• Nem Talált Eredményt

The results presented in this thesis can serve as a basis for many further research directions.

Regarding the power forecasting, the verification of the model chains for other climatic regions could reveal the dependence of the best model chains on the local conditions and identify the worldwide best model chains. Another important step to further analyze the universality of the best model chains is to compare the power predictions created from different irradiance forecasts, e.g., further NWP providers of even satellite-derived forecasts. The accuracy of the power forecasts could be further improved using machine learning hybridized with the presented physical modeling methodology. Finding the most suitable learning algorithm and the best way of hybridization is a wide field for further research. The accuracy could also be improved by fine-tuning the parameters of several capable physical models based on more detailed measurement data, like on-site Gh, Bh, Dh, Gt, Tc, and PDC measurement. Additional studies are also required to identify whether the MAE, the RMSE, or their weighted sum is the best representation of the value of the forecast for the different market participants. The variance of the MAE-optimized forecasts can be reduced by a smoothing post-processing technique (e.g., moving average), but it still has to be discovered how this smoothing affects the RMSE of the forecast.

The PV design optimization framework can be used for a wide range of further research, e.g., a detailed analysis of the effect of different financial subsidies or the changes in the electricity market prices. The framework can be further broadened by other objectives, like minimizing the balancing energy costs resulting from forecast inaccuracies. The extension of the model to describe the effects of a battery storage system can result in an effective tool for evaluating the benefits of the batteries with different storage strategies. Incorporating the design optimization and the expected cost-changing tendencies to a long-term energy system modeling framework can improve the projections for the energy mix and electricity prices of the future.

References

[1] REN21. Renewables 2020 Global Status Report. Paris: 2020.

[2] IRENA. Renewable Power Generation Costs in 2019. Abu Dhabi: Springer-Verlag; 2020.

[3] Antonanzas J, Perpinan-Lamigueiro O, Urraca R, Antonanzas-Torres F. Influence of electricity market structures on deterministic solar forecasting verification. Sol Energy 2020:1–3.

doi:10.1016/j.solener.2020.04.017.

[4] Zepter JM, Weibezahn J. Unit commitment under imperfect foresight – The impact of stochastic photovoltaic generation. Appl Energy 2019;243:336–49. doi:10.1016/j.apenergy.2019.03.191.

[5] Blaga R, Sabadus A, Stefu N, Dughir C, Paulescu M, Badescu V. A current perspective on the accuracy of incoming solar energy forecasting. Prog Energy Combust Sci 2019;70:119–44.

doi:10.1016/j.pecs.2018.10.003.

[6] Yang D, Kleissl J, Gueymard CA, Pedro HTC, Coimbra CFM. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining.

Sol Energy 2018;168:60–101. doi:10.1016/j.solener.2017.11.023.

[7] Guédez R, Spelling J, Laumert B. Thermoeconomic Optimization of Solar Thermal Power Plants with Storage in High-penetration Renewable Electricity Markets. Energy Procedia 2014;57:541–

50. doi:10.1016/j.egypro.2014.10.208.

[8] Antonanzas J, Osorio N, Escobar R, Urraca R, Martinez-de-Pison FJ, Antonanzas-Torres F.

Review of photovoltaic power forecasting. Sol Energy 2016;136:78–111.

doi:10.1016/j.solener.2016.06.069.

[9] Ulbricht R, Fischer U, Lehner W, Donker H. First Steps Towards a Systematical Optimized Strategy for Solar Energy Supply Forecasting. Eur. Conf. Mach. Learn. Princ. Pract. Knowl.

Discov. Databases, ECMLPKDD 2013, 2013.

[10] Lorenz E, Heinemann D. Prediction of Solar Irradiance and Photovoltaic Power. Compr. Renew.

Energy, vol. 1, Elsevier; 2012, p. 239–92. doi:10.1016/B978-0-08-087872-0.00114-1.

[11] Raza MQ, Nadarajah M, Ekanayake C. On recent advances in PV output power forecast. Sol Energy 2016;136:125–44. doi:10.1016/j.solener.2016.06.073.

[12] Leva S, Dolara A, Grimaccia F, Mussetta M, Ogliari E. Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. Math Comput Simul 2017;131:88–100. doi:10.1016/j.matcom.2015.05.010.

[13] Wang K, Qi X, Liu H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Appl Energy 2019;251. doi:10.1016/j.apenergy.2019.113315.

[14] Theocharides S, Makrides G, Livera A, Theristis M, Kaimakis P, Georghiou GE. Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing. Appl Energy 2020;268:115023.

doi:10.1016/j.apenergy.2020.115023.

[15] Antonanzas J, Pozo-Vázquez D, Fernandez-Jimenez LA, Martinez-de-Pison FJ. The value of day-ahead forecasting for photovoltaics in the Spanish electricity market. Sol Energy 2017;158:140–6. doi:10.1016/j.solener.2017.09.043.

[16] Sobri S, Koohi-Kamali S, Rahim NA. Solar photovoltaic generation forecasting methods: A review. Energy Convers Manag 2018;156:459–97. doi:10.1016/j.enconman.2017.11.019.

[17] Almeida MP, Muñoz M, de la Parra I, Perpiñán O. Comparative study of PV power forecast using parametric and nonparametric PV models. Sol Energy 2017;155:854–66.

doi:10.1016/j.solener.2017.07.032.

[18] Wolff B, Kühnert J, Lorenz E, Kramer O, Heinemann D. Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data. Sol Energy 2016;135:197–208.

doi:10.1016/j.solener.2016.05.051.

[19] Schmelas M, Feldmann T, da Costa Fernandes J, Bollin E. Photovoltaics Energy Prediction Under Complex Conditions for a Predictive Energy Management System. J Sol Energy Eng 2015;137:1–10. doi:10.1115/1.4029378.

[20] Ogliari E, Dolara A, Manzolini G, Leva S. Physical and hybrid methods comparison for the day

91

ahead PV output power forecast. Renew Energy 2017;113:11–21.

doi:10.1016/j.renene.2017.05.063.

[21] Hofmann M, Seckmeyer G. Influence of Various Irradiance Models and Their Combination on Simulation Results of Photovoltaic Systems. Energies 2017;10:1495. doi:10.3390/en10101495.

[22] Urraca R, Huld T, Lindfors A V., Riihelä A, Martinez-de-Pison FJ, Sanz-Garcia A. Quantifying the amplified bias of PV system simulations due to uncertainties in solar radiation estimates. Sol Energy 2018;176:663–77. doi:10.1016/j.solener.2018.10.065.

[23] Roberts JJ, Mendiburu Zevallos AA, Cassula AM. Assessment of photovoltaic performance models for system simulation. Renew Sustain Energy Rev 2017;72:1104–23.

doi:10.1016/j.rser.2016.10.022.

[24] PV Performance Modeling Collaborative n.d. https://pvpmc.sandia.gov/ (accessed July 12, 2020).

[25] Yang D, Wu E, Kleissl J. Operational solar forecasting for the real-time market. Int J Forecast 2019;35:1499–519. doi:10.1016/j.ijforecast.2019.03.009.

[26] Lorenz E, Scheidsteger T, Hurka J. Regional PV power prediction for improved grid integration.

Prog Photovoltaics Res Appl 2011;19:757–71. doi:10.1002/pip.1033.

[27] Saint-Drenan YM, Bofinger S, Fritz R, Vogt S, Good GH, Dobschinski J. An empirical approach to parameterizing photovoltaic plants for power forecasting and simulation. Sol Energy 2015;120:479–93. doi:10.1016/j.solener.2015.07.024.

[28] Holland N, Pang X, Herzberg W, Karalus S, Bor J, Lorenz E. Solar and PV forecasting for large PV power plants using numerical weather models, satellite data and ground measurements. 2019 IEEE 46th Photovolt. Spec. Conf., IEEE; 2019, p. 1609–14.

doi:10.1109/PVSC40753.2019.8980496.

[29] Amaro e Silva R, Brito MC. Spatio-temporal PV forecasting sensitivity to modules’ tilt and orientation. Appl Energy 2019;255:113807. doi:10.1016/j.apenergy.2019.113807.

[30] Pelland S, Galanis G, Kallos G. Solar and photovoltaic forecasting through post-processing of the Global Environmental Multiscale numerical weather prediction model. Prog Photovoltaics Res Appl 2013;21:284–96. doi:10.1002/pip.1180.

[31] Dolara A, Leva S, Manzolini G. Comparison of different physical models for PV power output prediction. Sol Energy 2015;119:83–99. doi:10.1016/j.solener.2015.06.017.

[32] Larson DP, Nonnenmacher L, Coimbra CFM. Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest. Renew Energy 2016;91:11–20.

doi:10.1016/j.renene.2016.01.039.

[33] Perez-Gallardo JR, Azzaro-Pantel C, Astier S, Domenech S, Aguilar-Lasserre A. Ecodesign of photovoltaic grid-connected systems. Renew Energy 2014;64:82–97.

doi:10.1016/j.renene.2013.10.027.

[34] Vernay C, Pitaval S, Blanc P. Review of Satellite-based Surface Solar Irradiation Databases for the Engineering, the Financing and the Operating of Photovoltaic Systems. Energy Procedia 2014;57:1383–91. doi:10.1016/j.egypro.2014.10.129.

[35] Bryce R, Losada I, Kumler A, Hodge B, Roberts B, Martinez-anido CB. Consequences of neglecting the interannual variability of the solar resource : A case study of photovoltaic power among the Hawaiian Islands. Sol Energy 2018;167:61–75. doi:10.1016/j.solener.2018.03.085.

[36] Huld T, Paietta E, Zangheri P, Pinedo Pascua I. Assembling Typical Meteorological Year Data Sets for Building Energy Performance Using Reanalysis and Satellite-Based Data. Atmosphere (Basel) 2018;9:53. doi:10.3390/atmos9020053.

[37] Gueymard CA. Cloud and albedo enhancement impacts on solar irradiance using high-frequency measurements from thermopile and photodiode radiometers. Part 1: Impacts on global horizontal irradiance. Sol Energy 2017;153:755–65. doi:10.1016/j.solener.2017.05.004.

[38] Järvelä M, Lappalainen K, Valkealahti S. Characteristics of the cloud enhancement phenomenon and PV power plants. Sol Energy 2020;196:137–45. doi:10.1016/j.solener.2019.11.090.

[39] Ernst M, Gooday J. Methodology for generating high time resolution typical meteorological year data for accurate photovoltaic energy yield modelling. Sol Energy 2019;189:299–306.

doi:10.1016/j.solener.2019.07.069.

[40] Khatib T, Mohamed A, Sopian K. A review of photovoltaic systems size optimization techniques. Renew Sustain Energy Rev 2013;22:454–65. doi:10.1016/j.rser.2013.02.023.

[41] Gómez M, López A, Jurado F. Optimal placement and sizing from standpoint of the investor of Photovoltaics Grid-Connected Systems using Binary Particle Swarm Optimization. Appl Energy 2010;87:1911–8. doi:10.1016/j.apenergy.2009.12.021.

[42] Kornelakis A, Marinakis Y. Contribution for optimal sizing of grid-connected PV-systems using PSO. Renew Energy 2010;35:1333–41. doi:10.1016/j.renene.2009.10.014.

[43] Kornelakis A. Multiobjective Particle Swarm Optimization for the optimal design of photovoltaic grid-connected systems. Sol Energy 2010;84:2022–33.

doi:10.1016/j.solener.2010.10.001.

[44] Notton G, Lazarov V, Stoyanov L. Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations. Renew Energy 2010;35:541–54. doi:10.1016/j.renene.2009.07.013.

[45] Gómez-Lorente D, Triguero I, Gil C, Espín Estrella A. Evolutionary algorithms for the design of grid-connected PV-systems. Expert Syst Appl 2012;39:8086–94.

doi:10.1016/j.eswa.2012.01.159.

[46] Gómez-Lorente D, Triguero I, Gil C, Rabaza O. Multi-objective evolutionary algorithms for the design of grid-connected solar tracking systems. Int J Electr Power Energy Syst 2014;61:371–9.

doi:10.1016/j.ijepes.2014.03.064.

[47] Sulaiman SI, Rahman TKA, Musirin I, Shaari S, Sopian K. An intelligent method for sizing optimization in grid-connected photovoltaic system. Sol Energy 2012;86:2067–82.

doi:10.1016/j.solener.2012.04.009.

[48] Chen S, Li P, Brady D, Lehman B. Determining the optimum grid-connected photovoltaic inverter size. Sol Energy 2013;87:96–116. doi:10.1016/j.solener.2012.09.012.

[49] Perez-Gallardo JR, Azzaro-Pantel C, Astier S. Combining Multi-Objective Optimization, Principal Component Analysis and Multiple Criteria Decision Making for ecodesign of photovoltaic grid-connected systems. Sustain Energy Technol Assessments 2018;27:94–101.

doi:10.1016/j.seta.2018.03.008.

[50] Paravalos C, Koutroulis E, Samoladas V, Kerekes T, Sera D, Teodorescu R. Optimal Design of Photovoltaic Systems Using High Time-Resolution Meteorological Data. IEEE Trans Ind Informatics 2014;10:2270–9. doi:10.1109/TII.2014.2322814.

[51] Bakhshi R, Sadeh J, Mosaddegh HR. Optimal economic designing of grid-connected photovoltaic systems with multiple inverters using linear and nonlinear module models based on Genetic Algorithm. Renew Energy 2014;72:386–94. doi:10.1016/j.renene.2014.07.035.

[52] Bakhshi R, Sadeh J. A comprehensive economic analysis method for selecting the PV array structure in grid-connected photovoltaic systems. Renew Energy 2016;94:524–36.

doi:10.1016/j.renene.2016.03.091.

[53] Bakhshi-Jafarabadi R, Sadeh J, Soheili A. Global optimum economic designing of grid-connected photovoltaic systems with multiple inverters using binary linear programming. Sol Energy 2019;183:842–50. doi:10.1016/j.solener.2019.03.019.

[54] Aronescu A, Appelbaum J. Design optimization of photovoltaic solar fields-insight and methodology. Renew Sustain Energy Rev 2017;76:882–93. doi:10.1016/j.rser.2017.03.079.

[55] Vokony I, Hartmann B, Talamon A, Papp RV. On Selecting Optimum Tilt Angle for Solar Photovoltaic Farms. Int J Renew Energy Res 2018;8:1926–35.

[56] Martins Deschamps E, Rüther R. Optimization of inverter loading ratio for grid connected photovoltaic systems. Sol Energy 2019;179:106–18. doi:10.1016/j.solener.2018.12.051.

[57] Ahmed R, Sreeram V, Mishra Y, Arif MD. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew Sustain Energy Rev 2020;124:109792. doi:10.1016/j.rser.2020.109792.

[58] Reda I, Andreas A. Solar position algorithm for solar radiation applications. Sol Energy 2004;76:577–89. doi:10.1016/j.solener.2003.12.003.

[59] Duffie JA, Beckman WA. Solar Engineering of Thermal Processes. 2nd ed. Hoboken, NJ, USA:

John Wiley & Sons, Inc.; 2013. doi:10.1002/9781118671603.

[60] Gueymard CA. A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations. Sol Energy 2018;168:2–9.

doi:10.1016/j.solener.2018.04.001.

[61] Gueymard CA, Ruiz-Arias JA. Extensive worldwide validation and climate sensitivity analysis

93

of direct irradiance predictions from 1-min global irradiance. Sol Energy 2016;128:1–30.

doi:10.1016/j.solener.2015.10.010.

[62] Blaga R. The impact of temporal smoothing on the accuracy of separation models. Sol Energy 2019;191:371–81. doi:10.1016/j.solener.2019.08.078.

[63] Orgill JF, Hollands KGT. Correlation equation for hourly diffuse radiation on a horizontal surface. Sol Energy 1977;19:357–9. doi:10.1016/0038-092X(77)90006-8.

[64] Erbs DG, Klein SA, Duffie JA. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol Energy 1982;28:293–302. doi:10.1016/0038-092X(82)90302-4.

[65] Skartveit A, Olseth JA. A model for the diffuse fraction of hourly global radiation. Sol Energy 1987;38:271–4. doi:10.1016/0038-092X(87)90049-1.

[66] Maxwell EL. A quasi-physical model for converting hourly Global Horizontal to Direct Normal Insolation. Golden, CO: 1987.

[67] Bird RE, Hulstrom RL. A Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces. Golden, CO: 1981.

[68] Kasten F, Young AT. Revised optical air mass tables and approximation formula. Appl Opt 1989;28:4735–8.

[69] Perez RR, Ineichen P, Maxwell EL, Seals RD, Zelenka A. Dynamic global-to-direct irradiance conversion models. ASHRAE Trans 1992;98:354–69.

[70] Perez R, Ineichen P, Seals R, Zelenka A. Making full use of the clearness index for parameterizing hourly insolation conditions. Sol Energy 1990;45:111–4. doi:10.1016/0038-092X(90)90036-C.

[71] Wright J, Perez R, Michalsky JJ. Luminous efficacy of direct irradiance: Variations with insolation and moisture conditions. Sol Energy 1989;42:387–94. doi:10.1016/0038-092X(89)90057-1.

[72] Perez R, Ineichen P, Moore K, Kmiecik M, Chain C, George R, et al. A new operational model for satellite-derived irradiances: Description and validation. Sol Energy 2002;73:307–17.

doi:10.1016/S0038-092X(02)00122-6.

[73] Ineichen P, Perez R. A new airmass independent formulation for the linke turbidity coefficient.

Sol Energy 2002;73:151–7. doi:10.1016/S0038-092X(02)00045-2.

[74] Remund J, Wald L, Lefevre M, Ranchin T, Page J. Worldwide Linke turbidity information. ISES Sol. World Congr. 2003, Göteborg, Sweden: 2003, p. 13. doi:10.1074/jbc.M605098200.

[75] Sun X, Bright JM, Gueymard CA, Acord B, Wang P, Engerer NA. Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis.

Renew Sustain Energy Rev 2019;111:550–70. doi:10.1016/j.rser.2019.04.006.

[76] Ruiz-Arias JA, Gueymard CA. Worldwide inter-comparison of clear-sky solar radiation models:

Consensus-based review of direct and global irradiance components simulated at the earth surface. Sol Energy 2018;168:10–29. doi:10.1016/j.solener.2018.02.008.

[77] Paulescu E, Blaga R. A simple and reliable empirical model with two predictors for estimating 1-minute diffuse fraction. Sol Energy 2019;180:75–84. doi:10.1016/j.solener.2019.01.029.

[78] Yang D. Choice of clear-sky model in solar forecasting. J Renew Sustain Energy 2020;12:2.

doi:10.1063/5.0003495.

[79] Boland J, Scott L, Luther M. Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001;12:103–16. doi:10.1002/1099-095X(200103)12:2<103::AID-ENV447>3.0.CO;2-2.

[80] Ridley B, Boland J, Lauret P. Modelling of diffuse solar fraction with multiple predictors. Renew Energy 2010;35:478–83. doi:10.1016/j.renene.2009.07.018.

[81] Boland J, Huang J, Ridley B. Decomposing global solar radiation into its direct and diffuse components. Renew Sustain Energy Rev 2013;28:749–56. doi:10.1016/j.rser.2013.08.023.

[82] Engerer NA. Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia. Sol Energy 2015;116:215–37. doi:10.1016/j.solener.2015.04.012.

[83] Bright JM, Engerer NA. Engerer2: Global re-parameterisation, update, and validation of an irradiance separation model at different temporal resolutions. J Renew Sustain Energy 2019;11:18. doi:10.1063/1.5097014.

[84] Threlkeld J, Jordan R. Direct solar radiation available on clear days. Heat Piping Air Cond

1957;29(12):135–45.

[85] Starke AR, Lemos LFL, Boland J, Cardemil JM, Colle S. Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction. Renew Energy 2018;125:472–84.

doi:10.1016/j.renene.2018.02.107.

[86] Yang D, Boland J. Satellite-augmented diffuse solar radiation separation models. J Renew Sustain Energy 2019;11:023705. doi:10.1063/1.5087463.

[87] Ineichen P. A broadband simplified version of the Solis clear sky model. Sol Energy 2008;82:758–62. doi:10.1016/j.solener.2008.02.009.

[88] Gueymard CA. A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renew Sustain Energy Rev 2014;39:1024–34. doi:10.1016/j.rser.2014.07.117.

[89] Hay JE, Mckay DC. Estimating Solar Irradiance on Inclined Surfaces: A Review and Assessment of Methodologies. Int J Sol Energy 1985;3:203–40.

[90] Horváth M, Csoknyai T. Evaluation of solar energy calculation methods for 45° inclined, south facing surface. Energy Procedia 2015;78:465–70. doi:10.1016/j.egypro.2015.11.700.

[91] Gulin M, Vašak, M, Baotic M. Estimation of the global solar irradiance on tilted surfaces. Proc.

17th Int. Conf. Electr. Drives Power Electron. Dubrovnik, Croat. 2–4 Oct., 2013.

[92] Muneer T, Saluja GS. A brief review of models for computing solar radiation on inclined surfaces. Energy Convers Manag 1985;25:443–58. doi:10.1016/0196-8904(85)90009-3.

[93] Arnfield AJ. A Note on the Diurnal, Latitudinal and Seasonal Variation of the Surface Reflection Coefficient. J Appl Meteorol 1975;14:1603–8. doi:10.1175/1520-0450(1975)014<1603:anotdl>2.0.co;2.

[94] Dickinson RE. Land Surface Processes and Climate—Surface Albedos and Energy Balance.

Adv. Geophys., vol. 25, 1983, p. 305–53. doi:10.1016/S0065-2687(08)60176-4.

[95] Demain C, Journée M, Bertrand C. Evaluation of different models to estimate the global solar radiation on inclined surfaces. Renew Energy 2013;50:710–21.

doi:10.1016/j.renene.2012.07.031.

[96] Gueymard CA. Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Sol Energy 2009;83:432–44. doi:10.1016/j.solener.2008.11.004.

[97] Gueymard C. An anisotropic solar irradiance model for tilted surfaces and its comparison with selected engineering algorithms. Sol Energy 1987;38:367–86. doi:10.1016/0038-092X(87)90009-0.

[98] Hay JE, McKay DC. Calculation of solar irradiances for inclined surfaces: Validation of selected hourly and daily models. Final Rep IEA Task IX - Calc Sol Irradiances Inclin Surfaces 1988.

[99] Gracia AM, Huld T. Performance comparison of different models for the estimation of global irradiance on inclined surfaces: Validation of the model implemented in PVGIS. 2013.

doi:10.2790/91554.

[100] Yang D. Solar radiation on inclined surfaces: Corrections and benchmarks. Sol Energy 2016;136:288–302. doi:10.1016/j.solener.2016.06.062.

[101] Kondratyev KJ, Manolova MP. The radiation balance of slopes. Sol Energy 1960;4:14–9.

doi:10.1016/0038-092X(60)90041-4.

[102] Liu B, Jordan R. Daily insolation on surfaces tilted towards equator. ASHRAE J 1961;3:53–9.

[103] Koronakis PS. On the choice of the angle of tilt for south facing solar collectors in the Athens basin area. Sol Energy 1986;36:217–25. doi:10.1016/0038-092X(86)90137-4.

[104] Badescu V. 3D isotropic approximation for solar diffuse irradiance on tilted surfaces. Renew Energy 2002;26:221–33. doi:10.1016/S0960-1481(01)00123-9.

[105] Kamphuis NR, Gueymard CA, Holtzapple MT, Duggleby AT, Annamalai K. Perspectives on the origin, derivation, meaning, and significance of the isotropic sky model. Sol Energy 2020;201:8–12. doi:10.1016/j.solener.2020.02.067.

[106] Bugler JW. The determination of hourly insolation on an inclined plane using a diffuse irradiance model based on hourly measured global horizontal insolation. Sol Energy 1977;19:477–91.

doi:10.1016/0038-092X(77)90103-7.

[107] Hay JE, Perez R, Mckay DC. Technical Note: Addendum And Errata To The Paper “Estimating Solar Irradiance On Inclined Surfaces: A Review And Assessment Of Methodologies.” Int J Sol Energy 1986;4:321–4. doi:10.1080/01425918608909866.

95

[108] Steven, M D, Unsworth MH. The diffuse solar irradiance of slopes under cloudless skies. Q J R Meteorol Soc 1979;105:593–602.

[109] Moon P, Spencer DE. Illumination from a non-uniform sky. Trans Illum Eng Soc 1942;37:707–

26.

[110] Steven, M D, Unsworth MH. The angular distribution and interception of diffuse solar radiation below overcast skies. Q J R Meteorol Soc 1980;106:57–61.

[111] Hay JE, Davies JA. Calculation of the solar irradiance incident on an inclined surface. In: Hay, J.E., Won TK, editor. First Can. Sol. Radiat. Data Work., Toronto, Ontario, Canada: 1980, p.

59–72.

[112] Willmott CJ. On the climatic optimization of the tilt and azimuth of flat-plate solar collectors.

Sol Energy 1982;28:205–16. doi:10.1016/0038-092X(82)90159-1.

[113] Revfeim KJA. Simple Procedure for Estimating Global Daily Radiation on Any Surface. J Appl Meteorol 1978;17:1126–31. doi:10.1175/1520-0450(1978)017<1126:aspfeg>2.0.co;2.

[114] Skartveit A, Asle Olseth J. Modelling slope irradiance at high latitudes. Sol Energy 1986;36:333–

44. doi:10.1016/0038-092X(86)90151-9.

[115] Fritz S. Illuminance and Luminance under Overcast Skies. J Opt Soc Am 1955;45:820.

doi:10.1364/josa.45.000820.

[116] Muneer T. Solar radiation model for Europe. Build Serv Eng Res Technol 1990;11:153–63.

doi:10.1177/014362449001100405.

[117] Muneer T, Gueymard C, Kambezidis H. Hourly Horizontal Irradiation and Illuminance. Sol.

Radiat. Daylight Model., Elsevier; 2004, p. 61–142. doi:10.1016/B978-075065974-1/50011-5.

[118] Temps RC, Coulson KL. Solar radiation incident upon slopes of different orientations. Sol Energy 1977;19:179–84. doi:10.1016/0038-092X(77)90056-1.

[119] Klucher TM. Evaluation of models to predict insolation on tilted surfaces. Sol Energy 1979;23:111–4. doi:10.1016/0038-092X(79)90110-5.

[120] Perez R, Stewart R, Arbogast C, Seals R, Scott J. An anisotropic hourly diffuse radiation model for sloping surfaces: Description, performance validation, site dependency evaluation. Sol Energy 1986;36:481–97. doi:10.1016/0038-092X(86)90013-7.

[121] Perez R, Seals R, Ineichen P, Stewart R, Menicucci D. A new simplified version of the perez diffuse irradiance model for tilted surfaces. Sol Energy 1987;39:221–31. doi:10.1016/S0038-092X(87)80031-2.

[122] Perez R, Stewart R, Seals R, Guertin T. The Development and Verification of the Perez Diffuse Radiation Model. Sandia Rep 1988.

[123] Utrillas MP, Martinez-Lozano JA. Performance evaluation of several versions of the Perez tilted diffuse irradiance model. Sol Energy 1994;53:155–62. doi:10.1016/0038-092X(94)90476-6.

[124] Perez R, Ineichen P, Seals R, Michalsky J, Stewart R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol Energy 1990;44:271–89.

doi:10.1016/0038-092X(90)90055-H.

[125] Reindl DT, Beckman WA, Duffie JA. Evaluation of hourly tilted surface radiation models. Sol Energy 1990;45:9–17. doi:10.1016/0038-092X(90)90061-G.

[126] Sarkın AS, Ekren N, Sağlam Ş. A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol Energy 2020;199:63–73. doi:10.1016/j.solener.2020.01.084.

[127] Marion B. Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules. Sol Energy 2017;147:344–8. doi:10.1016/j.solener.2017.03.027.

[128] Strobach E, Faiman D, Bader SJ, Hile SJ. Effective incidence angles of sky-diffuse and ground-reflected irradiance for various incidence angle modifier types. Sol Energy 2013;89:81–8.

doi:10.1016/j.solener.2012.10.021.

[129] Souka AF, Safwat HH. Determination of the optimum orientations for the double-exposure, flat-plate collector and its reflectors. Sol Energy 1966;10:170–4. doi:10.1016/0038-092X(66)90004-1.

[130] Sjerps-Koomen EA, Alsema EA, Turkenburg WC. A simple model for PV module reflection losses under field conditions. Sol Energy 1996;57:421–32. doi:10.1016/S0038-092X(96)00137-5.

[131] Brandemuehl MJ, Beckman WA. Transmission of diffuse radiation through CPC and flat plate collector glazings. Sol Energy 1980;24:511–3. doi:10.1016/0038-092X(80)90320-5.

[132] Martin N, Ruiz JM. Calculation of the PV modules angular losses under field conditions by means of an analytical model. Sol Energy Mater Sol Cells 2001;70:25–38. doi:10.1016/S0927-0248(00)00408-6.

[133] De Soto W, Klein SA, Beckman WA. Improvement and validation of a model for photovoltaic array performance. Sol Energy 2006;80:78–88. doi:10.1016/j.solener.2005.06.010.

[134] Skoplaki E, Palyvos JA. Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew Energy 2009;34:23–9. doi:10.1016/j.renene.2008.04.009.

[135] Mattei M, Notton G, Cristofari C, Muselli M, Poggi P. Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew Energy 2006;31:553–67.

doi:10.1016/j.renene.2005.03.010.

[136] Schwingshackl C, Petitta M, Wagner JE, Belluardo G, Moser D. Wind effect on PV module temperature : Analysis of different techniques for an accurate estimation. Energy Procedia 2013;40:77–86. doi:10.1016/j.egypro.2013.08.010.

[137] Mahjoubi A, Mechlouch RF, Mahdhaoui B, Ben Brahim A. Real-time analytical model for predicting the cell temperature modules of photovoltaic water pumping systems. Sustain Energy Technol Assessments 2014;6:93–104. doi:10.1016/j.seta.2014.01.009.

[138] Rodrigo P, Fernández EF, Almonacid F, Pérez-Higueras PJ. Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization. Renew Sustain Energy Rev 2014;38:478–88. doi:10.1016/j.rser.2014.06.008.

[139] Coskun C, Toygar U, Sarpdag O, Oktay Z. Sensitivity analysis of implicit correlations for photovoltaic module temperature: A review. J Clean Prod 2017;164:1474–85.

doi:10.1016/j.jclepro.2017.07.080.

[140] Santiago I, Trillo-Montero D, Moreno-Garcia IM, Pallarés-López V, Luna-Rodríguez JJ.

Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain.

Renew Sustain Energy Rev 2018;90:70–89. doi:10.1016/j.rser.2018.03.054.

[141] Zouine M, Akhsassi M, Erraissi N, Aarich N, Bennouna A, Raoufi M, et al. Mathematical Models Calculating PV Module Temperature Using Weather Data: Experimental Study. Proc.

1st Int. Conf. Electron. Eng. Renew. Energy, 2018, p. 630–9. doi:10.1007/978-981-13-1405-6.

[142] Kikumoto H, Ooka R, Sugawara H, Lim J. Observational study of power-law approximation of wind profiles within an urban boundary layer for various wind conditions. J Wind Eng Ind Aerodyn 2017;164:13–21. doi:10.1016/j.jweia.2017.02.003.

[143] Ross RG. Interface design considerations for terrestrial solar cells modules. Proc. 12th IEEE Photovolt. Spec. Conf., Baton Rouge, Louisiana,: 1976, p. 801–6.

[144] Ross RG, Smokler MI. Flat-Plate Solar Array Project Final Report. Pasadena, California: 1986.

[145] Ross AG. Flat-Plate Photovoltaic Module and Array Engineering. Proc. 1982 Annu. Meet. Am.

Sect. Int. Sol. Energy Soc., Houston, Texas: 1982, p. 4321–4.

[146] Risser V V., Fuentes MK. Linear regression analysis of flat-plate photovoltaic system performance data. Proc. Fifth Int. Photovolt. Sol. Energy Conf., Athens, Greece: 1984, p. 623–

7.

[147] Lasnier F, Ang TG. Photovoltaic Engineering Handbook. 1st ed. New York: Adam Hilger; 1990.

[148] Tamizhmani G, Ji L, Tang Y, Petacci L, Osterwald C. Photovoltaic Module Thermal/Wind Performance: Long-Term Monitoring and Model Development For Energy Rating. NCPV Sol.

Progr. Rev. Meet., 2003, p. 936–9.

[149] Muzathik AM. Photovoltaic Modules Operating Temperature Estimation Using a Simple Correlation. Int J Energy Eng 2014;4:151–8.

[150] Mora Segado P, Carretero J, Sidrach-de-Cardona M. Models to predict the operating temperature of different photovoltaic modules in outdoor conditions. Prog Photovoltaics Res Appl 2015;23:1267–82. doi:10.1002/pip.2549.

[151] King DL, Boyson WE, Kratochvil JA. Photovoltaic array performance model. Sandia Rep No 2004-3535 2004;8:1–19. doi:10.2172/919131.

[152] Faiman D. Assessing the outdoor operating temperature of photovoltaic modules. Prog Photovoltaics Res Appl 2008;16:307–15. doi:10.1002/pip.813.

[153] Koehl M, Heck M, Wiesmeier S, Wirth J. Modeling of the nominal operating cell temperature based on outdoor weathering. Sol Energy Mater Sol Cells 2011;95:1638–46.

doi:10.1016/j.solmat.2011.01.020.

97

[154] Skoplaki E, Boudouvis AG, Palyvos JA. A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol Energy Mater Sol Cells 2008;92:1393–402.

doi:10.1016/j.solmat.2008.05.016.

[155] de la Parra I, Muñoz M, Lorenzo E, García M, Marcos J, Martínez-Moreno F. PV performance modelling: A review in the light of quality assurance for large PV plants. Renew Sustain Energy Rev 2017;78:780–97. doi:10.1016/j.rser.2017.04.080.

[156] Amillo AMG, Huld T, Vourlioti P, Müller R, Norton M. Application of satellite-based spectrally-resolved solar radiation data to PV performance studies. Energies 2015;8:3455–88.

doi:10.3390/en8053455.

[157] Lindsay N, Libois Q, Badosa J, Migan-Dubois A, Bourdin V. Errors in PV power modelling due to the lack of spectral and angular details of solar irradiance inputs. Sol Energy 2020;197:266–

78. doi:10.1016/j.solener.2019.12.042.

[158] King BH, Hansen CW, Riley D, Robinson CD, Pratt L. Procedure to Determine Coefficients for the Sandia Array Performance Model (SAPM). 2016.

[159] Gilman P, Dobos A, DiOrio N, Freeman J, Janzou S, Ryberg D. SAM Photovoltaic Model Technical Reference Update. 2018.

[160] Huld T, Friesen G, Skoczek A, Kenny RP, Sample T, Field M, et al. A power-rating model for crystalline silicon PV modules. Sol Energy Mater Sol Cells 2011;95:3359–69.

doi:10.1016/j.solmat.2011.07.026.

[161] Evans DL, Florschuetz LW. Cost studies on terrestrial photovoltaic power systems with sunlight concentration. Sol Energy 1977;19:255–62. doi:10.1016/0038-092X(77)90068-8.

[162] Evans DL. Simplified method for predicting photovoltaic array output. Sol Energy 1981;27:555–

60. doi:10.1016/0038-092X(81)90051-7.

[163] Beyer HG, Bethke J, Drews A, Heinemann D, Lorenz E, Heilscher G, et al. Identification of a general model for the MPP performance of PV modules for the applicationin a procedure for the performance check of grid connected systems. Proc. 19th Eur. Photovolatic Sol. Energy Conf., 2004, p. 5.

[164] Kenny RP, Viganó D, Salis E, Bardizza G, Norton M, Müllejans H, et al. Power rating of photovoltaic modules including validation of procedures to implement IEC 61853-1 on solar simulators and under natural sunlight. Prog Photovoltaics Res Appl 2013;21:1384–99.

doi:10.1002/pip.2365.

[165] Huld T, Amillo A. Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum. Energies 2015;8:5159–

81. doi:10.3390/en8065159.

[166] Aoun N, Bailek N. Evaluation of mathematical methods to characterize the electrical parameters of photovoltaic modules. Energy Convers Manag 2019;193:25–38.

doi:10.1016/j.enconman.2019.04.057.

[167] Humada AM, Hojabri M, Mekhilef S, Hamada HM. Solar cell parameters extraction based on single and double-diode models: A review. Renew Sustain Energy Rev 2016;56:494–509.

doi:10.1016/j.rser.2015.11.051.

[168] Jena D, Ramana VV. Modeling of photovoltaic system for uniform and non-uniform irradiance:

A critical review. Renew Sustain Energy Rev 2015;52:400–17. doi:10.1016/j.rser.2015.07.079.

[169] Chin VJ, Salam Z, Ishaque K. Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review. Appl Energy 2015;154:500–19.

doi:10.1016/j.apenergy.2015.05.035.

[170] Bishop JW. Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits. Sol Cells 1988;25:73–89. doi:10.1016/0379-6787(88)90059-2.

[171] Deline C, Dobos A, Janzou S, Meydbray J, Donovan M. A simplified model of uniform shading in large photovoltaic arrays. Sol Energy 2013;96:274–82. doi:10.1016/j.solener.2013.07.008.

[172] Gallardo-Saavedra S, Karlsson B. Simulation, validation and analysis of shading effects on a PV system. Sol Energy 2018;170:828–39. doi:10.1016/j.solener.2018.06.035.

[173] Winston DP, Kumar BP, Christabel SC, Chamkha AJ, Sathyamurthy R. Maximum power extraction in solar renewable power system - a bypass diode scanning approach. Comput Electr Eng 2018;70:122–36. doi:10.1016/j.compeleceng.2018.02.034.

[174] Varga N, Mayer MJ. Model-based analysis of shading losses in ground-mounted photovoltaic