• Nem Talált Eredményt

Some Particular Integral Inequalities

In document JJ II (Pldal 43-64)

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page43of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page44of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

anda≤x1 ≤b,a ≤α1 ≤x1 ≤α2 ≤b. Then we have

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

−(a−α1)jf(j−1)(a) +n

(x1−α1)j (6.2)

−(x1−α2)jo

f(j−1)(x1) + (b−α2)jf(j−1)(b)

f(n)

(n+ 1)! (α1 −a)n+1+ (x1−α1)n+1 + (α2−x1)n+1+ (b−α2)n+1

f(n)

(n+ 1)! (x1−a)n+1+ (b−x1)n+1

f(n)

(n+ 1)! (b−a)n+1, f(n) ∈L[a, b].

Proof. Consider the divisiona = x0 ≤ x1 ≤ x2 =b and the numbersα0 = a, α1 ∈[a, x1),α2 ∈(x1, b]andα3 =b.

From the left hand side of (3.1) we obtain

n

X

j=1

(−1)j j!

2

X

i=0

n

(xi−αi)j −(xi−αi+1)jo

f(j−1)(xi)

=

n

X

j=1

(−1)j j!

−(a−α1)jf(j−1)(a) +

n

(x1−α1)j −(x1−α2)j o

f(j−1)(x1) + (b−α2)jf(j−1)(b)

.

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page45of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

From the right hand side of (3.1) we obtain f(n)

(n+ 1)!

1

X

i=0

i+1−xi)n+1+ (xi+1−αi+1)n+1

=

f(n)

(n+ 1)! (α1−a)n+1+ (x1−α1)n+1+ (α2−x1)n+1+ (b−α2)n+1 and hence the first line of the inequality (6.2) follows.

Notice that if we chooseα1 = aandα2 = b in Theorem6.1we obtain the inequality (1.2).

The following proposition embodies a number of results, including the Os-trowski inequality, the midpoint and Simpson’s inequalities and the three-eighths Newton-Cotes inequality including its generalisation.

Proposition 6.2. Let f be defined as in Theorem6.1and leta ≤ x1 ≤ b, and a ≤ (m−1)a+bm ≤ x1a+(m−1)bm ≤ bform a natural number,m ≥ 2, then we have the inequality

|Pm,n|:=

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

"

b−a m

j

f(j−1)(b) (6.3)

− (−1)jf(j−1)(a)o +

(

(x1−a)− b−a m

j

b−a

m −(b−x1) j)

f(j−1)(x1)

#

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page46of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

f(n) (n+ 1)! 2

b−a m

n+1

+

x1−a−

b−a m

n+1

+

b−x1

b−a m

n+1!

if f(n)∈L[a, b]. Proof. From Theorem6.1we note that

α1 = (m−1)a+b

m and α2 = a+ (m−1)b m so that

a−α1 = −

b−a m

, b−α2 = b−a m , x1−α1 = x1−a−

b−a m

and x1−α2 =

b−a m

−(b−x1). From the left hand side of (6.2) we have

−(a−α1)jf(j−1)(a) + n

(x1−α1)j

− (x1−α2)jo

f(j−1)(x1) + (b−α2)jf(j−1)(b)

=

b−a m

j

f(j−1)(b)−f(j−1)(a) +

(

x1−a−

b−a m

j

b−a m

−(b−x1) j)

f(j−1)(x1).

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page47of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

From the right hand side of (6.2),

1−a)n+1+ (x1−α1)n+1+ (α2−x1)n+1+ (b−α2)n+1

= 2

b−a m

n+1

+

x1−a−

b−a m

n+1

+

b−x1

b−a m

n+1

and the inequality (6.3) follows, hence the proof is complete.

The following corollary points out that the optimum of Proposition 6.2 oc-curs atx1 = α12 2 = a+b2 in which case we have:

Corollary 6.3. Letfbe defined as in Proposition6.2and letx1 = a+b2 in which case we have the inequality

Pm,n

a+b 2

(6.4)

:=

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

"

b−a m

j

×n

f(j−1)(b)−(−1)jf(j−1)(a)o +

(m−2) (b−a) 2m

j

1−(−1)j f(j−1)

a+b 2

#

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page48of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

≤ 2 f(n)

(n+ 1)!

b−a m

n+1

1 +

m−2 2

n+1!

if f(n) ∈L[a, b].

The proof follows directly from (6.3) upon substitutingx1 = a+b2 .

A number of other corollaries follow naturally from Proposition 6.2 and Corollary6.3and will now be investigated.

The following two corollaries generalise the Simpson inequality and follow directly from (6.3) and (6.4) form = 6.

Corollary 6.4. Let the conditions of Corollary6.3 hold and putm = 6. Then we have the inequality

|P6,n| (6.5)

:=

Z b a

f(t)dt +

n

X

j=1

(−1)j j!

"

b−a 6

j

n

f(j−1)(b)−(−1)jf(j−1)(a)o

+ (

x1− 5a+b 6

j

x1− a+ 5b 6

j)

f(j−1)(x1)

#

f(n) (n+ 1)! 2

b−a 6

n+1

+

x1 −5a+b 6

n+1

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page49of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

+

−x1+ a+ 5b 6

n+1!

, f(n)∈L[a, b], which is the generalised Simpson inequality.

Corollary 6.5. Let the conditions of Corollary6.3 hold and putm = 6,. Then at the midpointx1 = a+b2 we have the inequality

P6,n

a+b 2

(6.6)

:=

Z b a

f(t)dt +

n

X

j=1

(−1)j j!

"

b−a 6

j

n

f(j−1)(b)−(−1)jf(j−1)(a)o

+

b−a 3

j

1−(−1)j f(j−1)

a+b 2

#

≤ 2 f(n)

(n+ 1)!

b−a 6

n+1

1 + 2n+1

, f(n) ∈L[a, b]. Remark 6.1. Choosingn = 1in (6.6) we have

(6.7)

P6,1

a+b 2

:=

Z b a

f(t)dt−

b−a

6 f(a) + 4f

a+b 2

+f(b)

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page50of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

≤ 5

36kf0k(b−a)2, f0 ∈L[a, b]. Remark 6.2. Choosing n = 2 in (6.6) we have a perturbed Simpson type in-equality,

P6,2

a+b 2

(6.8)

:=

Z b a

f(t)dt−

b−a

6 f(a) + 4f

a+b 2

+f(b)

+

b−a 6

2

f0(b)−f0(a) 2

≤ (b−a)3

72 kf00k, f00∈L[a, b].

Corollary 6.6. Let f be defined as in Corollary 6.3 and let m = 4, then we have the inequality

P4,n

a+b 2

(6.9)

:=

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

b−a 4

j

×h

f(j−1)(b)−(−1)jf(j−1)(a) +

1−(−1)j f(j−1)

a+b 2

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page51of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

f(n)

(n+ 1)!4n(b−a)n+1, f(n) ∈L[a, b]. Remark 6.3. From (6.9) we choosen= 2and we have the inequality

P4,2

a+b 2

(6.10)

:=

Z b a

f(t)dt−

b−a

4 f(b) +f(a) + 2f

a+b 2

+

b−a 4

2

f0(b)−f0(a) 2

≤ kf00k

96 (b−a)3, f00 ∈L[a, b].

Theorem 6.7. Letf : [a, b]→Rbe an absolutely continuous mapping on[a, b]

and leta < x1 ≤x2 ≤bandα1 ∈[a, x1),α2 ∈[x1, x2)andα3 ∈[x2, b]. Then we have the inequality

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

h−(a−α1)jf(j−1)(a) (6.11)

+

(x1−α1)j −(x1 −α2)j

f(j−1)(x1) +

(x2−α2)j −(x2 −α3)j

f(j−1)(x2) + (b−α3)jf(j−1)(b)i

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page52of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

f(n)

(n+ 1)! (α1−a)n+1 + (x1−α1)n+1+ (α2 −x1)n+1 + (x2−α2)n+1+ (α3 −x2)n+1+ (b−α3)n+1 , f(n) ∈L[a, b].

Proof. Consider the division a = x0 < x1 < x2 = b, α1 ∈ [a, x1), α2 ∈ [x1, x2), α3 ∈ [x2, b], α0 = a, x0 = a, x3 = b and put α4 = b. From the left hand side of (3.1) we obtain

n

X

j=1

(−1)j j!

3

X

i=0

n

(xi−αi)j −(xi−αi+1)jo

f(j−1)(xi)

=

n

X

j=1

(−1)j j!

h−(a−α1)jf(j−1)(a)

+

(x1−α1)j −(x1−α2)j

f(j−1)(x1) +

(x2−α2)j−(x2−α3)j

f(j−1)(x2) + (b−α3)jf(j−1)(b)i . From the right hand side of (3.1) we obtain

f(n) (n+ 1)!

2

X

i=0

i+1−xi)n+1+ (xi+1−αi+1)n+1

=

f(n)

(n+ 1)! (α1−a)n+1 + (x1−α1)n+1+ (α2−x1)n+1

+ (x2−α2)n+1+ (α3−x2)n+1+ (b−α3)n+1

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page53of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

and hence the first line of the inequality (6.11) follows and Theorem 6.7 is proved.

Corollary 6.8. Letf be defined as in Theorem6.7and consider the division a≤α1 ≤ (m−1)a+b

m ≤α2 ≤ a+ (m−1)b

m ≤α3 ≤b forma natural number,m≥2. Then we have the inequality

|Qm,n| (6.12)

:=

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

h−(a−α1)jf(j−1)(a)

+ (

(m−1)a+b

m −α1

j

(m−1)a+b

m −α2

j)

f(j−1)(x1)

+ (

a+ (m−1)b

m −α2

j

a+ (m−1)b

m −α3

j)

f(j−1)(x2) + (b−α3)jf(j−1)(b)i

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page54of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

f(n) (n+ 1)!Rm,n :=

f(n)

(n+ 1)! (α1−a)n+1+

(m−1)a+b

m −α1

n+1

+

α2− (m−1)a+b m

n+1

+

a+ (m−1)b

m −α2

n+1

+

α3− a+ (m−1)b m

n+1

+ (b−α3)n+1

! ,

f(n) ∈L[a, b].

Proof. Choose in Theorem 6.7, x1 = (m−1)a+bm , andx2 = a+(m−1)bm , hence the theorem is proved.

Remark 6.4. For particular choices of the parametersmandn, Corollary6.8 contains a generalisation of the three-eighths rule of Newton and Cotes.

The following corollary is a consequence of Corollary6.8.

Corollary 6.9. Let f be defined as in Theorem 6.7 and choose α2 = a+b2 =

x1+x2

2 , then we have the inequality

m,n

(6.13)

:=

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

h−(a−α1)jf(j−1)(a)

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page55of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

+ (

(x1−α1)j −(−1)j

(m−2) (b−a) 2m

j)

f(j−1)(x1)

+ (

(m−2) (b−a) 2m

j

−(x2−α3)j )

f(j−1)(x2) + (b−α3)jf(j−1)(b)i

f(n)

(n+ 1)!

m,n :=

f(n)

(n+ 1)! (α1−a)n+1+

(m−1)a+b

m −α1

n+1

+ 2

(b−a)(m−2) 2m

n+1

+

α3 −a+ (m−1)b m

n+1

+ (b−α3)n+1

, f(n) ∈L[a, b].

Proof. If we putα2 = a+b2 = x1+x2 2 into (6.12), we obtain the inequality (6.13) and the corollary is proved.

The following corollary contains an optimum estimate for the inequality (6.13).

Corollary 6.10. Letf be defined as in Theorem6.7and make the choices α1 =

3m−4 2m

a+

4−m 2m

b and

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page56of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

α3 =

4−m 2m

a+

3m−4 2m

b then we have the best estimate

m,n (6.14)

:=

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

×

"

(b−a) (4−m) 2m

j

n

f(j−1)(b)−(−1)jf(j−1)(a)o

+

(b−a) (m−2) 2m

j

n

1−(−1)jo

f(j−1)(x1) +f(j−1)(x2)

#

≤ 2 f(n)

(n+ 1)!

b−a 2m

n+1

(4−m)n+1+ 2 (m−2)n+1 , f(n)∈L[a, b].

Proof. Using the choiceα2 = a+b2 = x1+x2 2, x1 = (m−1)a+bm andx2 = a+(m−1)bm we may calculate

1−a) = (4−m) (b−a)

2m = (b−α3)

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page57of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

and

(x1−α1) = (α2−x1) = (x2−α2) = (α3−x2)

= (m−2) (b−a)

2m .

Substituting in the inequality (6.13) we obtain the proof of (6.14).

Remark 6.5. Form = 3, we have the best estimation of (6.14) such that

3,n (6.15)

:=

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

×

"

b−a 6

j

n

f(j−1)(b)−(−1)jf(j−1)(a)o +

b−a 6

j

× n

1−(−1)jo f(j−1)

2a+b 2

+f(j−1)

a+ 2b 2

f(n)

6n(n+ 1)!(b−a)n+1, f(n) ∈L[a, b]. Proof. From the right hand side of (6.14), consider the mapping

Mm,n :=

4−m 2m

n+1

+ 2

m−2 2m

n+1

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page58of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

then

Mm,n0 = 2 (n+ 1) m2

− 2

m − 1 2

n

+ 1

2− 1 m

n

andMm,nattains its optimum when 2 m − 1

2 = 1 2 − 1

m,

in which casem = 3. Substitutingm= 3into (6.14), we obtain (6.15) and the corollary is proved.

Whenn = 2, then from (6.15) we have

3,2 :=

Z b a

f(t)dt−

b−a 6

(f(b) +f(a)) +1

2

b−a 6

2

(f0(b)−f0(a)) +

b−a

3 f

2a+b 2

+f

a+ 2b 2

≤ kf00k

216 (b−a)3, f00∈L[a, b].

The next corollary encapsulates the generalised Newton-Cotes inequality.

Corollary 6.11. Letf be defined as in Theorem6.7and choose x1 = 2a+b

3 , x2 = a+ 2b

3 , α2 = a+b 2 , α1 = (r−1)a+b

r andα3 = a+ (r−1)b

r .

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page59of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

Then for ra natural number,r≥3, we have the inequality

|Tr,n| (6.16)

:=

Z b a

f(t)dt +

n

X

j=1

(−1)j j!

"

b−a r

j

n

f(j−1)(b)−(−1)jf(j−1)(a)o

+ (

(b−a) (r−3) 3r

j

−(−1)j

b−a 6

j)

f(j−1)(x1)

+ (

b−a 6

j

−(−1)j

(b−a) (r−3) 3r

j)

f(j−1)(x2)

#

≤ 2 f(n)

(n+ 1)! (b−a)n+1 1 rn+1 +

r−3 3r

n+1

+ 1 6n+1

! , f(n) ∈L[a, b].

Proof. From Theorem 6.7, we put x1 = 2a+b3 , x2 = a+2b3 , α2 = a+b2 , α1 =

(r−1)a+b

r andα3 = a+(r−1)br . Then (6.16) follows.

Remark 6.6. The optimum estimate of the inequality (6.16) occurs whenr= 6.

from (6.16) consider the mapping

Mr,n:= 1 rn+1 +

r−3 3r

n+1

+ 1

6n+1

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page60of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

the Mr,n0 = −(n+ 1)r−n−2 + n+1r2

1

31rn

and Mr,n attains its optimum when 1r = 131r, in which caser = 6. In this case, we obtain the inequality (6.15) and specifically forn = 1, we obtain a Simpson type inequality

3,1 :=

Z b a

f(t)dt−

b−a 6

(f(a) +f(b)) (6.17)

b−a

3 f

2a+b 3

+f

a+ 2b 3

≤ kf0k

12 (b−a)2, f0 ∈L[a, b], which is better than that given by (6.7).

Corollary 6.12. Let f be defined as in Theorem6.7 and choose m = 8 such thatα1 = 7a+b8 ,α2 = a+b8 andα3 = a+7b8 withx1 = 2a+b3 andx2 = a+2b3 . Then we have the inequality

|T8,n| (6.18)

:=

Z b a

f(t)dt +

n

X

j=1

(−1)j j!

"

b−a 8

j

f(j−1)(b)−(−1)jf(j−1)(a)

+

b−a 6

j 5 4

j

−(−1)j

!

×

f(j−1)(x1)−(−1)jf(j−1)(x2)i

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page61of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

≤ 2 f(n)

(n+ 1)!

b−a 24

n+1

3n+1+ 4n+1+ 5n+1 , f(n) ∈L[a, b]. Proof. From Theorem6.7we put

x1 = 2a+b

3 , x2 = a+ 2b

3 , α1 = 7a+b

8 , α3 = a+ 7b 8 andα2 = a+b2 and the inequality (6.18) is obtained.

Whenn = 1we obtain from (6.18) the ‘three-eighths rule’ of Newton-Cotes.

Remark 6.7. From (6.16) withr= 3we have

|T3,n| :=

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

"

b−a 3

j

f(j−1)(b)−(−1)jf(j−1)(a)

+

b−a 6

j

f(j−1)(x2)−f(j−1)(x1)

#

≤ 2 f(n)

(n+ 1)! (b−a)n+1 1

3n+1 + 1 6n+1

, f(n) ∈L[a, b]. In particular, forn= 2, we have the inequality

|T3,2|:=

Z b a

f(t)dt−

b−a 3

(f(b) +f(a)) +

b−a 3

2

f0(b)−f0(a) 2

b−a

6 f

a+ 2b 3

+f

2a+b 3

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page62of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

+

b−a 6

2

f0 a+2b3

−f0 2a+b3 2

!

≤ kf00k

72 (b−a)3, f00 ∈L[a, b].

The following theorem encapsulates Boole’s rule.

Theorem 6.13. Let f : [a, b] → R be an absolutely continuous mapping on [a, b] and leta < x1 < x2 < x3 < b andα1 ∈ [a, x1), α2 ∈ [x1, x2), α3 ∈ [x2, x3)andα4 ∈[x3, b]. Then we have the inequality

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

h−(a−α1)jf(j−1)(a) (6.19)

+

(x1−α1)j −(x1 −α2)j

f(j−1)(x1) +

(x2−α2)j −(x2 −α3)j

f(j−1)(x2) +

(x3−α3)j −(x3 −α4)j

f(j−1)(x3) + (b−α4)jf(j−1)(b)i

f(n)

(n+ 1)! (α1−a)n+1 + (x1−α1)n+1+ (α2−x1)n+1 + (x2−α2)n+1+ (α3−x2)n+1+ (x3−α3)n+1 + (α4−x3)n+1+ (b−α4)n+1

if f(n)∈L[a, b].

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page63of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

Proof. Follows directly from (3.1) with the pointsα0 = x0 = a, x4 = α5 = b and the division a = x0 < x1 < x2 < x3 = b, α1 ∈ [a, x1), α2 ∈ [x1, x2), α3 ∈[x2, x3)andα4 ∈[x3, b].

The following inequality arises from Theorem6.13.

Corollary 6.14. Let f be defined as in Theorem 6.7 and choose α1 = 11a+b12 , α2 = 11a+7b18 , α3 = 7a+11b18 , α4 = a+11b12 , x1 = 7a+2b9 , x3 = 2a+7b9 and x2 =

x1+x3

2 = a+b2 , then we can state:

Z b a

f(t)dt+

n

X

j=1

(−1)j j!

"

b−a 12

j

n

f(j−1)(b)−(−1)jf(j−1)(a)o

+

b−a 6

j( 5

6 j

−(−1)j )

×

f(j−1)

7a+ 2b 9

−(−1)jf(j−1)

2a+ 7b 9

+

b−a 9

j

n

1−(−1)jo f(j−1)

a+b 2

#

≤ 2 f(n)

(n+ 1)!

b−a 36

n+1

3n+1+ 4n+1+ 5n+1+ 6n+1 , iff(n)∈L[a, b].

Integral Inequalities of the Ostrowski Type

A. Sofo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page64of83

J. Ineq. Pure and Appl. Math. 3(2) Art. 21, 2002

http://jipam.vu.edu.au

In document JJ II (Pldal 43-64)