• Nem Talált Eredményt

Nanotechnológiás rétegképzés és annak modellezési lehetősége

2. IRODALMI ÁTTEKINTÉS

2.3 Nanotechnológiás rétegképzés és annak modellezési lehetősége

Általánosságban a nagy üvegfelületek nagy hőveszteséget jelentenek a hideg, téli hónapokban és nagy hőtöbblet beáramlását jelenthetik a forró, nyári napsütéses napokon.

Ez utóbbi a téli fűtésigénnyel azonos nagyságrendű problémát jelent. A nagy üvegfelületekről az arany vékonyréteg hatékonyan veri vissza a hőt adó infravörös sugárzást, azonban a fémes bevonat és az arany magas ára nem teszi lehetővé a széleskörű alkalmazást [Fang et al. 2013]. Szélesebb körben alkalmazott az ultravékony ezüst bevonat, amely tartós hő- (infravörös) visszaverő, de a látható tartományon áteresztő [Pintér 2006]. Kutatásokkal igazolták, hogy bizonyos félvezető, fémoxid anyagokból felépülő vékony rétegek szintén megfelelőek erre a célja. Ha ezeknek az anyagoknak a gerjesztési küszöbenergiája elég nagy (~3eV), akkor a látható tartományon áteresztőek, illetve, ha a szabad elektron koncentrációjuk is nagy, az ezekből készült filmek nagymértékű reflexiót mutatnak az infravörös tartományon [Fang et al. 2013].

2.3.1 Az elektrosztatikus önrendeződés rétegképzés technológiája

A vékony, nanoszerkezetű réteg/rétegek kialakításához használatos eljárások között szerepel például az atomi rétegleválasztás (ADL), az impulzus leválasztás (PLD), a vákuumpárologtatás (PVD, CVD), a porlasztás, a szol-gél, a centrifugális erő segítségével történő (spin coating), a Langmuir-Blodgett eljárások és nem utolsó sorban az elektrosztatikus önrendeződéses rétegképzés.

Az elektrosztatikus önrendeződés rétegképzés technológiája, melyet úgy is neveznek, hogy Layer-by-Layer vagy rövidítve LbL eljárás, egy széles körben alkalmazható, környezetbarát, gazdaságos és gyors bevonó eljárás. Az LbL eljárással lehetőség van ultravékony, nanostruktúrált bevonatok kialakítására különböző minőségű és megjelenésű (akár háromdimenziós, speciális formájú) felületeken [Lvov et al. 1996, Lvov et al. 1997, Ai et al. 2003]. Az eljárást először Decher és Hong (1999) mutatta be, azóta számtalan szakirodalom számol be a különböző területeken való alkalmazhatóságáról [Han et al. 2005, Ghosh 2006, Shchukin et al. 2006, Zhou et al. 2009, Carosio et al. 2011, Csóka et al. 2012, Laufer et al. 2012].

Az eljárás egyik nagy előnye, hogy vizes közegben is elvégezhető, így nincs szükség a természetre, egészségre káros oldószerek alkalmazására. Az LbL eljárás további előnye, hogy kivitelezéséhez használható anyagok spektruma meglehetősen széles.

Az eljárás alapja az eltérő töltésű alkotók között kialakuló elektrosztatikus vonzás. Az elektrosztatikus önrendeződéses rétegképzéshez különféle, vizes közegben pozitív vagy negatív töltéssel rendelkező nanorészecskék, illetve polielektrolitok is alkalmazhatók. Az összetételtől függően állíthatók be a bevonat, végső soron a felület tulajdonságai. Az LbL bevonatok kialakításához alkalmazott nanorészecskék között szerepelnek fém és fémoxid nanorészecsék (úgymint Ag, Au, CeO2, Fe2O3, SiO2, TiO2, ZnO, ZrO2), agyagásványok (montmorillonit, szaponit, hektorit), grafén nanolemezek, szénnanocsövek, valamint

különböző szerves nanorészecskék, mint például a cellulóz nanokristály vagy a globuláris fehérje.

Az LbL eljárás különböző módokon, az alkalmazásnak és a felületnek megfelelően bemerítéssel, szórással és centrifugális erő segítségével végezhető. A bemerítéses eljárás során elsőként a bevonandó felület töltésével ellentétes töltésű nanorészecske vagy polielektrolit oldatba mártjuk a bevonni kívánt hordozót, így létrejön az első réteg, melyet monorétegnek is szokás nevezni. A következő réteg, a biréteg, kialakítása hasonló módon történik, a felvitt réteg töltésével ellentétes töltésű nanorészecske vagy polielektrolit kolloidba mártjuk a bevonandó anyagot. A nanométer vastagságú rétegek felépítése, a nanostrukturált, multiréteg kialakítása a bemerítések váltakoztatásával és számának növelésével jön létre. Az egyes bemerítések között fontos technológiai lépés a mosás (emellett gyakran a szárítás), amely során a felületen meg nem kötődött anyagok távolíthatók el. A bemerítéses eljárás a 21. ábrán látható.

21. ábra. A bemártásos LbL eljárás lépései [Li et al. 2012]

A szórásos LbL eljárás hasonló alapokon nyugszik, itt azonban a felvitelt szórópisztoly segítségével végezzük, ahogy azt a 22. ábra szemlélteti. Az eljárás előnye, hogy a rétegek adszorpciója gyorsabban végbemegy, mint a bemerítős eljárás esetén. A szórással való LbL rétegképzés további előnye, hogy gazdaságosabb, kevesebb anyag is elegendő, valamint hogy a kolloid rendszerek koncentrációja nem változik a bevonási eljárás alatt.

22. ábra. A szórásos LbL eljárás lépései [Li et al. 2012]

A bevonási mód mellett a végső bevonat tulajdonságaira nagy hatással van az alkalmazott kolloidok koncentrációja, pH-ja és ionerőssége, illetve a bemerítés/szórás időtartama.

Alacsony ionerősségnél például a polimer gomolyag nagymértékben ki tud egyenesedni – így az abszorbeált anyag mennyisége kevesebb, a kialakult réteg vastagsága kisebb. Ennek ellenkezője figyelhető meg nagy ionerősségnél. Az izoelektromos pontok ismeretében pH-val beállítható a nanorészecskék töltése, így növelhető az adszorpció, a határfelületi interakciók erőssége.

2.3.2 A nanobevonat modellezési lehetőségei

A fénytörés fogalma az elektromágneses hullámoknál, mint például a fény esetében, azt az eltérítést vagy kitérítést jelenti, annak egyenes vonalú haladásából, amikor a fény az egyik közegből kilépve egy másikban halad tovább.

A modellezési fejezet lényege, hogy ismert fizikai jelenségekbe helyezve az általam használt 3 félvezető anyag tulajdonságait, egy olyan modellteret hozzon létre, amely a gyakorlati megvalósulása révén lehetőséget biztosít további anyagok kipróbálására, a nanorétegek felépítés nélküli vizsgálatához.

Max Planck (1900-ban) megállapította, hogy az elektromágneses hullámok energiája megegyezik valamilyen kisebb energia egységek összegével és bevezette a kvantum elméletet. A kvantum elnevezés (a latin „kvantus” szóból ered és) jelentése: mennyiség.

Planck ezt az elnevezést az egységnyi energia értékek számolására használta. Az elméletet Einstein 1905-ben továbbfejlesztette és megállapította, hogy az elektromágneses hullámokat diszkrét energia értékek összegének kell tekinteni, amelyek a hullám frekvenciájától függő mennyiségek. Az 1900-as évek elején a kvantum mechanika forradalma előtt Hendrik Lorentz a Maxwell egyenletek alapján leírta a fény és anyag kölcsönhatását. Maxwell egyenletében a fényt transzverzális elektromágneses hullámként definiálja. Az E elektromos és a H mágneses térerősség a fény haladási irányára – és ugyanakkor egymásra is – merőleges síkban harmonikus rezgést végeznek. Annak ellenére, hogy Lorentz tisztán elméleti leírást adott, össze tudták kapcsolni a kvantum mechanikával és a Lorentz féle modell mind a mai napig jól használható.

Lorentz a modellben az elenyészően kicsi tömegű elektront (9,11·10-31 kg) egy rugón keresztül kapcsolta össze a sokkal nagyobb tömegű (de nyugalmi állapotú) atommaggal, amely rugó a Hook féle törvénynek engedelmeskedik. Az elektron töltése kapcsolatba lép az adott elektromos térrel és a rugó megnyúlik, vagy összemegy a tér változásának függvényében, tehát oszcilláló mozgást végez. Ezt nevezzük Lorentz-féle oszcillációs modellnek (23. ábra).

23. ábra. Lorentz-féle oszcillációs modell