• Nem Talált Eredményt

Referenciák a IV. fejezethez

In document II. Irodalmi áttekintés (Pldal 99-105)

IV. 1.3.3.2 ESI MS

IV.6 Referenciák a IV. fejezethez

1. Sharon, N. and H. Lis, Glycosciences - Status and Perspectives. Glycoproteins: structure and function, ed. H.G.a.S. Gabius. 1997, Washington: Chapman & Hall. 133 -162.

2. Hounsell, E.F., M.J. Davies, and D.V. Renouf, O-linked protein glycosylation structure and function.

Glycoconjugate J., 1996. 13(1): p. 19-26.

3. Morelle, W., K. Canis, F. Chirat, V. Faid, and J.C. Michalski, The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics, 2006. 6(14): p. 3993-4015.

4. Hofsteenge, J., D.R. Muller, T. Debeer, A. Loffler, W.J. Richter, and J.F.G. Vliegenthart, New-Type of Linkage between a Carbohydrate and a Protein - C-Glycosylation of a Specific Tryptophan Residue in Human Rnase U-S. Biochemistry, 1994. 33(46): p. 13524-13530.

5. Shiyan, S.D. and N.V. Bovin, Carbohydrate composition and immunomodulatory activity of different glycoforms of alpha(1)-acid glycoprotein. Glycoconjugate J., 1997. 14(5): p. 631-638.

6. Elliott, M.A., H.G. Elliott, K. Gallagher, J. McGuire, M. Field, and K.D. Smith, Investigation into the Concanavalin A reactivity, fucosylation and oligosaccharide microheterogeneity of alpha(1)-acid glycoprotein expressed in the sera of patients with rheumatoid arthritis. J. Chromatogr. B, 1997.

688(2): p. 229-237.

7. Poland, D.C.W., W. Kulik, W. van Dijk, M.M. Hallemeesch, C. Jakobs, and K. de Meer, Distinct glycoforms of human alpha(1)-acid glycoprotein have comparable synthesis rates: a C-13 valine-labelling study in healthy humans. Glycoconjugate J., 2003. 20(2): p. 99-105.

8. Kratz, E., D.C.W. Poland, W. van Dijk, and I. Katnik-Prastowska, Alterations of branching and differential expression of sialic acid on alpha-1-acid glycoprotein in human seminal plasma. Clin.

Chim. Acta, 2003. 331(1-2): p. 87-95.

9. Majewski, W., M. Laciak, M. Kapcinska, i.R. Staniszewsk, and A. Mackiewicz, N-glycoforms of serum alpha-1-acid glycoprotein in patients with lower limb chronic arterial ischaemia. Int. J. Angiol., 2003.

12: p. 96 – 102.

10. Olewicz-Gawlik, A., I. Korczowska-Lacka, J.K. Lacki, K. Klama, and P. Hrycaj, Fucosylation of serum alpha(1)-acid glycoprotein in rheumatoid arthritis patients treated with infliximab. Clin. Rheumatol., 2007. 26: p. 1679-1684.

11. Ryden, I., G. Skude, A. Lundblad, and P. Pahlsson, Glycosylation of alpha 1-acid glycoprotein in inflammatory disease: Analysis by high-pH anion-exchange chromatography and concanavalin A crossed affinity immunoelectrophoresis. Glycoconjugate J., 1997. 14(4): p. 481-488.

100

12. Sei, K., M. Nakano, M. Kinoshita, T. Masuko, and K. Kakehi, Collection of alpha(1)-acid glycoprotein molecular species by capillary electrophoresis and the analysis of their molecular masses and carbohydrate chains - Basic studies on the analysis of glycoprotein glycoforms. J. Chromatogr. A, 2002. 958(1-2): p. PII S0021-9673(02)00353-9.

13. Wang, L.J., F.X. Li, W. Sun, S.Z. Wu, X.R. Wang, L. Zhang, D.X. Zheng, J. Wang, and Y.H. Gao, Concanavalin A-captured glycoproteins in healthy human urine. Mol. Cell. Prot., 2006. 5(3): p. 560-562.

14. Uematsu, R., J. Furukawa, H. Nakagawa, Y. Shinohara, K. Deguchi, K. Monde, and S.I. Nishimura, High throughput quantitative glycomics and glycoform-focused proteomics of murine dermis and epidermis. Mol. Cell. Prot., 2005. 4(12): p. 1977-1989.

15. Demelbauer, U.M., M. Zehl, A. Plematl, G. Allmaier, and A. Rizzi, Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Comm. Mass Spectrom., 2004. 18(14):

p. 1575-1582.

16. Kaji, H., H. Saito, Y. Yamauchi, T. Shinkawa, M. Taoka, J. Hirabayashi, K. Kasai, N. Takahashi, and T. Isobe, Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat. Biotechnol., 2003. 21(6): p. 667-672.

17. Geng, M., X. Zhang, M. Bina, and F. Regnier, Proteomics of glycoproteins based on affinity selection of glycopeptides from tryptic digests. J. Chromatogr B - Anal. Technol. Biomed. Life Sci., 2001.

752(2): p. 293-306.

18. Morris, H.R., M.R. Thompson, D.T. Osuga, A.I. Ahmed, S.M. Chan, J.R. Vandenheede, and R.E.

Feeney, Antifreeze Glycoproteins from Blood of an Antarctic Fish - Structure of Proline-Containing Glycopeptides. J. Biol. Chem., 1978. 253(14): p. 5155-5162.

19. Harvey, D.J., Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus. J. Am. Chem. Soc., 2000. 11(10): p. 900-915.

20. Weiskopf, A.S., P. Vouros, and D.J. Harvey, Electrospray ionization-ion trap mass spectrometry for structural analysis of complex N-linked glycoprotein oligosaccharides. Anal. Chem., 1998. 70(20): p.

4441-4447.

21. Weiskopf, A.S., P. Vouros, and D.J. Harvey, Characterization of oligosaccharide composition and structure by quadrupole ion trap mass spectrometry. Rapid Comm. Mass Spectrom., 1997. 11(14): p.

1493-1504.

22. Reinhold, V.N., B.B. Reinhold, and C.E. Costello, Carbohydrate Molecular-Weight Profiling, Sequence, Linkage, and Branching Data - Es-Ms and Cid. Anal. Chem., 1995. 67(11): p. 1772-1784.

23. Harvey, D.J., Analysis of Carbohydrates and Glycoconjugates by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: An Update for 2003-2004. Mass Spectrom. Rev., 2009.

28(2): p. 273-361.

24. Hashir, M.A., G. Stecher, and G.K. Bonn, Identification of low molecular weight carbohydrates employing new binary mixtures for matrix-assisted laser desorption/ionisation mass spectrometry.

Rapid Comm. Mass Spectrom., 2008. 22(14): p. 2185-2194.

25. Mechref, Y. and M.V. Novotny, Structural investigations of glycoconjugates at high sensitivity. Chem.

Rev., 2002. 102(2): p. 321-369.

26. Dell, A. and H.R. Morris, Glycoprotein structure determination mass spectrometry. Science, 2001.

291(5512): p. 2351-2356.

27. Harvey, D.J., Identification of protein-bound carbohydrates by mass spectrometry. Proteomics, 2001.

1(2): p. 311-328.

28. Kuster, B., T.N. Krogh, E. Mortz, and D.J. Harvey, Glycosylation analysis of gel-separated proteins.

Proteomics, 2001. 1(2): p. 350-361.

29. Packer, N.H. and M.J. Harrison, Glycobiology and proteomics: Is mass spectrometry the Holy Grail?

Electrophoresis, 1998. 19(11): p. 1872-1882.

30. Apffel, A., J. Chakel, S. Udiavar, W.S. Hancock, C. Souders, and E. Pungor, Application of Capillary Electrophoresis, High-Performance Liquid-Chromatography, Online Electrospray Mass-Spectrometry and Matrix-Assisted Laser-Desorption Ionization-Time of Flight Mass-Spectrometry to the Characterization of Single-Chain Plasminogen-Activator. J. Chrom. A, 1995. 717(1-2): p. 41-60.

31. Rajan, N., A. Tsarbopoulos, R. Kumarasamy, R. Odonnell, S.S. Taremi, S.W. Baldwin, G.F. Seelig, X.D. Fan, B. Pramanik, and H.V. Le, Characterization of Recombinant Human Interleukin-4 Receptor from Cho Cells - Role of N-Linked Oligosaccharides. Biochem. Biophys. Res. Commun., 1995. 206(2):

p. 694-702.

101

32. Ashton, D.S., C.R. Beddell, D.J. Cooper, S.J. Craig, A.C. Lines, R.W.A. Oliver, and M.A. Smith, Mass-Spectrometry of the Humanized Monoclonal-Antibody Campath 1h. Anal. Chem., 1995. 67(5): p. 835-842.

33. Zaia, J., R. Boynton, D. Heinegard, and F. Barry, Posttranslational modifications to human bone sialoprotein determined by mass spectrometry. Biochemistry, 2001. 40(43): p. 12983-12991.

34. Sottani, C., M. Fiorentino, and C. Minoia, Matrix performance in matrix-assisted laser desorption/ionization for molecular weight determination in sialyl and non-sialyl oligosaccharide proteins. Rapid Commun. Mass Spectrom., 1997. 11(8): p. 907-913.

35. Pitt, J.J. and J.J. Gorman, Oligosaccharide characterization and quantitation using 1-phenyl-3-methyl-5-pyrazolone derivatization and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem., 1997. 248(1): p. 63-75.

36. Juhasz, P., C.E. Costello, and K. Biemann, Matrix-Assisted Laser Desorption Ionization Mass-Spectrometry with 2-(4-Hydroxyphenylazo)Benzoic Acid Matrix. J. Am. Soc. Mass. Spectrom., 1993.

4(5): p. 399-409.

37. Feng, R. and Y. Konishi, Analysis of Antibodies and Other Large Glycoproteins in the Mass Range of 150000-200000 Da by Electrospray Ionization Mass-Spectrometry. Anal. Chem., 1992. 64(18): p.

2090-2095.

38. Wilm, M. and M. Mann, Analytical properties of the nanoelectrospray ion source. Anal. Chem., 1996.

68(1): p. 1-8.

39. Dage, J.L., B.L. Ackermann, and H.B. Halsall, Site localization of sialyl Lewis(x) antigen on alpha(1)-acid glycoprotein by high performance liquid chromatography electrospray mass spectrometry.

Glycobiology, 1998. 8(8): p. 755-760.

40. Juhasz, P. and S.A. Martin, The utility of nonspecific proteases in the characterization of glycoproteins by high-resolution time-of-flight mass spectrometry. Int. J. Mass Spectrom., 1997. 169: p. 217-230.

41. Ling, V., A.W. Guzzetta, E. Canovadavis, J.T. Stults, W.S. Hancock, T.R. Covey, and B.I. Shushan, Characterization of the Tryptic Map of Recombinant-DNA Derived Tissue Plasminogen-Activator by High-Performance Liquid-Chromatography Electrospray Ionization Mass-Spectrometry. Anal. Chem., 1991. 63(24): p. 2909-2915.

42. Burlingame, A.L., Characterization of protein glycosylation by mass spectrometry. Curr. Opin.

Biotechnol., 1996. 7(1): p. 4-10.

43. Carr, S.A., M.J. Huddleston, and M.F. Bean, Selective Identification and Differentiation of N-Linked and O-Linked Oligosaccharides in Glycoproteins by Liquid-Chromatography Mass-Spectrometry.

Protein Sci., 1993. 2(2): p. 183-196.

44. Huddleston, M.J., M.F. Bean, and S.A. Carr, Collisional Fragmentation of Glycopeptides by Electrospray Ionization Lc Ms and Lc Ms Ms - Methods for Selective Detection of Glycopeptides in Protein Digests. Anal. Chem., 1993. 65(7): p. 877-884.

45. Wuhrer, M., M.I. Catalina, A.M. Deelder, and C.H. Hokke, Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B - Anal. Technol. Biomed. Life Sci. 2007. 849(1-2): p.

115-128.

46. Wuhrer, M., A.M. Deelder, and C.H. Hokke, Protein glycosylation analysis by liquid chromatography-mass spectrometry. J. Chromatogr B - Anal. Technol. Biomed. Life Sci., 2005. 825(2): p. 124-133.

47. Jiang, H., H. Desaire, V.Y. Butnev, and G.R. Bousfield, Glycoprotein profiling by electrospray mass spectrometry. J. Am. Soc. Mass. Spectrom., 2004. 15(5): p. 750-758.

48. Zhang, H., X.J. Li, D.B. Martin, and R. Aebersold, Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat.

Biotechnol., 2003. 21(6): p. 660-666.

49. Morelle, W. and J.C. Michalski, Glycomics and mass spectrometry. Curr. Pharm. Des., 2005. 11(20): p.

2615-2645.

50. Merry, A.H., D.C.A. Neville, L. Royle, B. Matthews, D.J. Harvey, R.A. Dwek, and P.M. Rudd, Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis.

Anal. Biochem., 2002. 304(1): p. 91-99.

51. Yamamoto, K., K. Hamase, and K. Zaitsu, 2-amino-3-phenylpyrazine, a sensitive fluorescence prelabeling reagent for the chromatographic or electrophoretic determination of saccharides. J.

Chromatogr. A, 2003. 1004(1-2): p. 99-106.

52. Jackson, P. and G.R. Williams, Polyacrylamide-Gel Electrophoresis of Reducing Saccharides Labeled with the Fluorophore 8-Aminonaphthalene-1,3,6-Trisulfonic Acid - Application to the Enzymological Structural-Analysis of Oligosaccharides. Electrophoresis, 1991. 12(1): p. 94-96.

53. Anumula, K.R. and P. Du, Characterization of carbohydrates using highly fluorescent 2-aminobenzoic acid tag following gel electrophoresis of glycoproteins. Anal. Biochem., 1999. 275(2): p. 236-242.

102

54. Anumula, K.R. and S.T. Dhume, High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid. Glycobiology, 1998. 8(7): p. 685-694.

55. Rudd, P.M., C. Colominas, L. Royle, N. Murphy, E. Hart, A.H. Merry, H.F. Hebestreit, and R.A. Dwek, A high-performance liquid chromatography based strategy for rapid, sensitive sequencing of N-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electrophoresis gel bands. Proteomics, 2001. 1(2): p. 285-294.

56. Rudd, P.M. and R.A. Dwek, Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Curr.

Opin. Biotechnol., 1997. 8(4): p. 488-497.

57. Kotani, N. and S. Takasaki, Analysis of 2-aminobenzamide-labeled oligosaccharides by high-pH anion-exchange chromatography with fluorometric detection. Anal. Biochem., 1998. 264(1): p. 66-73.

58. Wuhrer, M., C.A.M. Koeleman, C.H. Hokke, and A.M. Deelder, Nano-scale liquid chromatography-mass spectrometry of 2-aminobenzamide-labeled oligosaccharides at low femtomole sensitivity. Int. J.

Mass Spectrom., 2004. 232(1): p. 51-57.

59. Beavis, R.C. and B.T. Chait, High-Accuracy Molecular Mass Determination of Proteins Using Matrix-Assisted Laser Desorption Mass-Spectrometry. Anal. Chem., 1990. 62(17): p. 1836-1840.

60. Finke, B., M. Mank, H. Daniel, and B. Stahl, Offline coupling of low-pressure anion-exchange chromatography with MALDI-MS to determine the elution order of human milk oligosaccharides. Anal.

Biochem., 2000. 284(2): p. 256-265.

61. Mohr, M.D., K.O. Bornsen, and H.M. Widmer, Matrix-Assisted Laser-Desorption Ionization Mass-Spectrometry - Improved Matrix for Oligosaccharides. Rapid Commun. Mass Spectrom., 1995. 9(9): p.

809-814.

62. Papac, D.I., A. Wong, and A.J.S. Jones, Analysis of acidic oligosaccharides and glycopeptides by matrix assisted laser desorption ionization time-of-flight mass spectrometry. Anal. Chem., 1996.

68(18): p. 3215-3223.

63. Powell, A.K. and D.J. Harvey, Stabilization of sialic acids in N-linked oligosaccharides and gangliosides for analysis by positive ion matrix-assisted laser desorption ionization mass spectrometry.

Rapid Commun. Mass Spectrom., 1996. 10(9): p. 1027-1032.

64. Ciucanu, I. and F. Kerek, A Simple and Rapid Method for the Permethylation of Carbohydrates.

Carbohydr. Res., 1984. 131(2): p. 209-217.

65. Mills, P.B., K. Mills, N. Mian, B.G. Winchester, and P.T. Clayton, Mass spectrometric analysis of glycans in elucidating the pathogenesis of CDG type IIx. J. Inherit. Metab. Dis., 2003. 26(2-3): p. 119-134.

66. Morelle, W., C. Flahaut, J.C. Michalski, A. Louvet, P. Mathurin, and A. Klein, Mass spectrometric approach for screening modifications of total serum N-glycome in human diseases: application to cirrhosis. Glycobiology, 2006. 16(4): p. 281-293.

67. Kyselova, Z., Y. Mechref, M.M. Al Bataineh, L.E. Dobrolecki, R.J. Hickey, J. Vinson, C.J. Sweeney, and M.V. Novotny, Alterations in the serum glycome due to metastatic prostate cancer. Journal of Proteome Research, 2007. 6(5): p. 1822-1832.

68. Thomsson, K.A., H. Karlsson, and G.C. Hansson, Sequencing of sulfated oligosaccharides from mucins by liquid chromatography and electrospray ionization tandem mass spectrometry. Anal. Chem., 2000.

72(19): p. 4543-4549.

69. Kawasaki, N., M. Ohta, S. Hyuga, M. Hyuga, and T. Hayakawa, Application of liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin. Anal. Biochem., 2000.

285(1): p. 82-91.

70. Schmid, K., P. Baumann, W.E. Müller, C.B. Eap, and J.P. Tillement, Alpha1-acid glycoprotein.

Genetics, Biochemistry, Physiological Functions, and Pharmacology, ed. A.R.L. Inc. 1989, New York.

7-22.

71. Ceciliani, F. and V. Pocacqua, The acute phase protein alpha 1-acid glycoprotein: A model for altered glycosylation during diseases. Curr. Prot. Pep. Sci., 2007. 8(1): p. 91-108.

72. Fournier, T., N. Medjoubi-N, and D. Porquet, Alpha-1-acid glycoprotein. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2000. 1482(1-2): p. 157-171.

73. Dente, L., U. Ruther, M. Tripodi, E.F. Wagner, and R. Cortese, Expression of Human Alpha-1-Acid Glycoprotein Genes in Cultured-Cells and in Transgenic Mice. Gene Dev., 1988. 2(2): p. 259-266.

74. Treuheit, M.J., C.E. Costello, and H.B. Halsall, Analysis of the 5 Glycosylation Sites of Human Alpha-1-Acid Glycoprotein. Biochem. J, 1992. 283: p. 105-112.

75. Van Dijk, W., E.C.M. Brinkman-Van der Linden, and E.C. Havenaar, Glycosylation of alpha(1)-acid glycoprotein (orosomucoid) in health and disease: Occurrence, regulation and possible functional implications. Trends Glycosci. Glyc., 1998. 10(53): p. 235-245.

103

76. Brinkman-van der Linden, E.C.M., P.F. de Haan, E.C. Havenaar, and W. van Dijk, Inflammation-induced expression of sialyl Lewis(x) is not restricted to alpha(1)-acid glycoprotein but also occurs to a lesser extent on alpha(1)-antichymotrypsin and haptoglobin. Glycoconjugate J., 1998. 15(2): p. 177-182.

77. Mackiewicz, A. and K. Mackiewicz, Glycoforms of Serum Alpha-1-Acid Glycoprotein as Markers of Inflammation and Cancer. Glycoconjugate J., 1995. 12(3): p. 241-247.

78. Poland, D.C.W., C.G. Schalkwijk, C.D.A. Stehouwer, C.A.M. Koeleman, B. van het Hof, and W. van Dijk, Increased alpha(3)-fucosylation of alpha(1)-acid glycoprotein in Type I diabetic patients is related to vascular function. Glycoconjugate J., 2001. 18(3): p. 261-268.

79. BrinkmanVanderLinden, E.C.M., E.C. Havenaar, E.C.R. VanOmmen, G.J. VanKamp, L.J.G. Gooren, and W. VanDijk, Oral estrogen treatment induces a decrease in expression of sialyl Lewis x on alpha(1)-acid glycoprotein in females and male-to-female transsexuals. Glycobiology, 1996. 6(4): p.

407-412.

80. Ryden, I., P. Pahlsson, A. Lundblad, and T. Skogh, Fucosylation of alpha 1-acid glycoprotein (orosomucoid) compared with traditional biochemical markers of inflammation in recent onset rheumatoid arthritis. Clin.Chim. Acta, 2002. 317(1-2): p. PII S0009-8981(01)00803-8.

81. Van Dijk, W., C. Koeleman, B.V. Hof, D. Poland, C. Jakobs, and J. Jaeken, Increased alpha 3-fucosylation of alpha 1-acid glycoprotein in patients with congenital disorder of glycosylation type IA (CDG-Ia). FEBS Lett., 2001. 494(3): p. 232-235.

82. Van den Heuvel, M.M., D.C.W. Poland, C.S. De Graaff, E.C.M. Hoefsmit, P.E. Postmus, R.H.J.

Beelen, and W. Van Dijk, The degree of branching of the glycans of alpha(1)-acid glycoprotein in asthma - A correlation with lung function and inflammatory parameters. Am. J. Respir. Crit. Care Med., 2000. 161(6): p. 1972-1978.

83. Kremmer, T., E. Szollosi, M. Boldizsar, B. Vincze, K. Ludanyi, T. Imre, G. Schlosser, and K. Vekey, Liquid chromatographic human serum acid and mass spectrometric analysis of alpha-1-glycoprotein.

Biomed. Chromatogr., 2004. 18(5): p. 323-329.

84. Hashimoto, S., T. Asao, J. Takahashi, Y. Yagihashi, T. Nishimura, A.R. Saniabadi, D.C.W. Poland, W.

van Dijk, H. Kuwano, N. Kochibe, and S. Yazawa, alpha(1)-acid glycoprotein fucosylation as a marker of carcinoma progression and prognosis. Cancer, 2004. 101(12): p. 2825-2836.

85. Kremmer, T., M. Boldizsar, J. Kovacs, E. Paulik, K. Bencsik, and B. Szajani, Determination and Analysis of Human Serum Alpha-1-Acid Glycoprotein by Liquid-Chromatographic Methods. J. Liq.

Chromatogr., 1995. 18(6): p. 1207-1218.

86. Logdberg, L. and L. Wester, Immunocalins: a lipocalin subfamily that modulates immune and inflammatory responses. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2000. 1482(1-2): p.

284-297.

87. Nagy, K., K. Vekey, T. Imre, K. Ludanyi, M.P. Barrow, and P.J. Derrick, Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of human alpha-1-acid glycoprotein.

Anal. Chem., 2004. 76(17): p. 4998-5005.

88. Higai, K., Y. Aoki, Y. Azuma, and K. Matsumoto, Glycosylation of site-specific glycans of alpha(1)-acid glycoprotein and alterations in acute and chronic inflammation. Biochim. Biophys. Acta, Gen.

Subj., 2005. 1725(1): p. 128-135.

89. Anumula, K.R., Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal. Biochem., 2006. 350(1): p. 1-23.

90. Kuster, B., A.P. Hunter, S.F. Wheeler, R.A. Dwek, and D.J. Harvey, Structural determination of N-linked carbohydrates by matrix-assisted laser desorption/ionization mass spectrometry following enzymatic release within sodium dodecyl sulphate polyacrylamide electrophoresis gels: Application to species-specific glycosylation of alpha(1)-acid glycoprotein. Electrophoresis, 1998. 19(11): p. 1950-1959.

91. Mechref, Y., A.G. Baker, and M.V. Novotny, Matrix-assisted laser desorption/ionization mass spectrometry of neutral and acidic oligosaccharides with collision-induced dissociation. Carbohydr.

Res., 1998. 313(3-4): p. 145-55.

92. Viseux, N., X. Hronowski, J. Delaney, and B. Domon, Qualitative and Quantitative Analysis of the Glycosylation Pattern of Recombinant Proteins. Anal. Chem., 2001. 73(20): p. 4755-4762.

93. Molnárné, Sz. É. A humán szérum alfa 1-savanyú glikoprotein oligoszacharid-szerkezetének vizsgálata PhD Disszertáció,. 2007, Budapest: Eötvös Lóránd Tudomány Egyetem.

94. Stover, T., J.V. Amari, I. Mazsaroff, M. Gilar, Y.Q. Yu, and J.C. Gebler, Novel characterization tool for Mab digestion - Technical note: RapiGest SF denaturant tool for improved trypsin digestion of monoclonal antibodies. Genet. Eng. News, 2003. 23(17): p. 48-49.

104

95. Yu, Y.Q., M. Gilar, P.J. Lee, E.S.P. Bouvier, and J.C. Gebler, Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal. Chem., 2003. 75(21): p.

6023-6028.

96. Nomura, E., K. Katsuta, T. Ueda, M. Toriyama, T. Mori, and N. Inagaki, Acid-labile surfactant improves in-sodium dodecyl sulfate polyacrylamide gel protein digestion for matrix-assisted laser desorption/ionization mass spectrometric peptide mapping. J. Mass Spectrom., 2004. 39(2): p. 202-207.

97. Imre, T., G. Schlosser, G. Pocsfalvi, R. Siciliano, S.É. Molnárné, T. Kremmer, A. Malorni, and K.

Vékey, Glycosylation site analysis of human alpha-1-acid glycoprotein (AGP) by capillary liquid chromatography - electrospray mass spectrometry. J. Mass Spectrom, 2005. 40(11): p. 1472-1483.

98. Conboy, J.J. and J.D. Henion, The Determination of Glycopeptides by Liquid-Chromatography Mass-Spectrometry with Collision-Induced Dissociation. J. Am. Soc. Mass. Spectrom., 1992. 3(8): p. 804-814.

99. Jiang, H., H. Desaire, V.Y. Butnev, and G.R. Bousfield, Glycoprotein profiling by electrospray mass spectrometry. J. Am. Soc. Mass. Spectrom., 2004. 15(5): p. 750-758.

100. Ritchie, M.A., A.C. Gill, M.J. Deery, and K. Lilley, Precursor ion scanning for detection and structural characterization of heterogeneous glycopeptide mixtures. J. Am. Soc. Mass. Spectrom., 2002. 13(9): p.

1065-1077.

101. Voorzanger-Rousselot, N. and P. Garnero, Biochemical markers in oncology. Part I: molecular basis.

Part II: clinical uses. Cancer Treatm. Rev., 2007. 33: p. 230-283.

102. Héberger, K., E. Csomós, and L. Simon-Sarkadi, Principal component and linear discriminant analyses of free amino acids and biogenic amines in hungarian wines. J. Agric. Food. Chem., 2003. 51: p. 8055-8060.

103. Defernez, M. and E.K. Kemsley, The use and misuse of chemometrics for treating classification problems. Trends Anal. Chem., 1997. 16: p. 216-224.

104. Kazmierczak, S.C., Statistical techniques for evaluating the diagnostic utility of laboratory tests. Clin.

Chem. Lab. Med., 1999. 37: p. 1001-1009.

105

In document II. Irodalmi áttekintés (Pldal 99-105)