• Nem Talált Eredményt

11 Proof of Corollary 1.5

1− ζ 2n+2n2n

V(∆n), thus

δvol(L,∆n)≥ ζ

2n+2n2nV(∆n).

On the other hand, (91) and(1 + 2nη)n <4/3yield

δvol(S1,∆n)≤((1 + 2nη)n−(1−nη)n)V(∆n)<4n2η V(∆n).

Therefore the triangle inequality implies that V(S1\L) = δvol(S1, L)≥

ζ

2n+2n2n −4n2η

V(∆n).

SinceV(∆n)>1by Lemma 5.7 (c), we deduce from (92) that n23nε14 V(∆n)≥V(S1\Z(µ))≥V(S1\L)>

ζ

2n+2n2n −4n2η

V(∆n).

It follows fromη=n15nε14 that

ζ <2n+2n2n(n23nε14 + 4n2η)< n28nε14,

which proves Theorem 1.6 in the case where`(Z(µ))≤(1 +ε)`(∆n)andε < n−100n. Since`(Z(µ))≤(1 +ε)`(∆n)andW(Z(µ))≤(1 +ε)W(∆n)are equivalent according to (1), we have completed the proof of Theorem 1.6 ifε < n−100n.

However, ifε ≥ n−100n, then Theorem 1.6 trivially holds as for anyx∈ Sn−1 there exists a vertexwof∆nwithkx−wk ≤√

2. 2

11 Proof of Corollary 1.5

For the proof of Corollary 1.5, we need the following observation.

Lemma 11.1 If 1nBn ⊂K, C ⊂nBnfor convex bodiesK andC inRn, then

1

n2 δH(K, C)≤δH(K, C)≤n2δH(K, C).

Proof. We also have n1 Bn⊂K, C ⊂nBn. First, we show

δH(K, C)≤n2δH(K, C). (98) SinceK ⊂C+δH(K, C)Bn⊂C+nδH(K, C)C= (1 +nδH(K, C))C, we have

C ⊂(1 +nδH(K, C))K ⊂K+n2δH(K, C)Bn.

By symmetry, we also haveK ⊂C+n2δH(K, C)Bn, and thus we have verified (98).

Changing the roles ofK, C and their polarsK, C in (98) (and using the bipolar theorem), we also deduce the inequalityδH(K, C)≤n2δH(K, C). 2 SinceW(K) = `(B2n)`(K)according to (1), we conclude Corollary 1.5 by combining The-orem 1.3 (ii), TheThe-orem 1.4 (ii) and Lemma 11.1. 2

Remark The factorn2in Lemma 11.1 is optimal.

References

[1] D. Alonso-Guti´errez, J. Bastero: Approaching the Kannan-Lov´asz-Simonovits and vari-ance conjectures. Lecture Notes in Mathematics, 2131. Springer, Cham, 2015.

[2] S. Artstein-Avidan, A. Giannopoulos, V.D. Milman: Asymptotic geometric analysis. Part I.

Mathematical Surveys and Monographs, 202. American Mathematical Society, Providence, RI, 2015.

[3] K. Ball: Volumes of sections of cubes and related problems. In: J. Lindenstrauss and V.D.

Milman (ed), Israel seminar on Geometric Aspects of Functional Analysis (1987–1988), 1376, Lectures Notes in Mathematics. Springer-Verlag, 1989.

[4] K. Ball: Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. 44 (1991), 351–359.

[5] K. Ball: Shadows of convex bodies. Trans. Amer. Math. Soc. 327 (1991), 891–901.

[6] K. Ball: Ellipsoids of maximal volume in convex bodies. Geom. Dedicata 41 (1992), 241–

250.

[7] K. Ball: Convex geometry and functional analysis. In: W.B. Johnson, L. Lindenstrauss (eds), Handbook of the geometry of Banach spaces, 1, (2003), 161–194.

[8] Z. Balogh, A. Krist´aly: Equality in Borell-Brascamp-Lieb inequalities on curved spaces.

Adv. Math. 339 (2018), 453–494.

[9] F. Barthe: In´egalit´es de Brascamp-Lieb et convexit´e. C. R. Acad. Sci. Paris 324 (1997), 885–888.

[10] F. Barthe: On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134 (1998), 335–361.

[11] F. Barthe: An extremal property of the mean width of the simplex. Math. Ann. 310 (1998), 685–693.

[12] F. Barthe: A continuous version of the Brascamp-Lieb inequalities. Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics Volume, 1850, 2004, 53–63.

[13] F. Barthe, D. Cordero-Erausquin: Invariances in variance estimates. Proc. Lond. Math. Soc.

106 (2013), 33–64.

[14] F. Barthe, D. Cordero-Erausquin, M. Ledoux, B. Maurey: Correlation and Brascamp-Lieb inequalities for Markov semigroups. Int. Math. Res. Not. 10 (2011), 2177–2216.

[15] F. Behrend: ¨Uber einige Affininvarianten konvexer Bereiche. (German) Math. Ann. 113 (1937), 713–747.

[16] J. Bennett, N. Bez, T.C. Flock, S. Lee: Stability of the Brascamp-Lieb constant and appli-cations. Amer. J. Math. 140 (2018), 543–569.

[17] J. Bennett, T. Carbery, M. Christ, T. Tao: The Brascamp–Lieb Inequalities: Finiteness, Structure and Extremals. Geom. Func. Anal. 17 (2008), 1343–1415.

[18] C. Borell: Convex set functions ind-space. Period. Math. Hung. 6 (1975), no. 2, 111–136.

[19] K. B¨or¨oczky, Jr.: Some extremal properties of the regular simplex. Intuitive geometry. Col-loq. Math. Soc. J´anos Bolyai, 63, North-Holland, Amsterdam, (1994), 45–61.

[20] K.J. B¨or¨oczky, D. Hug: Isotropic measures and stronger forms of the reverse isoperimetric inequality. Trans. Amer. Math. Soc. 369 (2017), 6987–7019.

[21] K.J. B¨or¨oczky, E. Lutwak, D. Yang, G. Zhang: Affine images of isotropic measures. J. Diff.

Geom. 99 (2015), 407–442.

[22] H.J. Brascamp, E.H. Lieb: Best constants in Young’s inequality, its converse, and its gen-eralization to more than three functions. Advances in Math. 20 (1976), 151–173.

[23] E. Carlen, D. Cordero-Erausquin: Subadditivity of the entropy and its relation to Brascamp-Lieb type inequalities. Geom. Funct. Anal. 19 (2009), 373–405.

[24] L. Dalla, D.G. Larman, P. Mani-Levitska, C. Zong: The blocking numbers of convex bod-ies. Discrete Comput. Geom. 24 (2002), 267–277.

[25] V.I. Diskant: Stability of the solution of a Minkowski equation. (Russian) Sibirsk. Mat. ˇZ.

14 (1973), 669–673. [Eng. transl.: Siberian Math. J. 14 (1974), 466–473.]

[26] L. D¨umbgen: Bounding Standard Gaussian Tail Probabilities. arxiv:1012.2063v3

[27] L. Fejes T´oth: Lagerungen in der Ebene, auf der Kugel und im Raum. Springer-Verlag, Berlin, 2nd edition, 1972.

[28] A. Figalli, F. Maggi, A. Pratelli: A refined Brunn-Minkowski inequality for convex sets.

Annales de IHP (C) Non Linear Analysis 26 (2009), 2511–2519.

[29] A. Figalli, F. Maggi, A. Pratelli: A mass transportation approach to quantitative isoperimet-ric inequalities. Inventiones Mathematicae 182, (2010), 167–211.

[30] B. Fleury , O. Gu´edon, G. Paouris: A stability result for mean width ofLp-centroid bodies.

Adv. Math. 214 (2007), no. 2, 865–877.

[31] N. Fusco, F. Maggi, A. Pratelli: The sharp quantitative isoperimetric inequality. Ann. of Math. 168 (2008), no. 3, 941–980.

[32] D. Ghilli, P. Salani: Quantitative Borell-Brascamp-Lieb inequalities for power concave functions. J. Convex Anal. 24 (2017), 857–888.

[33] A.A. Giannopoulos, V.D. Milman, M. Rudelson: Convex bodies with minimal mean width.

In: Geometric aspects of functional analysis, Lecture Notes in Math., 1745, Springer, Berlin, 2000, 81–93.

[34] A.A. Giannopoulos, M. Papadimitrakis: Isotropic surface area measures. Mathematika 46 (1999), 1–13

[35] R.D. Gordon: Values of Mills’ ratio of area to bounding ordinate and of the normal proba-bility integral for large values of the argument. Annals of Mathematical Statistics 12 (1941), 364–366.

[36] H. Groemer: Stability properties of geometric inequalities. Amer. Math. Monthly 97 (1990), no. 5, 382–394.

[37] H. Groemer: Stability of geometric inequalities. Handbook of convex geometry, Vol. A, B, 125–150, North-Holland, Amsterdam, 1993.

[38] H. Groemer, R. Schneider: Stability estimates for some geometric inequalities. Bull. Lon-don Math. Soc. 23 (1991), no. 1, 67–74.

[39] P.M. Gruber: Convex and discrete geometry. Grundlehren der Mathematischen Wis-senschaften, Springer, Berlin, 2007.

[40] P.M. Gruber, F.E. Schuster: An arithmetic proof of John’s ellipsoid theorem. Arch. Math.

85 (2005), 82–88.

[41] B. Gr¨unbaum: Partitions of mass-distributions and of convex bodies by hyperplanes, Pacific J. Math. 10 (1960), 1257–1261.

[42] O. Guedon, E. Milman: Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures. Geom. Funct. Anal. 21 (2011), 1043–1068.

[43] D. Hug, R. Schneider: Reverse inequalities for zonoids and their application. Adv. Math.

228 (2011), 2634–2646.

[44] F. John: Polar correspondence with respect to a convex region. Duke Math. J. 3 (1937), 355–369.

[45] F. John: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on His 60th Birthday, January 8, 1948, pp. 187–204, Inter-science Publishers, New York, 1948.

[46] R. Kannan, L. Lov´asz, M. Simonovits: Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995), 541–559.

[47] B. Klartag: A Berry-Esseen type inequality for convex bodies with an unconditional basis, Probab. Theory Related Fields 145 (2009), 1–33.

[48] B. Klartag: On nearly radial marginals of high-dimensional probability measures, J. Eur.

Math. Soc., 12 (2010), 723–754.

[49] A.-J. Li, G. Leng: Mean width inequalities for isotropic measures. Math. Z. 270 (2012), 1089–1110.

[50] E.H. Lieb: Gaussian kernels have only Gaussian maximizers. Invent. Math. 102 (1990), 179–208.

[51] A.E. Litvak: Around the simplex mean width conjecture. In: Analytic aspects of convexity, Springer INdAM Ser. 25, (2018), 73–84.

[52] E. Lutwak: Selected affine isoperimetric inequalities. In: Handbook of convex geometry, North-Holland, Amsterdam, 1993, 151–176.

[53] E. Lutwak, D. Yang, G. Zhang: Volume inequalities for subspaces ofLp. J. Diff. Geom. 68 (2004), 159–184.

[54] E. Lutwak, D. Yang, G. Zhang: Lp John ellipsoids. Proc. London Math. Soc. 90 (2005), 497–520.

[55] E. Lutwak, D. Yang, G. Zhang: Volume inequalities for isotropic measures. Amer. J. Math.

129 (2007), 1711–1723.

[56] T. Ma: The characteristic properties of the minimalLp-mean width. J. Funct. Spaces (2017), Art. ID 2943073, 10 pp.

[57] M. Meyer, S. Reisner: Shadow systems and volumes of polar convex bodies. Mathematika 53 (2006), 129–148.

[58] E. Milman: On the mean-width of isotropic convex bodies and their associatedLp-centroid bodies. Int. Math. Res. Not. IMRN (2015), no. 11, 3408–3423.

[59] C. M. Petty: Surface area of a convex body under affine transformations. Proc. Amer. Math.

Soc. 12 (1961), 824–828.

[60] A. Rossi, P. Salani: Stability for Borell-Brascamp-Lieb inequalities. Geometric aspects of functional analysis, Lecture Notes in Math., 2169, Springer, Cham, (2017), 339–363.

[61] G. Schechtman, M. Schmuckenschl¨ager: A concentration inequality for harmonic mea-sures. In: Geometric Aspects of Functional Analysis (1992-1994), Birkhauser, (1995), 255–273.

[62] M. Schmuckenschl¨ager: An extremal property of the regular simplex. In: Convex geometric analysis. Cambridge, (1999), 199–202.

[63] R. Schneider: Convex bodies: the Brunn-Minkowski theory.Second expanded edition. En-cyclopedia of Mathematics and its Applications, 151. Cambridge University Press, Cam-bridge, 2014.

[64] G.C. Shephard, R.J. Webster: Metrics for sets of convex bodies. Mathematika 12 (1965), 73–88.

[65] M. Weberndorfer: Shadow systems of asymmetricLp zonotopes. Adv. Math. 240 (2013), 613–635.

[66] J. G. Wendel, Note on the Gamma function, Amer. Math. Monthly 55 (9) (1948), 563—564.

Authors’ addresses:

K´aroly J. B¨or¨oczky, MTA Alfr´ed R´enyi Institute of Mathematics, Hungarian Academy of Sci-ences, Re´altanoda u. 13-15, 1053 Budapest, Hungary. E-mail: carlos@renyi.hu

Ferenc Fodor, Department of Geometry, Bolyai Institute, University of Szeged, Aradi v´ertan´uk tere 1, 6720 Szeged, Hungary. E-mail: fodorf@math.u-szeged.hu

Daniel Hug, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany. E-mail:

daniel.hug@kit.edu

KAPCSOLÓDÓ DOKUMENTUMOK