• Nem Talált Eredményt

P. Ultrafast, high intensity light-matter interactions

In document Wigner RCP 2014 (Pldal 113-120)

113

S-P. Ultrafast, high intensity light-matter

114

the laser (plasmon) field has been the key element in the derivation of the effective e–e attraction, and interband effects did not need to be taken into account.

Figure 1. (a) Generation of THz radiation with femtosecond laser pulses from plasmonic nanostructures showing a typical sample used for the experiments and the experimental geometry. (b) Time-frequency analysis of a double attosecond pulse (with 900 as separation) generated with ultrashort, synthesized optical waveforms out of a lightwave synthesizer. (c) Time structure of the generated double attosecond pulse by looking at the singe-atom response of the medium (grey area) and filtering the short trajectory components of the high-harmonic radiation (striped area).

(a) (b)

Figure 2. Variation of the electron-electron effective potential along the propagation direction of the plasmon wave, in the case of the elastic scattering of an e–e pair for I = 10 GW/cm2 (a) and for I = 10 GW/cm2 (b) incoming laser intensity. As the incoming intensity (and the corresponding plasmon–enhanced local field amplitude) is increased, the original Coulomb repulsion between the two electrons is softened, and even regions of effective attraction appear. A similar behaviour is characteristic for the multiplasmon inelastic channels.

115

Theoretical quantum optics. — Concerning theoretical quantum optics, we have shown that the eigenstates of the simple new exponential phase operator, defined by the polar decomposition of the quantized amplitude of a linear oscillator (which may represent a mode of the radiation field), are SU(1,1) coherent states. In terms of these coherent states, we have represented a variant of the quantum saw-tooth phase operator in the original Hilbert space. In Figure 3, we illustrate the dependence on the action-angle parameters of the quantum phase function found and a corresponding quantum sampling function. The method developed by us, which leads to the generalized spectral decomposition of the phase operator, may for example be useful in describing the quantum phase properties of extreme radiation fields (like attosecond light pulses), or, in general, may be applied in quantum signal analysis.

(a)

(b)

Figure 3. Three-dimensional plot of the quantum phase function (a) for increasing action parameter values in the angle interval corresponding to three cycles of the harmonic oscillator. In this range, the expectation values of the photon number vary from 0.5 up to 1800. For large action values the quantum phase function approaches the well-known saw-tooth phase function of classical Fourier analysis. In figure (b), the three-dimensional plot of the quantum phase-sampling function is shown in the same parameter range. This figure illustrates that for larger and larger action values, these “projectors” sharply cut an angle interval of width equal to 1/6 of the oscillator’s evolution cycle, thus they approach an ideal phase-sampling function.

Grants

MTA “Lendület” Grant – Ultrafast Nano-optics (P. Dombi, 2014-2019)

Max Planck Society Partner Group Grant – Ultrafast strong-field nanoplasmonics (P. Dombi, 2014-2019)

OTKA K 109257 Time-resolved investigation of functional molecules and metal nanoparticles (P. Dombi, 2014-2018)

OTKA K 104260 Particles and intense fields (T. S. Bíró and S. Varró, 2012-2016).

116

OTKA PD 109472 Ultrafast processes in nanolocalized electromagnetic fields (P. Rácz, 2014-2017)

International cooperation

Max Planck Institute of Quantum Optics (Garching, Germany), Ultrafast strong-field nanoplasmonics (P. Dombi)

University of Alberta, Edmonton, Canada, Field-enhanced electron acceleration with few-cycle laser pulses (P. Dombi)

Institute of Photonic Sciences, Barcelona, Ultrafast electron acceleration experiments with mid-infrared lasers (P. Dombi, P. Rácz)

Karl-Franzens Universität, Graz, Austria, Investigation of femtosecond photoemission from nanostructures (P. Dombi)

School of Physics and Astronomy, University of Exeter, THz emission from nanostructures (P.

Dombi)

Institute for Quantum Optics, University of Ulm (Ulm, Germany), Wigner functions (S. Varró) Surface plasmon research. (S. Varró and N. Kroó).

Institute for Applied Physics, Theoretical Quantum Physics, Technical University of Darmstadt (Darmstadt, Germany), Quantum optics. (S. Varró)

Publications

Articles

1. Balogh E, Bódi B, Tosa V, Goulielmakis E, Varjú K, Dombi P: Genetic optimization of attosecond-pulse generation in light-field synthesizers. PHYS REV A, 90:(2) Paper 023855. 9 p. (2014)

2. Dombi P, Rácz P, Veisz L, Baum P: Conversion of chirp in fiber compression. OPT LETT, 39:(8) pp. 2232-2235. (2014)

3. Kroó N, Rácz P, Varró S: Surface-plasmon-assisted electron pair formation in strong electromagnetic field. EUROPHYS LETT, 105:(6) Paper 67003. 5 p. (2014)

4. Nagy BJ, Vámos L, Oszetzky D, Rácz P, Dombi P: Femtosecond damage threshold at kHz and MHz pulse repetition rates. P SPIE, 9237: Paper 923711. 6 p. (2014)

5. Polyushkin DK, Márton I, Rácz P, Dombi P, Hendry E, Barnes WL: Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100 fs pulses of infrared light. PHYS REV B, 89:(12) Paper 125426. 7 p. (2014)

6. Rácz P, Nagy BJ, Ferencz K, Dombi P: Intracavity Herriott-cell testbed for large-aperture femtosecond optics. LASER PHYS LETT, 11:(12) Paper 125805. 4 p. (2014)

7. Varró S: A new class of exact solutions of the Klein–Gordon equation of a charged particle interacting with an electromagnetic plane wave in a medium. LASER PHYS LETT, 11:(1) Paper 016001. 24 p. (2014)

117

8. Varró S: New exact solutions of the Dirac and Klein–Gordon equations of a charged particle propagating in a strong laser field in an underdense plasma. NUCL INSTRUM METH A, 740:(11) pp. 280-283. (2014)

Conference proceedings

9. Balogh I, Bódi B, Tosa V, Goulielmakis E, Varjú K, Dombi P: Attoszekundumos fényforrás genetikus optimalizálása (Genetic optimalisation of an attosecond light source, in Hungarian). In: Kvantumelektronika 2014: Proc. of the VII. Symposium on the results of domestic quantum-electronics research. Budapest, 28.11.2014, Eds.: Ádám P, Almási G, University of Pécs, Hungary, 2014. Paper P27. 2 p.

10. Dombi P: Az ELI létesítmények tudományos küldetése: attoszekundumos tudomány, fény-anyag kölcsönhatási folyamatok vizsgálata, létzerplazmák keltése (Scientific mission of ELI facilities: attosecond science, investigation of light-matter interaction processes, creating laser plasmas, in Hungarian). In: Az ELI-APS felépítése, lehetőségei és alkalmazási perspektivái (Structure, possibilities and application perspectives of ELI-ALPS), Kecskemét, Hungary, 05.12.2014, Eds.: Veres M, Borossáné Toth S, Nagyné Szokol Á, College of Kecskemét, 2014. pp. 24-31.

11. Dombi P: Felületi plazmonok és ultragyors nanotudomány (Surface plasmons and ultrafast nanoscience, in Hungarian). In: Az ELI-APS felépítése, lehetőségei és alkalmazási perspektivái (Structure, possibilities and application perspectives of ELI-ALPS), Kecskemét, Hungary, 05.12.2014, Eds.: Veres M, Borossáné Toth S, Nagyné Szokol Á, College of Kecskemét, 2014. pp. 50-59.

12. Dombi P: Femtoszekundumos lézerimpulzusok előállítása (Production of femtosecond laser pulses, in Hungarian). In: Az ELI-ALPS és a jövő természettudományi kutatásai (The ELI-ALPS and the natural science research of the future), Kecskemét, Hungary, 12.12.2014, Eds.: Borossáné Tóth S, Himics L, Nagyné Szokol Á, Veres M, College of Kecskemét, 2014. pp. 18-27.

13. Dombi P: Pulse compression with large-mode-area photonic crystal fibres. In: ICTON 2014. 16th International Conference on Transparent Optical Networks, Graz, Austria, 06.07.2014-10.07.2014. Los Alamitos: IEEE Computer Society, 2014. Paper 6876527. 2 p.

14. Dombi P: Ultragyors nanooptika és a Wigner FK ELI-vel kapcsolatos kutatásai (Ultrafast nanooptics and the ELI-related research of the Wigner RCP, in Hungarian). In:

Kvantumelektronika 2014: Proc. of the VII. Symposium on the results of domestic quantum-electronics research. Budapest, 28.11.2014, Eds.: Ádám P, Almási G, University of Pécs, Hungary, 2014. Paper E2. 2 p.

15. Dombi P: Ultragyors tudomány: Femtokémia, Femtobiológia és Attofizika eddigi eredményei, perspektívák (Ultrafast science: results of Femtochemics, Femtobiology and Attophysics up to day and perspectives, in Hungarian). In: Az ELI-ALPS és a jövő természettudományi kutatásai (The ELI-ALPS and the natural science research of the future), Kecskemét, Hungary, 12.12.2014, Eds.: Borossáné Tóth S, Himics L, Nagyné Szokol Á, Veres M, College of Kecskemét, 2014. pp. 38-48.

118

16. Földi P, Márton I, Német N, Dombi P: Fém nanorészecskék fotoemissziójának kontrollja rövid, plazmonikusan erősített lézerimpulzusokkal (Control of the photon emission of metal nanoparticles by short plasmonically intensified laser pulses, in Hungarian). In:

Kvantumelektronika 2014: Proc. of the VII. Symposium on the results of domestic quantum-electronics research. Budapest, 28.11.2014, Eds.: Ádám P, Almási G, University of Pécs, Hungary, 2014. Paper P35. 2 p.

17. Lombosi Cs, Márton I, Ollmann Z, Hebling J, Farkas Gy, Dombi P, Fülöp JA: THz-induced strong-field electron emission from a gold surface. In: Kvantumelektronika 2014: Proc.

of the VII. Symposium on the results of domestic quantum-electronics research.

Budapest, 28.11.2014, Eds.: Ádám P, Almási G, University of Pécs, Hungary, 2014.

Paper P11. 2 p.

18. Nagy BJ, Vámos L, Oszetzky D, Rácz P, Dombi P: Femtoszekundumos roncsolási küszöb mérése KHz és MHz ismétlési frekvencián (Measurement of femtosecond damage threshold on KHz and MHz repetitive frequency, in Hungarian). In: Kvantumelektronika 2014: Proc. of the VII. Symposium on the results of domestic quantum-electronics research. Budapest, 28.11.2014, Eds.: Ádám P, Almási G, University of Pécs, Hungary, 2014. Paper P72. 2 p.

19. Rácz P: Az ELI-ALPS kutatási nagyberendezés (The ELI-ALPS research infrastructure, in Hungarian). In: Az ELI-APS felépítése, lehetőségei és alkalmazási perspektivái (Structure, possibilities and application perspectives of ELI-ALPS), Kecskemét, Hungary, 05.12.2014, Eds.: Veres M, Borossáné Toth S, Nagyné Szokol Á, College of Kecskemét, 2014. pp. 41-49.

20. Rácz P: Femtoszekundumos lézerimpulzusok erősítése (Amplification of femtosecond laser pulses, in Hungarian). In: Az ELI-APS felépítése, lehetőségei és alkalmazási perspektivái (Structure, possibilities and application perspectives of ELI-ALPS), Kecskemét, Hungary, 05.12.2014, Eds.: Veres M, Borossáné Toth S, Nagyné Szokol Á, College of Kecskemét, 2014. pp. 32-40.

21. Rácz P, Márton I, Teichmann SM, Ciappina MF, Thai A, Fekete J, Veisz L, Biegert J, Dombi P: Ultragyors plazmonika közép-infravörös hullámhosszon (Ultrafast plasmonics in mid-infrared wavelengths, in Hungarian). In: Kvantumelektronika 2014: Proc. of the VII. Symposium on the results of domestic quantum-electronics research. Budapest, 28.11.2014, Eds.: Ádám P, Almási G, University of Pécs, Hungary, 2014. Paper P74. 2 p.

22. Rácz P: Ultrarövid impulzusok alkalmazásai (Applications of ultrashort pulses,in Hungarian). In: Az ELI-ALPS és a jövő természettudományi kutatásai (The ELI-ALPS and the natural science research of the future), Kecskemét, Hungary, 12.12.2014, Eds.:

Borossáné Tóth S, Himics L, Nagyné Szokol Á, Veres M, College of Kecskemét, 2014. pp.

49-58.

23. Rácz P: Ultrarövid impulzusok karakterizálása és kompressziója (Characterization and compression of ultrashort pulses, in Hungarian). In: Az ELI-ALPS és a jövő természettudományi kutatásai (The ELI-ALPS and the natural science research of the future), Kecskemét, Hungary, 12.12.2014, Eds.: Borossáné Tóth S, Himics L, Nagyné Szokol Á, Veres M, College of Kecskemét, 2014. pp. 28-37.

119

24. Varró S: Bevezetés az intenzív fény és anyag kölcsönhatásainak elméleti leírásába I.

(Introduction to the theoretical description of intensive light-matter interactions I.). In:

Az ELI-APS felépítése, lehetőségei és alkalmazási perspektivái (Structure, possibilities and application perspectives of ELI-ALPS), Kecskemét, Hungary, 05.12.2014, Eds.: Veres M, Borossáné Toth S, Nagyné Szokol Á, College of Kecskemét, 2014. pp. 76-86.

25. Varró S: Bevezetés az intenzív fény és anyag kölcsönhatásainak elméleti leírásába II.

(Introduction to the theoretical description of intensive light-matter interactions II.).

In: Az ELI-ALPS és a jövő természettudományi kutatásai (The ELI-ALPS and the natural science research of the future), Kecskemét, Hungary, 12.12.2014, Eds.: Borossáné Tóth S, Himics L, Nagyné Szokol Á, Veres M, College of Kecskemét, 2014. pp. 78-86.

26. Varró S, Kroó N, Rácz P: Felületi plazmonok által indukált effektív vonzás elektronok között (Surface-plasmon-induced effective attraction between electrons, in Hungarian). In: Kvantumelektronika 2014: Proc. of the VII. Symposium on the results of domestic quantum-electronics research. Budapest, 28.11.2014, Eds.: Ádám P, Almási G, University of Pécs, Hungary, 2014. Paper P78. 2 p.

27. Varró S: Intenzív plazmon-hullámmal kölcsönható töltött részecskék Dirac- és Klein-Gordon-egyenletének egzakt megoldásai (Exact solutions for Dirac and Klein-Gordon equations of particles interacting with an intensive plasmonic wawe, in Hungarian) In:

Kvantumelektronika 2014: Proc. of the VII. Symposium on the results of domestic quantum-electronics research. Budapest, 28.11.2014, Eds.: Ádám P, Almási G, University of Pécs, Hungary, 2014. Paper P79. 2 p.

28. Varro S: Új kvantumoptikai fázisoperátor és spektrálsereg előállítása SU(1,1) koherens állapot bázisban (Preparation of a novel quantumoptical phase operator and spectral team in SU(1,1) coherent state base, in Hungarian). In: Kvantumelektronika 2014: Proc.

of the VII. Symposium on the results of domestic quantum-electronics research.

Budapest, 28.11.2014, Eds.: Ádám P, Almási G, University of Pécs, Hungary, 2014.

Paper P80. 2 p.

See also: R-B.2, R-P.1, R-P.3, R-P.9, S-O.8

120

In document Wigner RCP 2014 (Pldal 113-120)