• Nem Talált Eredményt

3. Results and discussion 54

3.4. Discussion

3.4.5. Method development for antisolvent processes

Although, as discussed in the previous section, the behaviour of the antisolvent resolution methods differs significantly, their development and implementation com-prised largely similar steps. These have been generalized and compiled here into a generic template for screening and developing antisolvent resolution processes. For the purposes of this section, assume that a resolution system is proven to achieve chi-ral discrimination in supercritical carbon dioxide (e.g. using thein situ or in vacuo methods).

First, one or more suitable solvent or solvent combination (henceforth referred to as "solvent") must be selected, based on solvent power and compatibility with carbon dioxide. The solvent must be able to efficiently dissolve not only the racemate and the resolving agent, but the formed diastereomers as well. A large number of resolution systems are based on acid–base interaction, thus the diastereomers in these systems are salts, the ionic character of which requires solvents of appreciable polarity (ionic salts, however, are not a prerequisite of successful resolution using scCO2: racemic trans-1,2-cyclohexanediol could be resolved using L-tartaric acid via intermolecular complex formation [84, 85, 188]). However, even if the diastereomers are ionic, highly polar solvents are typically unsuitable for the antisolvent resolution due to their incompatibility (in this case, immiscibility) with carbon dioxide. Solvents must be stable under pressure and unreactive towards but miscible with carbon dioxide.

Solvent selection in terms of solvent power can be done in simple atmospheric

solu-bility tests, suitable candidates can be tested for compatisolu-bility with carbon dioxide in view cell experiments or based on literature data.

In addition to determining solvent suitability, view cell experiments (described in Section 2.2.3) are valuable in establishing the range of process parameters (pressure, temperature, racemate/resolving agent concentration in the solvent and CO2:solvent ratio) in which the resolution is possible. The ability to visually observe the reaction mixture, as well as the variable volume of the view cell (allowing the alteration of pressure without affecting the composition of the reaction mixture), allow the efficient screening of different parameter combinations. However, due to the design of the equipment, efficient separation of the precipitates from the unreacted components is not possible. Therefore whether chiral discrimination occurs can only be inferred from the appearance of a precipitate and by measuring the enantiomeric excess of CO2 phase by sampling. Despite this limitation, view cell experiments can identify suitable solvents and process parameter combinations that can be used as starting points for GAS experiments.

Suitable systems (in the sense of racemate–resolving agent–solvent groups) are transferred to the batch reactor. The main advantage of the GAS technique over the view cell is its ability to achieve separation of CO2-soluble compounds from precip-itates. Since separate extract and raffinate phases are produced, yields and enan-tiomeric excesses can be determined, allowing for precise characterization of a given experiment. Furthermore, the separated fractions can be studied via powder X-ray diffraction or scanning electron microscopy, though the latter is typically only used for the raffinate (since the extract is collected in a liquid trap and evaporated in vac-uum, rendering its microscopic structure unrepresentative). The GAS method can be used to carry out detailed studies into the effects of process parameters (chiefly, pres-sure, temperature, CO2:solvent ratio and reaction time) and their interactions upon yields, optical purities and diastereomer structure.

Once a combination or range of optimal process parameters have been identified, the resolution can be implemented using the SAS technique. Although the exper-iments presented in Sections 3.1.3 and 3.3.2 were only preliminary, they indicate that if the process parameters of a successful GAS experiment are applied to the SAS method (with R being a direct substitute for R), similar results (in terms of optical purities and raffinate structure) can be achieved. The SAS technique has the added benefits of larger capacity (approximately one order of magnitude with respect to the mass of racemate) and more tightly controlled experimental conditions: while the

racemate and resolving agent are exposed to CO2 in the entire range of pressures from atmospheric up to the desired process pressure (and view cell measurements suggest that precipitation may begin before the desired pressure is reached), the so-lution in the SAS technique comes into contact with a stream of scCO2maintained at the desired pressure (typically to within±5 bar).

C ONCLUSION

Three resolution systems have been investigated: the resolution of ibuprofen with resolving agent 1-phenylethanamine (using (R)-(+)-1-phenylethanamine in most ex-periments, (S)-(−)-1-phenylethanamine in some additional studies), and the resolu-tion ofcis-permethric acid with the resolving agents (R)-(+)-1-phenylethanamine and (S)-(+)-2-(N-benzylamino)butan-1-ol.

The novel, solvent-free resolution in a heterogeneous-phase reaction with super-critical CO2(thein situmethod) was demonstrated on the ibuprofen–(R)-(+ )-1-phen-ylethanamine system. At 200 bar and 40 C, both the (R)-(−)-ibuprofen-enriched diastereomers and the (S)-(+)-ibuprofen-enriched unreacted enantiomers had enan-tiomeric excesses of approximately 0.6, with an overall recovery of 83% (with re-spect to the racemate and the resolving agent). By raising the temperature to 50C, unreacted enantiomeric mixtures of nearly ee =0.8 could be obtained (though the resolution was unsuccessful at higher temperatures). Although no organic solvent and virtually no downstream processing of products was required to obtain the afore-mentioned optical purities in a single step, it must be noted that the results required reaction times in excess of 80 h.

Techniques using supercritical CO2as an antisolvent were also successfully applied to the ibuprofen–(R)-(+)-1-phenylethanamine system. The effect of process param-eters was investigated in detail. At 100 bar, 45 C, with half-equivalent amounts of resolving agent, using methanol with an antisolvent:solvent mass ratio of 11.3:1 g/g and a volumetric IBU concentration of 4.17 g/dm3 CO2, the optical purity in the diastereomeric salts and unreacted enantiomers was 0.747 and 0.589, respectively, with an overall recovery of 65%. Increasing the antisolvent:solvent ratio increased diastereomer yields according to a saturation curve while having negligible effect on their optical purities, only marginally influenced by the choice of solvent. Although the antisolvent:solvent ratio did not influence the crystalline structure (as determined by powder X-ray diffraction), scanning electron microscopy revealed significant dif-ferences between crystal habits of diastereomers obtained at different ratios. The resolution could be carried out at or above equimolar quantities of resolving agent, attributed to the decomposition of the diastereomers. This enabled a two-step resolu-tion, in which diastereomers formed in an antisolvent experiment were subjected to a second resolution step with no further resolving agent added. The second step yielded practically racemic unreacted enantiomers and diastereomers with an enantiomeric

excess of 0.9 (R)-(−)-ibuprofen, which exceeds the optical purity at the eutectic point of ibuprofen enantiomers. While the solvent consumption of this facile two-step pro-cess is remarkably low compared to traditional crystallizations from organic solvents, yields were significantly lower due to losses resulting from the laboratory-scale im-plementation.

A published resolution method[107]for ibuprofen, based on crystallization from organic solvent using (S)-(−)-phenylglycinol as a resolving agent, yielded a de of 53%

with yields around 50%. Thein situ method produced diastereomers with slightly higher yields and optical purity ( ˆY =0.56, ee(R)= 0.58 at 200 bar and 40C), al-though only after 73.5 h. The GAS method (at 150 bar, 45C,R=29.5) produced slightly lower yield with higher optical purity in the raffinate (Y =0.43, ee(R)=0.78), however, the required operation time was around 3 h. The two-step purification at 130 bar, 45C, using an initial SAS resolution with mr=1 and subjecting the raffi-nate to a GAS resolution with no additional resolving agent, diastereomers with an overallY =0.08 (albeit using only 22.5% of the raffinate) and ee(R)=0.90 could be obtained. In conclusion, thein situmethod yielded results comparable to published methods without the use of organic solvents, after much longer reaction times. The antisolvent methods produced higher purity diastereomers with operation times on the order of a few hours, albeit in lower yields.

The in situ method was successfully applied to the resolution of cis-permethric acid using (S)-(+)-2-(N-benzylamino)butan-1-ol. The effects of process parameters were investigated in detail. In contrast with the resolution of ibuprofen, the reaction time was found to have a minor effect, as good results could be obtained even af-ter 1 h. At 200 bar and 45C, diastereomers with an enantiomeric excess of 0.781 (1S,3S)-(−)-cis-permethric acid could be obtained at 60% theoretical yield (based on the total amount of diastereomer assuming a complete, irreversible diastereomer crystallization). A study of temperature effects suggests that these results could be further improved by lowering the temperature to 35C. Although the yields and opti-cal purities are inferior to those obtained in published resolution methods, they were achieved in a single step without the use of organic solvents and with virtually no downstream processing required (compared to the multiple recrystallizations from organic solvents in published methods).

The resolution ofcis-permethric acid with (S)-(+)-2-(N-benzylamino)butan-1-ol from organic solutions using pH-driven crystallizations[142]reported the obtained diastereomeric salts as "optically pure", however, 50% of the initialcis-permethric acid

remains at the end of the resolution. At 200 bar and 45C, recovery (with respect to the complete amount of material measured in) for thein situsystem is 0.77, however, the fractions are not optically pure (extract ee(+)=0.28, raffinate ee(−)=0.51).

Using (R)-(+)-1-phenylethanamine, the antisolvent resolution of cis-permethric acid was successful. The effect of pressure on optical purities showed unusual, sharp transitions, initially attributed solely to diastereomer decomposition. Further inves-tigation revealed that between 100–120 bar, a stable racemic salt forms, while be-tween 130–200 bar, the optical purity of the crystalline phase is influenced by the relative stability of the individual diastereomers. Between 130–170 bar, where only the (1S,3S)-(−)-cis-permethric acid salt is stable, diastereomers with ≥ 0.8 (up to 0.94) ee (1S,3S)-(−)-cis-permethric acid could be obtained. An apparatus for semi-continuous antisolvent resolution was developed and successfully tested. Although the diastereomer optical purities exceed previously published results, yields are di-minished due to diastereomer decomposition.

A crystallization-based resolution of cis-permethric acid, using amines derived from natural carenes [143], produced both enantiomers of cis-permethric acid in 82–86% yield with optical purities reported as 95% for (1R,3R)-(+)-cis-permethric acid and ≥ 98% for (1S,3S)-(−)-cis-permethric acid. However, these results were obtained using several recrystallizations (twice and three times for the (−) and (+) enantiomers, respectively), with one recrystallization for (1R,3R)-(+)-cis-permethric acid involving benzene. In contrast, the GAS method at 150 bar and 45C yielded the (1S,3S)-(−)-cis-permethric acid–(R)-(+)-1-phenylethanamine salt in 94% purity in a single step using methanol. Due to diastereomer dissociation, however, the ex-tract optical purity was low. The SAS method produced diastereomer salts with 0.93 ee and Y = 0.15, extract optical purity was 0.32 withY =0.09. In conclusion, the antisolvent methods yielded optical purities comparable to traditional methods with reduced solvent use and operation times, albeit with lower yields.

Based on the investigations carried out, some general guidelines for developing antisolvent resolution techniques have been presented.

R EFERENCES

[1] R. SIEDLECKA: “Recent developments in optical resolution”,Tetrahedron, 69 316331–6363,2013

[2] Ž. KNEZ, E. MARKO ˇCI ˇC, M. LEITGEB, M. PRIMOŽI ˇC, M. KNEZ HRN ˇCI ˇC and M.

ŠKERGET: “Industrial applications of supercritical fluids: A review”, Energy, 77235–243,2014

[3] T. GAMSE: “Supercritical Extraction of Solid Materials: From Lab Scale to In-dustrial Application”, lectureSupercritical Fluids - Green Solvents in Chemical Engineering, Istanbul, Turkey,Jun. 25–Jul. 10, 2008

[4] X. HANand M. POLIAKOFF: “Continuous reactions in supercritical carbon diox-ide: problems, solutions and possible ways forward”, Chem. Soc. Rev.,41 4 1428–1436,2012

[5] J. JUNGand M. PERRUT: “Particle design using supercritical fluids: Literature and patent survey”,J. Supercrit. Fluids,203179–219,2001

[6] A. KORDIKOWSKI, P. YORKand D. LATHAM: “Resolution of ephedrine in super-critical CO2: A novel technique for the separation of chiral drugs”,J. Pharm.

Sci.,888786–791,1999

[7] A. MARTÍNand M. J. COCERO: “Separation of enantiomers by diastereomeric salt formation and precipitation in supercritical carbon dioxide: Application to the resolution of mandelic acid”,J. Supercrit. Fluids,40167–73,2007 [8] S. SANTAROSSA, A. MARTÍN and M. J. COCERO: “Separation of Ibuprofen

En-antiomers by Diastereomic Salt Formation and Precipitation In Supercritical Carbon Dioxide”, Barcelona, Spain Proceedings of 11th European Meeting on Supercritical Fluids, Barcelona, Spain,May 4–7, 2008

[9] J.-B. BIOT: “Phénomènes de polarisation successive, observés dans des fluides homogènes”,Bull. sci. Soc. Philomat. Paris,1190–192,1815

[10] L. PASTEUR: “Recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique, et les sens de la polarisation rotatoire”, Ann. Chim. Phys.,24442,1848

[11] M. LASKAand P. TEUBNER: “Olfactory Discrimination Ability of Human Sub-jects for Ten Pairs of Enantiomers”,Chem. Senses,242161–170,1999 [12] T. J. LEITEREG, D. G. GUADAGNI, J. HARRIS, T. R. MON and R. TERANISHI:

“Chemical and sensory data supporting the difference between the odors of the enantiomeric carvones”,J. Agric. Food Chem.,194785–787,1971

[13] C. SÁNCHEZ, P. BERGQVIST, L. BRENNUM, S. GUPTA, S. HOGG, A. LARSEN and O. WIBORG: “Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities”,Psychopharmacology (Berl.),167 4353–362,2003

[14] A. PERALES, M. MARTINEZ-RIPOLL, J. FAYOS, C.VONCARSTENN-LICHTERFELDE

and M. FERNANDEZ: “The absolute configuration of active and inactive fosfo-mycin”,Acta Crystallogr. B,38102763–2764,1982

[15] B. ROUVEIX: “Antibiotic Safety Assessment”, Int. J. Antimicrob. Agents,21 3 215–221,2003

[16] W. LENZ, R. PFEIFFER, W. KOSENOWand D. HAYMAN: “Thalidomide and Con-genital Abnormalities”,The Lancet,279721945–46,1962

[17] W. LENZ: “A short history of thalidomide embryopathy”,Teratology,383203–

215,1988

[18] S. K. TEO, W. A. COLBURN, W. G. TRACEWELL, K. A. KOOK, D. I. STIRLING, M. S.

JAWORSKY, M. A. SCHEFFLER, S. D. THOMASand O. L. LASKIN: “Clinical Phar-macokinetics of Thalidomide”,Clin. Pharmacokinet.,435311–327,2004 [19] E. FISCHER: “Ueber die Configuration des Traubenzuckers und seiner

Iso-meren”,Ber. Dtsch. Chem. Ges.,2411836–1845,1891

[20] E. FISCHER: “Ueber die Configuration des Traubenzuckers und seiner Iso-meren. II”,Ber. Dtsch. Chem. Ges.,2422683–2687,1891

[21] M. A. ROSANOFF: “On Fischer’s Classification Of Stereo-Isomers”,J. Am. Chem.

Soc.,281114–121,1906

[22] R. S. CAHN, C. INGOLD and V. PRELOG: “Specification of molecular chirality”, Angew. Chem. Int. Ed. Engl.,54385–415,1966

[23] V. PRELOGand G. HELMCHEN: “Basic Principles of the CIP-System and Propos-als for a Revision”,Angew. Chem. Int. Ed. Engl.,218567–583,1982

[24] H. A. FAVREand W. H. POWELL: “Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Name 2013”, The Royal Society of Chem-istry (Cambridge, UK),2013

[25] J. BRECHER: “Graphical representation of stereochemical configuration (IU-PAC Recommendations 2006)”,Pure Appl. Chem.,78101897–1970,2009 [26] P. STEPHENS, F. DEVLIN, J. CHEESEMAN, M. FRISCH, O. BORTOLINIand P. BESSE:

“Determination of absolute configuration using ab initio calculation of optical rotation”,Chirality,15S1S57–S64,2003

[27] W. J. POPEand S. J. PEACHEY: “CVIII.—The application of powerful optically active acids to the resolution of externally compensated basic substances. Res-olution of tetrahydroquinaldine”,J. Chem. Soc., Trans.,751066,1899

[28] T. VRIES, H. WYNBERG, E. VAN ECHTEN, J. KOEK, W. TEN HOEVE, R. M. KEL

-LOGG, Q. B. BROXTERMAN, A. MINNAARD, B. KAPTEINand S.VAN DERSLUIS:

“The family approach to the resolution of racemates”,Angew. Chem. Int. Ed.

Engl.,3717 2349–2353,1998

[29] R. M. KELLOGG, J. W. NIEUWENHUIJZEN, K. POUWER, T. R. VRIES, Q. B. BROX

-TERMAN, R. F. P. GRIMBERGEN, B. KAPTEIN, R. M. L. CROIS, E. DE WEVER, K. ZWAAGSTRA and A. C. VAN DER LAAN: “Dutch Resolution: Separation of Enantiomers with Families of Resolving Agents. A Status Report”,Synthesis, 2003101626–1638,2003

[30] J. DALMOLEN, T. D. TIEMERSMA-WEGMAN, J. W. NIEUWENHUIJZEN, M.VAN DER

SLUIS, E.VANECHTEN, T. R. VRIES, B. KAPTEIN, Q. B. BROXTERMANand R. M.

KELLOGG: “The Dutch Resolution Variant of the Classical Resolution of Race-mates by Formation of Diastereomeric Salts: Family Behaviour in Nucleation Inhibition”,Chem. Eur. J.,11195619–5624,2005

[31] M. LEEMAN, G. BRASILE, E. GELENS, T. VRIES, B. KAPTEIN and R. KELLOGG:

“Structural Aspects of Nucleation Inhibitors for Diastereomeric Resolutions and the Relationship to Dutch Resolution”,Angew. Chem. Int. Ed. Engl.,477 1287–1290,2008

[32] V. L. RENDINA, S. A. GOETZ, A. E. NEITZEL, H. Z. KAPLANand J. S. KINGSBURY:

“Scalable synthesis of a new enantiomerically pureπ-extended rigid amino indanol”,Tetrahedron Letters,53115–18,2012

[33] R. SIEDLECKA and I. TUROWSKA-TYRK: “Easy and efficient deracemization ofall trans-1,3-diphenyl-2,4-bis-[α-hydroxybenzyl]-cyclobutane and its bis-phenylsulfanyl derivative and the assignment of the absolute configuration”, Tetrahedron: Asymmetry,2216–171662–1666,2011

[34] L. PASTEUR: “Mémoire sur la fermentation de l’acide artrique”, C. r. hebd.

séances Acad. sci.,46615–618,1858

[35] J. M. J. WILLIAMS, R. J. PARKERand C. NERI: “Enzymatic Kinetic Resolution”, in K. DRAUZand H. WALDMANN, Eds.:Enzyme Catalysis in Organic Synthesis, Wiley-VCH Verlag GmbH (Weinheim, Germany),2008, ch. 9 pp. 287–312 [36] W. MARCKWALDand A. MCKENZIE: “Ueber eine principiell neue Methode zur

Spaltung racemischer Verbindungen in die activen Bestandtheile”,Ber. dtsch.

chem. Ges.,3222130–2136,1899

[37] D. E. ROBINSON and S. D. BULL: “Kinetic resolution strategies using non-enzymatic catalysts”,Tetrahedron: Asymmetry,14111407–1446,2003 [38] F. FACHE, E. SCHULZ, M. L. TOMMASINOand M. LEMAIRE: “Nitrogen-containing

ligands for asymmetric homogeneous and heterogeneous catalysis”, Chem.

Rev.,10062159–2232,2000

[39] Y. YAMANOI and T. IMAMOTO: “Methylene-bridged P-chiral diphosphines in highly enantioselective reactions”, The Journal of organic chemistry, 64 9 2988–2989,1999

[40] M. CHAVAROT, S. MÉNAGE, O. HAMELIN, F. CHARNAY, J. PÉCAUTand M. FONTE

-CAVE: “"Chiral-at-Metal" Octahedral Ruthenium(II) Complexes with Achiral Ligands: A New Type of Enantioselective Catalyst”,Inorg. Chem.,42164810–

4816,2003

[41] H. PELLISSIER: “Dynamic kinetic resolution”,Tetrahedron,59428291–8327, 2003

[42] H. PELLISSIER: “Recent developments in dynamic kinetic resolution”, Tetrahe-dron,6481563–1601,2008

[43] A. DEMIRBA¸S: “Analysis of beech wood fatty acids by supercritical acetone extraction”,Wood Sci. Technol.,255365–370,1991

[44] P. CAPRIEL, A. HAISCHand S. U. KHAN: “Supercritical methanol: an efficacious technique for the extraction of bound pesticide residues from soil and plant samples”,J. Agric. Food Chem.,34170–73,1986

[45] J. PENG, P. CHEN, H. LOU and X. ZHENG: “Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol”,Bioresour. Technol.,100133415–

3418,2009

[46] D. R. KETCHUMand J. W. KOLIS: “Crystal growth of gallium nitride in super-critical ammonia”,J. Cryst. Growth,2223431–434,2001

[47] P. KRITZER and E. DINJUS: “An assessment of supercritical water oxidation (SCWO): Existing problems, possible solutions and new reactor concepts”, Chem. Eng. J.,833207–214,2001

[48] P. E. SAVAGE, R. LIand J. T. SANTINIJR.: “Methane to methanol in supercritical water”,J. Supercrit. Fluids,72135–144,1994

[49] E. LESTER, P. BLOOD, J. DENYER, D. GIDDINGS, B. AZZOPARDI and M. POLI

-AKOFF: “Reaction engineering: The supercritical water hydrothermal synthe-sis of nano-particles”,J. Supercrit. Fluids,372209–214,2006

[50] K. DE KLERCK, D. MANGELINGS and Y. VANDER HEYDEN: “Supercritical fluid chromatography for the enantioseparation of pharmaceuticals”, J. Pharm.

Biomed. Anal.,6977–92,2012

[51] L. MILLER: “Preparative enantioseparations using supercritical fluid chro-matography”,J. Chromatogr. A,1250250–255,2012

[52] M. MCHUGHand V. KRUKONIS: “Supercritical fluid extraction: principles and practice”, Elsevier (Amsterdam, Netherlands),2013

[53] P. HUBERTand O. G. VITZTHUM: “Fluid Extraction of Hops, Spices, and Tobacco with Supercritical Gases”,Angew. Chem. Int. Ed. Engl.,1710710–715,1978

[54] A. MOUAHID, C. CRAMPON, S.-A. A. TOUDJIand E. BADENS: “Supercritical CO2 extraction of neutral lipids from microalgae: Experiments and modelling”,J.

Supercrit. Fluids,777–16,2013

[55] J. A. R. URIBE, J. I. N. PEREZ, H. C. KAUIL, G. R. RUBIO and C. G. ALCOCER:

“Extraction of oil from chia seeds with supercritical CO2”,J. Supercrit. Fluids, 562174–178,2011

[56] E. VÁGI, B. SIMÁNDI, K. VÁSÁRHELYINÉ, H. DAOOD, Á. KÉRY, F. DOLESCHALLand B. NAGY: “Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products”,J. Supercrit. Fluids,402 218–226,2007

[57] M. K. TAYLOR, T. M. YOUNG, C. E. BUTZKE and S. E. EBELER: “Supercritical Fluid Extraction of 2,4,6-Trichloroanisole from Cork Stoppers”,J. Agric. Food Chem.,4862208–2211,2000

[58] Q. TANG and T. WANG: “Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying”,J. Supercrit. Fluids,35191–94,2005 [59] K. J. MCCULLOUGH, R. J. PURTELL, L. B. ROTHMANand J.-J. WU: “Residue

re-moval by supercritical fluids”, patent no. US 5 908 510, International Business Machines Corporation (Armonk, NY, United States),1999

[60] G. ANITESCU and L. TAVLARIDES: “Supercritical extraction of contaminants from soils and sediments”,The Journal of Supercritical Fluids,382167–180, 2006

[61] P. J. CORMIER, R. M. CLARKE, R. M. L. MCFADDEN and K. GHANDI: “Selec-tive Free Radical Reactions using Supercritical Carbon Dioxide”,J. Am. Chem.

Soc.,13662200–2203,2014

[62] C. I. MELO, R. BOGELUKASIKand E. BOGELUKASIK: “Combination of super-critical carbon dioxide and ionic liquid in a novel assembly of carvacrol”, J.

Supercrit. Fluids,61191–198,2012

[63] T. RANDOLPH, H. BLANCH, J. PRAUSNITZ and C. WILKE: “Enzymatic catalysis in a supercritical fluid”,Biotechnol. Lett.,75325–328,1985

[64] D. HAMMOND, M. KAREL, A. KLIBANOVand V. KRUKONIS: “Enzymatic reactions in supercritical gases”,Appl. Biochem. Biotechnol.,115393–400,1985 [65] K. NAKAMURA, Y. M. CHI, Y. YAMADAand T. YANO: “Lipase Activity and

Stabil-ity in Supercritical Carbon Dioxide”,Chem. Eng. Commun.,451-6207–212, 1986

[66] J. H. LEE, S. B. KIM, S. W. KANG, Y. S. SONG, C. PARK, S. O. HANand S. W. KIM:

“Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process”,Bioresour. Technol.,102 22105–2108,2011

[67] Ž. KNEZ, S. KAV ˇCI ˇC, L. GUBICZA, K. BÉLAFI-BAKÓ, G. NÉMETH, M. PRIMOŽI ˇC

and M. HABULIN: “Lipase-catalyzed esterification of lactic acid in supercritical carbon dioxide”,J. Supercrit. Fluids,66192–197,2012

[68] E. REVERCHON: “Supercritical antisolvent precipitation of micro- and nano-particles”,J. Supercrit. Fluids,1511–21,1999

[69] A. VISENTIN, S. RODRÍGUEZ-ROJO, A. NAVARRETE, D. MAESTRI and M. CO

-CERO: “Precipitation and encapsulation of rosemary antioxidants by super-critical antisolvent process”,J. Food Eng.,10919–15,2012

[70] R. THIERING, F. DEHGHANI, A. DILLOWand N. R. FOSTER: “The influence of operating conditions on the dense gas precipitation of model proteins”, J.

Chem. Technol. Biotechnol.,75129–41,2000

[71] G. WEBERBRUN, Á. MARTÍN, E. CASSEL, R. M. F. VARGASand M. J. COCERO:

“Crystallization of Caffeine by Supercritical Antisolvent (SAS) Process: Anal-ysis of Process Parameters and Control of Polymorphism”,Cryst. Growth Des., 1241943–1951,2012

[72] Z. DONG, Y. LI, M. LINand M. LI: “A study of the mechanism of enhancing oil recovery using supercritical carbon dioxide microemulsions”,Pet. Sci., 10 1 91–96,2013

[73] X.-D. NIU, H. YAMAGUCHI, X.-R. ZHANG, Y. IWAMOTOand N. HASHITANI: “Ex-perimental study of heat transfer characteristics of supercritical CO2 fluid in collectors of solar Rankine cycle system”,Appl. Therm. Eng.,31 6–7 1279–

1285,2011

[74] A. W. KJELLOW and O. HENRIKSEN: “Supercritical wood impregnation”, The Journal of Supercritical Fluids,503297–304,2009

[75] T. DEWEES, F. KNAFELC, J. MITCHELL, R. TAYLOR, R. ILIFF, D. CARTY, J. LATHAM

and T. LIPTON: “Liquid/supercritical carbon dioxide dry cleaning system”, patent no. US 5 267 455, The Clorox Company (Oakland, CA, United States), 1993

[76] E. FOGASSY, M. ÁCS, T. SZILI, B. SIMÁNDIand J. SAWINSKY: “Molecular chiral recognition in supercritical solvents”,Tetrahedron Lett.,352257–260,1994 [77] B. SIMÁNDI, S. KESZEI, E. FOGASSYand J. SAWINSKY: “Supercritical Fluid Ex-traction, a Novel Method for Production of Enantiomers”,J. Org. Chem.,62 134390–4394,1997

[78] P. MOLNÁR, E. SZÉKELY, B. SIMÁNDI, S. KESZEI, J. LOVÁSZ and E. FOGASSY:

“Enantioseparation of ibuprofen by supercritical fluid extraction”,J. Supercrit.

Fluids,373384–389,2006

[79] P. MOLNÁR, P. BOMBICZ, CS. VARGA, L. BERECZKI, E. SZÉKELY, GY. POKOL, E. FO

-GASSYand B. SIMÁNDI: “Influence of benzylamine on the resolution of ibupro-fen with (+)-(R)-phenylethylamine via supercritical fluid extraction”, Chiral-ity,216628–636,2009

[80] B. SIMÁNDI, S. KESZEI, E. FOGASSY, S. KEMÉNYand J. SAWINSKY: “Separation of enantiomers by supercritical fluid extraction”, J. Supercrit. Fluids,13 1–3 331–336,1998

[81] I. KMECZ, B. SIMÁNDI, J. BÁLINT, E. SZÉKELY, E. FOGASSYand S. KEMÉNY: “Op-tical resolution of 6-fluoro-2-methyl-1,2,3,4-tetrahydroquinoline by super-critical fluid extraction”,Chirality,139568–570,2001

[82] E. SZÉKELY, B. SIMÁNDI, R. ILLÉS, P. MOLNÁR, I. GEBEFÜGI, I. KMECZand E.

FOGASSY: “Application of supercritical fluid extraction for fractionation of enantiomers”,J. Supercrit. Fluids,31133–40,2004

[83] I. KMECZ, B. SIMÁNDI, E. SZÉKELY, J. LOVÁSZ and E. FOGASSY: “Application of mixtures of tartaric acid derivatives in resolution via supercritical fluid ex-traction”,Chirality,196430–433,2007

[84] P. MOLNÁR, P. THOREY, GY. BÁNSÁGHI, E. SZÉKELY, L. POPPE, A. TOMIN, S.

KEMÉNY, E. FOGASSYand B. SIMÁNDI: “Resolution of racemic trans-1,2-cyclo-hexanediol with tartaric acid”, Tetrahedron: Asymmetry, 19 13 1587–1592, 2008

[85] E. SZÉKELY, GY. BÁNSÁGHI, P. THOREY, P. MOLNÁR, J. MADARÁSZ, L. VIDAand B. SIMÁNDI: “Environmentally Benign Chiral Resolution of trans-1,2-Cyclo-hexanediol by Two-Step Supercritical Fluid Extraction”,Ind. Eng. Chem. Res., 49199349–9354,2010

[86] R. BAUZA, A. RÍOS and M. VALCÁRCEL: “Enantioselective Supercritical Fluid Extraction from Racemic Mixtures by Use of Chiral Selectors”,Sep. Sci. Tech-nol.,392459–478,2005

[87] G. TERFLOTH: “Enantioseparations in super- and subcritical fluid chromatog-raphy”,J. Chromatogr. A,9061–2301–307,2001

[88] R. J. ANSELL: “Molecularly imprinted polymers for the enantioseparation of chiral drugs”,Adv. Drug Delivery Rev.,57121809–1835,2005

[89] “Dérivés de phénylaloane, leur préparation et compositions pharmaceutiques en contenant”, patent no. BE 621 255, Boots Pure Drug Company Limited (Nottingham, Great Britain),1963

[90] E. V. HERSH, P. A. MOORE and G. L. ROSS: “Over-the-counter analgesics and antipyretics: A critical assessment”,Clin. Ther.,225500–548,2000

[91] M. Y. DAWOOD: “Primary Dysmenorrhea: Advances in Pathogenesis and Man-agement”,Obstet. Gynecol.,1082428–441,2006

[92] B. VANOVERMEIRE, K. SMETS, D. LECOUTERE, H. VAN DE BROEK, J. WEYLER, K. DE GROOTEand J.-P. LANGHENDRIES: “A Comparison of Ibuprofen and In-domethacin for Closure of Patent Ductus Arteriosus”,N. Engl. J. Med.,34310 674–681,2000

[93] K. P. TOWNSEND and D. PRATICÒ: “Novel therapeutic opportunities for Alz-heimer’s disease: focus on nonsteroidal anti-inflammatory drugs”,FASEB J., 19121592–1601,2005

[94] S. SOOD, S. J. SHIFF, C. S. YANGand X. CHEN: “Selection of topically applied non-steroidal anti-inflammatory drugs for oral cancer chemoprevention”,Oral Oncol.,416562–567,2005

[95] R. A. SHELDON: “Chirotechnology: industrial synthesis of optically active com-pounds”, CRC press (Boca Raton, FL, United States),1993

[96] K. STOCK, G. GEISSLINGER, D. LOEW, W. BECK, G. BACH and K. BRUNE: “S-Ibuprofen versus ibuprofen-racemate: A randomized double-blind study in patients with rheumatoid arthritis”,Rheumatol. Int.,114–5199–202,1991 [97] R. F. N. MILLS, S. S. ADAMS, E. E. CLIFFE, W. DICKINSONand J. S. NICHOLSON:

“The Metabolism of Ibuprofen”,Xenobiotica,39589–598,1973

[98] S. S. ADAMS, P. BRESLOFF and C. G. MASON: “Pharmacological differences between the optical isomers of ibuprofen: evidence for metabolic inversion of the (–)-isomer”,J. Pharm. Pharmacol.,283256–257,1976

[99] H. CHENG, J. ROGERS, J. DEMETRIADES, S. HOLLAND, J. SEIBOLDand E. DEPUY:

“Pharmacokinetics and Bioinversion of Ibuprofen Enantiomers in Humans”, Pharm. Res.,116824–830,1994

[100] A. HUTT and J. VALENTOVÁ: “The chiral switch: the development of single enantiomer drugs from racemates”,Acta Fac. Pharm. Univ. Comen.,50 77–

23,2003

[101] D. A. RYAN: “Method of producing 1-(4’-isobutylphenyl) ethanol”, patent no.

EU 0 358 420, Hoechst Celanese Corporation (Somerville, NJ, United States), 1990

[102] T. BANDO, Y. NAMBAand K. SHISHIDO: “Lipase-mediated asymmetric construc-tion of 2-arylpropionic acids: enantiocontrolled syntheses of S-naproxen and S-ibuprofen”,Tetrahedron: Asymmetry,8132159–2165,1997

[103] D. P. HAMON, R. A. MASSY-WESTROPPand J. L. NEWTON: “Asymmetric synthe-sis of ibuprofen and ketoprofen”,Tetrahedron: Asymmetry, 47 1435–1438, 1993

[104] A. AMMAZZALORSO, R. AMOROSO, G. BETTONI, B. DEFILIPPIS, M. FANTACUZZI, L. GIAMPIETRO, C. MACCALLINI and M. L. TRICCA: “Asymmetric Synthesis of Arylpropionic Acids and Aryloxy Acids by Using Lactamides as Chiral Auxil-iaries”,Eur. J. Org. Chem.,2006184088–4091,2006

[105] S. ANDERSSON and S. G. ALLENMARK: “Preparative chiral chromatographic resolution of enantiomers in drug discovery”,J. Biochem. Biophys. Methods, 541–311–23,2002

[106] S. PEPER, M. LÜBBERT, M. JOHANNSENand G. BRUNNER: “Separation of ibupro-fen enantiomers by supercritical fluid simulated moving bed chromatogra-phy”,Sep. Sci. Technol.,37112545–2566,2002

[107] E. J. EBBERS, B. J. PLUM, G. J. ARIAANS, B. KAPTEIN, Q. B. BROXTERMAN, A.

BRUGGINKand B. ZWANENBURG: “New resolving bases for ibuprofen and man-delic acid: qualification by binary phase diagrams”,Tetrahedron: Asymmetry, 8244047–4057,1997

[108] S. KESZEI: “Optikailag aktív vegyületek el˝oállítása szuperkritikus fluidum ex-trakcióval”, PhD thesis, Budapest University of Technology and Economics, (Budapest, Hungary),2000

[109] R. VALENTINE: “Enantiomeric Resolution of Racemic Ibuprofen in Supercrit-ical Carbon Dioxide Using a Chiral Resolving Agent”, PhD thesis, University of Pittsburgh, (Pittsburgh, PA, United States),2002

[110] Z. REN, Y. ZENG, Y. HUA, Y. CHENG and Z. GUO: “Enantioselective Liquid–

Liquid Extraction of Racemic Ibuprofen by L-Tartaric Acid Derivatives”, J.

Chem. Eng. Data,5982517–2522,2014

[111] K. TANG, J. CAI and P. ZHANG: “Equilibrium and Kinetics of Reactive Extrac-tion of Ibuprofen Enantiomers from Organic SoluExtrac-tion by Hydroxypropyl-β -cyclodextrin”,Ind. Eng. Chem. Res.,512964–971,2011

[112] R. BUENO-PEREZ, A. MARTIN-CALVO, P. GÓMEZLVAREZ, J. J. GUTIÉRREZ-SE

-VILLANO, P. J. MERKLING, T. J. H. VLUGT, T. S.VAN ERP, D. DUBBELDAMand S. CALERO: “Enantioselective adsorption of ibuprofen and lysine in metal-organic frameworks”,Chem. Commun.,507410849–10852,2014

[113] Z. HABIBI, M. MOHAMMADIand M. YOUSEFI: “Enzymatic hydrolysis of racem-ic ibuprofen esters using Rhizomucor miehei lipase immobilized on different supports”,Process Biochem.,484669–676,2013

[114] Y. FU, T. HUANG, B. CHEN, J. SHEN, X. DUAN, J. ZHANGand W. LI: “Enantio-selective resolution of chiral drugs using BSA functionalized magnetic nano-particles”,Sep. Purif. Technol.,10711–18,2013

[115] T. SIÓDMIAK, M. ZIEGLER-BOROWSKA and M. P. MARSZAŁŁ: “Lipase-immobil-ized magnetic chitosan nanoparticles for kinetic resolution of (R,S)-ibuprofen”, J. Mol. Catal. B: Enzym.,947–14,2013

[116] P. U. NAIK, S. J. NARA, J. R. HARJANIand M. M. SALUNKHE: “Ionic liquid an-chored substrate for enzyme catalysed kinetic resolution”,J. Mol. Catal. B:

Enzym.,443–493–98,2007

[117] H. HASSANEL-FEKY, À. CANODENAand T. GUMÍ: “Facile synthesis of porous monolithic membrane microdevice”,J. Membr. Sci.,43996–102,2013 [118] W. S. LONG, A. KAMARUDDIN and S. BHATIA: “Chiral resolution of racemic

ibuprofen ester in an enzymatic membrane reactor”,J. Membr. Sci.,2471–2 185–200,2005

[119] L. SIEYON, F. N. GONAWAN, A. H. KAMARUDDINand M. H. UZIR: “Enzymatic Deracemization of (R,S)-Ibuprofen Ester via Lipase-catalyzed Membrane Re-actor”,Ind. Eng. Chem. Res.,5227 9441–9453,2013

[120] K. WON, J.-K. HONG, K.-J. KIMand S.-J. MOON: “Lipase-catalyzed enantiose-lective esterification of racemic ibuprofen coupled with pervaporation”, Pro-cess Biochem.,412264–269,2006

[121] M. ELLIOTT, A. W. FARNHAM, N. F. JANES, P. H. NEEDHAM, D. A. PULMAN and J. H. STEVENSON: “A Photostable Pyrethroid”, Nature, 246 5429 169–170, 1973

[122] G. SHAN, R. P. HAMMER and J. A. OTTEA: “Biological Activity of Pyrethroid Analogs in Pyrethroid-Susceptible and -Resistant Tobacco Budworms, Helio-this virescens (F.)”J. Agric. Food Chem.,45114466–4473,1997

[123] W. G. TAYLOR, T. W. HALLand D. D. VEDRES: “Synthesis and Larvicidal Prop-erties of Some Cyclopropylcarboxamides Related to cis-Permethrin”,J. Agric.

Food Chem.,4641572–1576,1998

[124] R. L. HOLMSTEAD, J. E. CASIDA, L. O. RUZOand D. G. FULLMER: “Pyrethroid photodecomposition: permethrin”,J. Agric. Food Chem.,263590–595,1978 [125] M. G. NILLOS, S. CHAJKOWSKI, J. M. RIMOLDI, J. GAN, R. LAVADO and D.

SCHLENK: “Stereoselective Biotransformation of Permethrin to Estrogenic Me-tabolites in Fish”,Chem. Res. Toxicol.,23101568–1575,2010

[126] L. O. RUZOand J. E. CASIDA: “Pyrethroid photochemistry: mechanistic aspects in reactions of the (dihalogenovinyl)cyclopropanecarboxylate substituent”,J.

Chem. Soc., Perkin Trans. 1728–732,1980

[127] I. MUKHERJEE, M. GOPAL and D. MATHUR: “Behavior of β-Cyfluthrin after Foliar Application on Chickpea (cicer aretiniumL. ) and Pigeon Pea (cajanus cajanL.)”Bull. Environ. Contam. Toxicol.,78185–89,2007

[128] N. SAIKIAand M. GOPAL: “Biodegradation ofβ-Cyfluthrin by Fungi”,J. Agric.

Food Chem.,5251220–1223,2004

[129] K. C. AHN, T. WATANABE, S. J. GEE and B. D. HAMMOCK: “Hapten and Anti-body Production for a Sensitive Immunoassay Determining a Human Urinary Metabolite of the Pyrethroid Insecticide Permethrin”,J. Agric. Food Chem.,52 154583–4594,2004

[130] J. FARKAŠ, P. KOU ˇRÍMand F. ŠORM: “Relation between chemical structure and insecticidal activity in pyrethroid compounds. I. An analogue of chrysanthem-ic acid containing chlorine in the side chain”,Collect. Czech. Chem. Commun., 242230–2236,1959

[131] D. ARLT, M. JAUTELAT and R. LANTZSCH: “Syntheses of Pyrethroid Acids”, Angew. Chem. Int. Ed. Engl.,209703–722,1981

[132] P. MARTIN, H. GREUTER and D. BELLUS: “Synthesis and reactivity of com-pounds with cyclobutane rings(s). 13. A simple, stereoselective, highly versa-tile synthesis of dichlorovinylcyclopropanecarboxylic acids via 2-chlorocyclo-butanones”,J. Am. Chem. Soc.,101195853–5854,1979

[133] P. MARTIN: “Favorskii-Reaktion von enolisierbaren Cyclobutanonen: Abhäng-igkeit der Stereoselektivität von der Abgangsgruppe, der Temperatur und dem Lösungsmittel”,Helv. Chim. Acta,6641189–1199,1983

[134] H. GREUTER, J. DINGWALL, P. MARTINand D. BELLUŠ: “Synthesen von (1R)-cis-3-(2’,2’-Dihalovinyl)-2, 2-dimethylcyclopropan-carbonsäuren via Favorskii-Um-lagerung von optisch aktiven Cyclobutanonen”,Helv. Chim. Acta,6482812–

2820,1981

[135] W. A. KLESCHICK: “Stereoselective synthesis of cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid”,J. Org. Chem.,51265429–5433,1986 [136] W. A. KLESCHICK, M. W. REEDand J. BORDNER: “Synthesis of optically active cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylic acid via intra-molecular alkylation of a chiral enolate”, J. Org. Chem., 52 14 3168–3169, 1987

[137] K. KONDO, T. TAKASHIMAand D. TUNEMOTO: “Stereospecific Synthesis of cis-Dihalovinylcyclopropanecarboxylic Acid”,Chem. Lett.,891185–1188,1979 [138] C. E. HATCH, J. S. BAUM, T. TAKASHIMA and K. KONDO: “Stereospecific total synthesis of the potent synthetic pyrethroid NRDC 182”,J. Org. Chem.,4516 3281–3285,1980

[139] A. FISHMAN, D. KELLNER, D. IOFFEand E. SHAPIRO: “Practical Chemo-Enzym-atic Process for the Preparation of (1R,cis)-2-(2,2-Dihaloethenyl)-3,3-dimeth-ylcyclopropane Carboxylic Acids”,Org. Process Res. Dev.,4277–87,1999 [140] P. D. KLEMMENSEN, H. KOLIND-ANDERSENand I. WINCKELMANN: “Process for

the preparation of cyclopropane carboxylic acids”, patent no. US 6 215 023, Cheminova Agro A/S (Harboør, Denmark),2001

[141] A. K. MANDAL, D. BORUDE, R. ARMUGASAMY, N. SONI, D. JAWALKAR, S. MA

-HAJAN, K. RATNAM and A. GOGHARE: “New synthetic route to (1R)-cis-(–

)-permethrin, (1R)-cis-(+)-cypermethrin and (1R)-cis-(+)-deltamethrin (de-cis) from (+)-3-carene”,Tetrahedron,42205715–5728,1986

[142] E. FOGASSY, F. FAIGL, M. ÁCS, K. SIMON, É. KOZSDA, B. PODÁNYI, M. CZUGLER

and G. RECK: “Structural studies on optical resolution via diastereoisomer-ic salt formation. Enantiomer separation for cis-permethrindiastereoisomer-ic acid [ cis-2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylic acid]”,J. Chem. Soc., Perkin Trans. 2,81385–1392,1988

[143] S. A. POPOVand A. V. TKACHEV: “New chiral agents for resolution of racemic cis-permethric and cis-Z-cyhalothric acids”,Tetrahedron: Asymmetry,641013–

1018,1995

[144] E. FOGASSY, F. FAIGL, R. SOÓS, L. BOROS, J. RÁKÓCZIand GY. BALOGH: “Eljárás ciklopropánkarbonsav-származékok izomerjeinek elválasztására”, patent no.

HU 188 255, Chinoin Gyógyszer és Vegyészeti Termékek Gyára Rt. (Budapest, Hungary),1985

[145] F. FAIGL, K. SIMON, A. LOPATA, É. KOZSDA, R. HARGITAI, M. CZUGLER, M. ÁCS

and E. FOGASSY: “A combined DSC, X-ray diffraction, and molecular mod-elling study of chiral discrimination in the purification of enantiomeric mix-tures of cis-permethrinic acid”,J. Chem. Soc., Perkin Trans. 2,157–63,1990 [146] K. SIMON, É. KOZSDA, Z. BÖCSKEI, F. FAIGL, E. FOGASSYand G. RECK: “Struc-tural studies on optical resolution via diastereoisomeric salt formation, part 2.

The conformational flexibility of (S)-2-benzylaminobutan-1-ol in enantiomer separation for permethrinic acids”, J. Chem. Soc., Perkin Trans. 2, 8 1395–

1400,1990

[147] L. SMITH: “Spaltung der Mandelsäure durch Phenäthylamin in ihre aktiven Komponenten (II. Mitteilung)”,J. Prakt. Chem.,841743–744,1911

[148] A. W. INGERSOLL, S. H. BABCOCK and F. B. BURNS: “Solubility Relationships among Optically Isomeric Salts. III. The Mandelates and Alpha-Bromocam-phor-Pi-Sulfonates of Alpha-Phenylethylamine and Alpha-Para-Tolylethylam-ine”,J. Am. Chem. Soc.,551411–416,1933

[149] S. P. ZINGG, E. M. ARNETT, A. T. MCPHAIL, A. A. BOTHNER-BYand W. R. GILK

-ERSON: “Chiral discrimination in the structures and energetics of association of stereoisomeric salts of mandelic acid withα-phenethylamine, ephedrine, and pseudoephedrine”,J. Am. Chem. Soc.,11051565–1580,1988

[150] Q. HE, Y.-F. PENG and S. ROHANI: “Diastereomeric resolution of p-chloro-mandelic acid with (R)-phenylethylamine”,Chirality,22116–23,2010 [151] L. OVERBY: “Notes: Reciprocal Resolution ofDL-Tryptophan andDL

-Pheny-lethylamine”,J. Org. Chem.,2391393–1394,1958

[152] L. R. OVERBYand A. W. INGERSOLL: “The Resolution of Amino Acids. I. Pheny-lalanine and Valine”,J. Am. Chem. Soc.,7373363–3366,1951

[153] A. W. INGERSOLL: “A method for the complete, mutual resolution of inactive acids and bases”,J. Am. Chem. Soc.,4741168–1173,1925