomedcentral.com/1471-2105/12/257.

[54] Matthias Samwald, Anja Jentzsch, Christopher Bouton, Claus Stie Kallesøe, Egon Willighagen, Janos Hajagos, M. Scott Marshall, Eric Prud’hommeaux, Oktie Hassanzadeh, Elgar Pichler, and Susie Stephens. Linked Open drug data for pharmaceutical research and development.Journal of Cheminformatics, 3(5):19, 2011. ISSN 17582946. doi: 10.1186/1758-2946-3-19. URLhttp:

//www.jcheminf.com/content/3/1/19.

[55] Bin Chen, Xiao Dong, Dazhi Jiao, Huijun Wang, Qian Zhu, Ying Ding, and David J Wild.

Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and sys-tems chemical biology data. BMC bioinformatics, 11:255, 2010. ISSN 1471-2105. doi: 10.1186/

1471-2105-11-255.

[56] Anna Gaulton, Anne Hersey, Michał Nowotka, A Patrícia Bento, Jon Chambers, David Mendez, Prudence Mutowo, Francis Atkinson, Louisa J Bellis, Elena Cibrián-Uhalte, et al. The chembl database in 2017. Nucleic acids research, 45(D1):D945–D954, 2016.

[57] Stephen L. Mathias, Jarrett Hines-Kay, Jeremy J. Yang, Gergely Zahoransky-Kohalmi, Cris-tian G. Bologa, Oleg Ursu, and Tudor I. Oprea. The CARLSBAD database: A confeder-ated database of chemical bioactivities. Database, 2013:1–8, 2013. ISSN 17580463. doi:

10.1093/database/bat044.

[58] Alan Said and Alejandro Bellogín. Comparative recommender system evaluation: benchmark-ing recommendation frameworks. InProceedings of the 8th ACM Conference on Recommender systems, pages 129–136. ACM, 2014.

[59] Pekka Tiikkainen, Louisa Bellis, Yvonne Light, and Lutz Franke. Estimating error rates in bioac-tivity databases. Journal of Chemical Information and Modeling, 53(10):2499–2505, 2013. ISSN 15499596. doi: 10.1021/ci400099q.

[60] Anne Hersey, Jon Chambers, Louisa Bellis, a. Patrícia Bento, Anna Gaulton, and John P. Over-ington. Chemical databases: curation or integration by user-defined equivalence? Drug Dis-covery Today: Technologies, xxx(xx), 2015. ISSN 17406749. doi: 10.1016/j.ddtec.2015.01.005. URL http://linkinghub.elsevier.com/retrieve/pii/S1740674915000062.

[61] Christopher A Lipinski, Nadia K Litterman, Christopher Southan, Antony J Williams, Alex M Clark, and Sean Ekins. Parallel worlds of public and commercial bioactive chemistry data:

Miniperspective. Journal of medicinal chemistry, 58(5):2068, 2015.

[62] Christopher Southan, Péter Vrkonyi, and Sorel Muresan. Quantitative assessment of the ex-panding complementarity between public and commercial databases of bioactive compounds.

Journal of Cheminformatics, 1(1):1–17, 2009. ISSN 17582946. doi: 10.1186/1758-2946-1-10.

[63] Pekka Tiikkainen and Lutz Franke. Analysis of commercial and public bioactivity databases.

Journal of Chemical Information and Modeling, 52(2):319–326, 2012. ISSN 15499596. doi: 10.

1021/ci2003126.

[64] Lewis H. Mervin, Avid M. Afzal, Georgios Drakakis, Richard Lewis, Ola Engkvist, and Andreas Bender. Target prediction utilising negative bioactivity data covering large chemical space.

Journal of Cheminformatics, 7(1):1–16, 2015. ISSN 17582946. doi: 10.1186/s13321-015-0098-y.

[65] Ye Hu and Jürgen Bajorath. Growth of ligand-target interaction data in ChEMBL is associated with increasing and activity measurement-dependent compound promiscuity.Journal of Chem-ical Information and Modeling, 52(10):2550–2558, 2012. ISSN 15499596. doi: 10.1021/ci3003304.

[66] Antonio Lavecchia. Machine-learning approaches in drug discovery: methods and applications.

Drug Discovery Today, 20(3):318–331, 2014. ISSN 13596446. doi: 10.1016/j.drudis.2014.10.012.

URLhttp://linkinghub.elsevier.com/retrieve/pii/S1359644614004176.

[67] Eugen Lounkine, Michael J Keiser, Steven Whitebread, Dmitri Mikhailov, Jacques Hamon, Jeremy L Jenkins, Paul Lavan, Eckhard Weber, Allison K Doak, Serge Côté, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486(7403):361–367, 2012.

[68] Tapio Pahikkala, Antti Airola, Sami Pietilä, Sushil Shakyawar, Agnieszka Szwajda, Jing Tang, and Tero Aittokallio. Toward more realistic drug-target interaction predictions. Briefings in Bioinformatics, 16(2):325–337, 2015. ISSN 14774054. doi: 10.1093/bib/bbu010.

[69] J. Simm, A. Arany, P. Zakeri, T. Haber, J. K. Wegner, V. Chupakhin, H. Ceulemans, and Y. Moreau. Macau: Scalable Bayesian Multi-relational Factorization with Side Information us-ing MCMC. ArXiv e-prints, September 2015.

[70] Bence Bolgár and Péter Antal. Bayesian matrix factorization with non-random missing data using informative Gaussian process priors and soft evidences. In Alessandro Antonucci, Giorgio Corani, and Cassio Polpo Campos, editors, Proceedings of the Eighth International Conference on Probabilistic Graphical Models, pages 25–36, 2016.

[71] Yuhao Wang and Jianyang Zeng. Predicting drug-target interactions using restricted Boltz-mann machines. Bioinformatics, 29(13):126–134, 2013. ISSN 13674803. doi: 10.1093/

bioinformatics/btt234.

[72] Laurent Jacob and Jean-Philippe Vert. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 24(19):2149–2156, 2008.

[73] Qian Xu and Qiang Yang. A survey of transfer and multitask learning in bioinformatics.Journal of Computing Science and Engineering, 5(3):257–268, 2011.

[74] Nobuyoshi Nagamine and Yasubumi Sakakibara. Statistical prediction of protein–chemical interactions based on chemical structure and mass spectrometry data. Bioinformatics, 23(15):

2004–2012, 2007.

[75] Twan van Laarhoven, Sander B. Nabuurs, and Elena Marchiori. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 27(21):3036–3043, 2011. ISSN 13674803. doi: 10.1093/bioinformatics/btr500.

[76] André C a Nascimento, Ricardo B C Prudêncio, and Ivan G Costa. A multiple kernel learning algorithm for drug-target interaction prediction. BMC bioinformatics, 17(1):46, 2016. ISSN 1471-2105. doi: 10.1186/s12859-016-0890-3. URLhttp://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=4722636{\&}tool=pmcentrez{\&}rendertype=abstract. [77] Ming Hao, Yanli Wang, and Stephen H. Bryant. Improved prediction of drug-target interactions

using regularized least squares integrating with kernel fusion technique. Analytica Chimica Acta, 909:41–50, 2016. ISSN 18734324. doi: 10.1016/j.aca.2016.01.014. URLhttp://dx.doi.

org/10.1016/j.aca.2016.01.014.

[78] Jongsoo Keum and Hojung Nam. Self-blm: Prediction of drug-target interactions via self-training svm.PloS one, 12(2):e0171839, 2017.

[79] Nathan Srebro and Tommi Jaakkola. Sparse matrix factorization of gene expression data.

In Unpublished note, MIT Artificial Intelligence Laboratory. Available at www. ai. mit. edu/-research/abstracts/abstracts2001/genomics/01srebro. pdf, 2001.

[80] Delbert Dueck, Quaid D Morris, and Brendan J Frey. Multi-way clustering of microarray data using probabilistic sparse matrix factorization.Bioinformatics, 21(suppl 1):i144–i151, 2005.

[81] Joel R Bock and David A Gough. A new method to estimate ligand-receptor energetics. Molec-ular & CellMolec-ular Proteomics, 1(11):904–910, 2002.

[82] Pankaj Agarwal and David B Searls. Literature mining in support of drug discovery. Briefings in bioinformatics, 9(6):479–492, 2008.

[83] Ainslie B Parsons, Andres Lopez, Inmar E Givoni, David E Williams, Christopher A Gray, Justin Porter, Gordon Chua, Richelle Sopko, Renee L Brost, Cheuk-Hei Ho, et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell, 126(3):611–625, 2006.

[84] R Salakhutdinov and a Mnih. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. pages 880–887, 2008. doi: 10.1145/1390156.1390267. URLhttp://discovery.

ucl.ac.uk/63251/.

[85] Cody Severinski and Ruslan Salakhutdinov. Bayesian Probabilistic Matrix Factorization: A User Frequency Analysis. pages 1–53, 2014. URLhttp://arxiv.org/abs/1407.7840.

[86] Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, and Guillermo Sapiro. Kernelized probabilis-tic matrix factorization: Exploiting graphs and side information. InSDM, pages 403–414. SIAM / Omnipress, 2012. ISBN 978-1-61197-282-5.

[87] Jose Miguel Hernandez-Lobato, Neil Houlsby, and Zoubin Ghahramani. Stochastic Inference for Scalable Probabilistic Modeling of Binary Matrices. Proceedings of the 31st International Conference on Machine Learning (ICML), 32:1–6, 2014.

[88] Mehmet Gönen and Samuel Kaski. Kernelized bayesian matrix factorization.IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(10):2047–2060, 2014.

[89] Yong Liu, Min Wu, Chunyan Miao, Peilin Zhao, and Xiao Li Li. Neighborhood Regular-ized Logistic Matrix Factorization for Drug-Target Interaction Prediction. PLoS Computa-tional Biology, 12(2):1–26, 2016. ISSN 15537358. doi: 10.1371/journal.pcbi.1004760. URL http://dx.doi.org/10.1371/journal.pcbi.1004760.

[90] Ming Hao, Stephen H. Bryant, Yanli Wang, F. Iorio, T. Rittman, H. Ge, M. Menden, J. Saez-Rodriguez, J. B. Bartlett, K. Dredge, A. G. Dalgleish, G. Steinbach, G. E. Koehl, H. J. Schlitt, E. K.

Geissler, C. Cappelli, S. Gu, M. J. Keiser, L. Wang, V. J. Haupt, M. Schroeder, D. L. Ma, D. S.

Chan, C. H. Leung, Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, M. Kanehisa, K. Bleakley, Y. Yamanishi, T. van Laarhoven, S. B. Nabuurs, E. Marchiori, J.-P. Mei, C.-K. Kwoh, P. Yang, X.-L.

Li, J. Zheng, M. Hao, Y. Wang, S. H. Bryant, B. Wang, Y. Liu, M. Wu, C. Miao, P. Zhao, X. L. Li, M. Kanehisa, I. Schomburg, S. Günther, D. S. Wishart, Q. Kuang, T. F. Smith, M. S. Waterman, M. Hattori, Y. Okuno, S. Goto, M. Kanehisa, H. Ma, I. King, M. R. Lyu, J. Duchi, E. Hazan, Y. Singer, M. Gonen, S. Kaski, Y. Cao, A. Charisi, L.-C. Cheng, T. Jiang, T. Girke, R. Guha, F. Sievers, C. Leslie, E. Eskin, W. S. Noble, J. J. Langham, A. E. Cleves, R. Spitzer, D. Kirshner, A. N. Jain, I. Collins, Y. von Coburg, T. Kottke, L. Weizel, X. Ligneau, H. Stark, D. Wishart, S. Alaimo, and J. Sui. Predicting drug-target interactions by dual-network integrated logistic matrix factorization. Scientific Reports, 7(January):40376, 2017. ISSN 2045-2322. doi: 10.1038/

srep40376. URLhttp://www.nature.com/articles/srep40376.

[91] Bence Bolgár, Ádám Arany, Gergely Temesi, Balázs Balogh, Péter Antal, and Péter Mátyus.

Current Topics in Medicinal Chemistry, 13(18):2337–2363, 2013. ISSN 1568-0266. doi: 10.2174/

15680266113136660164.

[92] Gergely Temesi, Bence Bolgár, Ádám Arany, Csaba Szalai, Péter Antal, and Péter Mátyus. Early repositioning through compound set enrichment analysis: a knowledge-recycling strategy. Fu-ture medicinal chemistry, 6(5):563–575, 2014.

[93] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res., 13(1):795–828, March 2012. ISSN 1532-4435.

URLhttp://dl.acm.org/citation.cfm?id=2503308.2188413.

[94] Mehmet Gonen and Ethem Alpaydin. Multiple kernel learning algorithms. J. Mach. Learn.

Res., 12:2211–2268, July 2011. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?

id=1953048.2021071.

[95] Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I. Jor-dan. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res., 5:27–72, December 2004. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1005332.

1005334.

[96] Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, and Yves Grandvalet. Simplemkl, 2008.

[97] S. Yu, T. Falck, A. Daemen, L. C. Tranchevent, J. A. Suykens, B. De Moor, and Y. Moreau. L2-norm multiple kernel learning and its application to biomedical data fusion.BMC Bioinformat-ics, 11:309, 2010.

[98] S. V. N. Vishwanathan, Zhaonan sun, Nawanol Ampornpunt, and Manik Varma. Multiple kernel learning and the smo algorithm. InNIPS, pages 2361–2369. Curran Associates, Inc., 2010. URL http://dblp.uni-trier.de/db/conf/nips/nips2010.html#VishwanathansAV10.

[99] Yves Moreau and Léon-Charles Tranchevent. Computational tools for prioritizing candidate genes: boosting disease gene discovery.Nature Reviews Genetics, 13(8):523–536, 2012.

[100] A. Stojmirovic and Y. K. Yu. Robust and accurate data enrichment statistics via distribution function of sum of weights. Bioinformatics, 26(21):2752–2759, Nov 2010.

[101] B. Bolgár and P. Antal. Towards Multipurpose Drug Repositioning: Fusion of Multiple Kernels and Partial Equivalence Relations Using GPU-accelerated Metric Learning, pages 36–39. Springer Singapore, Singapore, 2015. ISBN 978-981-287-573-0. doi: 10.1007/978-981-287-573-0_9. URL https://doi.org/10.1007/978-981-287-573-0_9.

[102] Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res., 10:207–244, June 2009. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1577069.1577078.

[103] Yanhong Bi, Bin Fan, and Fuchao Wu. Beyond mahalanobis metric: Cayley-klein metric learn-ing. InThe IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

[104] Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric Learning. Synthesis Lec-tures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2015. doi: 10.2200/S00626ED1V01Y201501AIM030. URL https://doi.org/10.2200/

S00626ED1V01Y201501AIM030.

[105] Xiao Lu, Yaonan Wang, Xuanyu Zhou, and Zhigang Ling. A method for metric learning with multiple-kernel embedding. Neural Process. Lett., 43(3):905–921, June 2016. ISSN 1370-4621.

doi: 10.1007/s11063-015-9444-3. URLhttp://dx.doi.org/10.1007/s11063-015-9444-3. [106] Eric P. Xing, Michael I. Jordan, Stuart J Russell, and Andrew Y. Ng. Distance

met-ric learning with application to clustering with side-information. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Sys-tems 15, pages 521–528. MIT Press, 2003. URL http://papers.nips.cc/paper/

2164-distance-metric-learning-with-application-to-clustering-with-side-information.

pdf.

[107] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon. Information-theoretic metric learning. InProceedings of the 24th International Conference on Machine Learn-ing, ICML ’07, pages 209–216, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-793-3. doi:

10.1145/1273496.1273523. URLhttp://doi.acm.org/10.1145/1273496.1273523.

[108] Shuhui Wang, Qingming Huang, Shuqiang Jiang, and Qi Tian. Efficient lp-norm multiple feature metric learning for image categorization. In Proceedings of the 20th ACM Interna-tional Conference on Information and Knowledge Management, CIKM ’11, pages 2077–2080, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0717-8. doi: 10.1145/2063576.2063894. URL http://doi.acm.org/10.1145/2063576.2063894.

[109] Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. Distance metric learning for large margin nearest neighbor classification. InIn NIPS. MIT Press, 2006.

[110] Ratthachat Chatpatanasiri and Boonserm Kijsirikul. A unified semi-supervised dimensionality reduction framework for manifold learning. Neurocomput., 73(10-12):1631–1640, June 2010.

ISSN 0925-2312. doi: 10.1016/j.neucom.2009.10.024. URLhttp://dx.doi.org/10.1016/j.

neucom.2009.10.024.

[111] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[112] M. Kuhn, M. Campillos, I. Letunic, L. J. Jensen, and P. Bork. A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol., 6:343, 2010.

[113] David S. Wishart, Craig Knox, Anchi Guo, Dean Cheng, Savita Shrivastava, Dan Tzur, Bijaya Gautam, and Murtaza Hassanali. Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research, 36(Database-Issue):901–906, 2008. URLhttp://dblp.

uni-trier.de/db/journals/nar/nar36.html#WishartKGCSTGH08.

[114] AK Rider, RA Johnson, DA Davis, TR Hoens, and NV Chawla. Classifier evaluation with missing negative class labels. InIDA, volume 8207 ofLecture Notes in Computer Science, pages 380–391.

Springer, 2013. ISBN 978-3-642-41397-1.

[115] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24 (13):i232–240, Jul 2008.

[116] Mehmet Gönen. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 28(18):2304–2310, 2012. ISSN 13674803. doi:

10.1093/bioinformatics/bts360.

[117] Inderjit S. Dhillon and Suvrit Sra. Generalized nonnegative matrix approximations with breg-man divergences. In Proceedings of the 18th International Conference on Neural Information Processing Systems, NIPS’05, pages 283–290, Cambridge, MA, USA, 2005. MIT Press. URL http://dl.acm.org/citation.cfm?id=2976248.2976284.

[118] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-mender systems. Computer, 42(8):30–37, August 2009. ISSN 0018-9162. doi: 10.1109/MC.2009.

263. URLhttp://dx.doi.org/10.1109/MC.2009.263.

[119] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URLhttp://tensorflow.org/. Software available from tensorflow.org.

[120] Xun Gao and Lu-Ming Duan. Efficient Representation of Quantum Many-body States with Deep Neural Networks, Jan 2017. URLhttps://arxiv.org/abs/1701.05039.

[121] Erik P. Verlinde. Emergent Gravity and the Dark Universe, Nov 2016. URLhttp://arxiv.

org/abs/1611.02269.

[122] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Advances in Neural Information Processing Systems, volume 20, 2008.

[123] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using Markov Chain Monte Carlo. InProceedings of the 25th International Conference on Machine Learning, ICML ’08, pages 880–887, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4.

[124] Christopher C. Johnson. Logistic matrix factorization for implicit feedback data. 2014.

[125] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples.J. Mach. Learn. Res., 7:2399–2434, December 2006. ISSN 1532-4435. URLhttp://dl.acm.org/citation.cfm?id=1248547.

1248632.

[126] Zheng Xia, Ling-Yun Wu, Xiaobo Zhou, and Stephen T C Wong. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC systems biology, 4(S6):S6, 2010. ISSN 1752-0509. doi: 10.1186/1752-0509-4-S2-S6. URLhttp://www.biomedcentral.

com/1752-0509/4?issue=S2/S6.

[127] John Lafferty and Guy Lebanon. Diffusion kernels on statistical manifolds.J. Mach. Learn. Res., 6:129–163, December 2005. ISSN 1532-4435. URLhttp://dl.acm.org/citation.cfm?id=

1046920.1046925.

[128] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM J. Res.

Dev., 17(5):420–425, September 1973. ISSN 0018-8646. doi: 10.1147/rd.175.0420. URLhttp:

//dx.doi.org/10.1147/rd.175.0420.

[129] Mark Kac. Can One Hear the Shape of a Drum? The American Mathematical Monthly, 73(4):

1–23, Apr 1966. ISSN 00029890. doi: 10.2307/2313748. URLhttp://dx.doi.org/10.2307/

2313748.

[130] José Miguel Hernández-Lobato, Neil Houlsby, and Zoubin Ghahramani. Probabilistic matrix factorization with non-random missing data. InICML, volume 32 ofJMLR Proceedings, pages 1512–1520. JMLR.org, 2014.

[131] Greg Landrum. Rdkit: Open-source cheminformatics.Online). http://www. rdkit. org. Accessed, 3(04):2012, 2006.

[132] A. P. Bento, A. Gaulton, A. Hersey, L. J. Bellis, J. Chambers, M. Davies, F. A. Kruger, Y. Light, L. Mak, S. McGlinchey, M. Nowotka, G. Papadatos, R. Santos, and J. P. Overington. The ChEMBL bioactivity database: an update.Nucleic Acids Res., 42:D1083–1090, Jan 2014.

[133] Wei Zheng, Natasha Thorne, and John C. McKew. Phenotypic screens as a renewed approach for drug discovery. Drug Discovery Today, 18(21-22):1067–1073, 2013. ISSN 13596446. doi:

10.1016/j.drudis.2013.07.001. URLhttp://dx.doi.org/10.1016/j.drudis.2013.07.001.

[134] Nathan Srebro, Tommi Jaakkola, et al. Weighted low-rank approximations. InIcml, volume 3, pages 720–727, 2003.

[135] Gerald Maggiora and Vijay Gokhale. Non-specificity of drug-target interactions–consequences for drug discovery. InFrontiers in Molecular Design and Chemical Information Science-Herman Skolnik Award Symposium 2015: Jürgen Bajorath, pages 91–142. ACS Publications, 2016.