• Nem Talált Eredményt

Megújuló energiaforrások

In document MAGYAR KÖZLÖNY (Pldal 130-137)

Gazdaságélénkítés

6.1 P RIMER E NERGIA

6.1.3 Megújuló energiaforrások

A fenntartható ellátás érdekében a megújuló energia aránya a primerenergia-felhasználásban a mai 7%-ról 20% közelébe emelkedik 2030-ig. A 2020-ig megvalósuló növekedési pályát – 14,65%-os részarány elérése a kitűzött cél – a Megújuló Energia Hasznosítási Cselekvési Terv mutatja be részletesen. A megújuló energiaforrások felhasználásának ösztönző rendszerét úgy kell kialakítani, hogy kapcsolt, villamos áramot és hőt együttesen szolgáltató energiatermelés esetén prioritást a kapcsoltan termelő

biogáz és biomassza erőművek kapjanak, valamint a szintén elsődleges fontosságú geotermikus energia elsősorban, de nem kizárólagosan hőtermelés céljából kerüljön hasznosításra. A fenntarthatóság és energiahatékonyság kritériumainak megfelelően és azok betartásával prioritást élvez a mezőgazdasági melléktermékek (például szalma, kukoricaszár), illetve szennyvizek és szennyvíziszapok lokális energetikai felhasználása, többek között biomassza erőművekben, illetve biogáz telepeken. Az anyagában már nem hasznosítható kommunális és ipari hulladékok energetikai hasznosítását szigorú feltételekkel és környezetvédelmi előírások alapján működő hulladékégető művekben kell megoldani. A termelt biogáz tisztításával a földgáz import részleges kiváltása is lehetővé válik. A mai tűzfia-szenes együtt-tüzelésen alapuló alacsony hatékonyságú, nagy léptékű villamosenergia-termelés támogatása a hatásfok kritériumhoz lesz kötve. A fő hangsúly a nagy léptékű együtt tüzelés helyett elsősorban az előbb említett, prioritást élvező technológiák és nyersanyagok, másrészt a mezőgazdasági és természetvédelmi szempontból marginális területeken helyet kapó második generációs35 energetikai rendeltetésű ültetvényekről származó lágy- és fásszárú alapanyagokra kerül. Az Imperial College (London, UK) tanulmánya szerint a Közép- és Kelet Európai régióban összesen 40-50 millió hektár mezőgazdaságilag művelhető terület áll parlagon. Ennek a területnek a jelentős része, valamint azok a mezőgazdaságilag marginális területek, amelyek a gyenge termőtalaj, vagy a belvíznek való kitettség miatt soha nem kerültek művelésbe integrált, regionális hasznosítással jelentős forrásai lehetnének az EU zöldenergiával való ellátásának (19. ábra). Az energetikai célú növénytermesztés esetén különös figyelmet kell fordítani az ökológiai hatásokra, a talaj- és vízgazdálkodásra, illetve a földhasználat-változásból eredő ÜHG kibocsátás változásra.

35 olyan technológiák, amely élelmezési és takarmányozási célra is fordítható termények, illetve területek helyett melléktermékek és marginális területek használatával biztosítanak energiát, illetve energiahordozót

19. ábra – A második generációs energianövények potenciális energiahozamai (GJ/ha) Európában

Hazánk biomassza alapú zöldenergia termelési potenciálja kiemelkedőnek számít európai összehasonlításban. Az olajnövények (repce, napraforgó), az első generációs energianövények (az élelmezésben is fontos szerepet játszó kukorica, cukorrépa, stb.), valamint a második generációs energianövények (az élelmezésben nem hasznosított energianyár, energianád, energiafűz, akác, stb.) összevont potenciális energiahozamai alapján a második helyet foglaljuk az európai országok rangsorában (20. ábra).

20. ábra – Az olajnövények, első- és második generációs energianövények összesített energiahozamai (GJ/ha) Európában

A hazai megújuló energia potenciál és kiaknázható készletek nagyságára több becslés is napvilágot látott az elmúlt években. Az egyik legnagyobb ívű felmérést a Magyar Tudományos Akadémia Megújuló Energia Albizottsága végezte el 2005-2006 folyamán. A felmérés eredményei hangsúlyozottan a hazai teljes vagy elméleti potenciálra vonatkoztak.

Ez alapján a teljes hazai megújuló potenciál 2600-2700 PJ/évre becsülhető, amely jelenlegi primerenergia-felhasználásunk körülbelül 2,5-szerese. A tanulmány által felmért potenciál sohasem érhető el, csak iránymutató a lehetőségek tekintetében (6. táblázat).

Megújuló energiaforrás Potenciál (PJ)

Napenergia 1838 Vízenergia 14,4 Geotermia 63,5 Biomassza 203-328 Szélenergia 532,8 Összesen 2600-2700 6. táblázat – Magyarország megújuló energia potenciálja

Forrás: GKM 2008 – „Stratégia a magyarországi megújuló energiaforrások felhasználásának növelésére 2008 – 2020”

Az elméleti potenciálhoz képest a mindenkori technológiai és gazdaságossági szempontok alapján lényegesen alacsonyabb érték adódik a reálisan kihasználható potenciálra. Ezzel kapcsolatban azonban nagymértékben, 100-1300 PJ/év értékek között szórnak a hazai szakértői becslések. A potenciálszámítások ugyanis eltérő feltételezésekkel élnek a hazai energiafelhasználás távlati alakulását és összetételét érintően, a meglévő energetikai rendszerhez való illeszthetőség, az alapanyagok várható rendelkezésre állása, illetve a következő 10-15-20 évben gazdaságosan kiaknázható lehetőségek tekintetében.

Hazánkban ez idáig nem készült egy, a hazai megújuló energiaforrások kihasználhatóságát technológiai-, gazdasági-, társadalmi és környezetvédelmi feltételek alapján vizsgáló potenciál-felmérés. Ez pedig előfeltétele egy országos decentralizált megújuló energia termelési hálózat létrehozásának és közvetve az Új Széchenyi Terv Megújuló Magyarország – Zöld Gazdaság keretprogram megvalósulásának. A meglévő becslések alapján azonban állítható, hogy Magyarország megújuló energiaforrások tekintetében nem szegény ország és akár a mai technológiai szint mellett is a primerenergia-felhasználás jelentős részét megtermelhetnénk velük. Egy bizonyos határig tehát a kitűzött célok szabják meg a potenciált, vagy másképpen a rendelkezésre állás tekintetében a hazai lehetőségek nem képezik felső korlátját a felhasználásnak. A korlátot a gazdaságos, ésszerű és fenntartható kihasználás szempontjai, valamint a felhasználói oldal lehetőségei jelentik.

A elméleti maximum értékekből látszik, hogy hazánkban potenciálisan a napenergiából nyerhető a legtöbb megújuló energia. A megújuló potenciál felméréshez hasonlóan – épületenergetika megfontolásból – érdemes egy „tetőpotenciál” felmérő programot indítani a napenergiából nyerhető megújuló energia termelésre alkalmas potenciális háztető felületek nemzeti szintű összesítésére. Ennek segítségével a jövőben legalább részlegesen megvalósítható a városokban is az egyéni hő-, illetve villamosenergia-ellátás.

Mindemellett jelenleg a napenergia hasznosítás terén van a legnagyobb szakadék a

lehetőségek és a ténylegesen realizálható energiatermelés között. Ennek oka a fototermális és fotoelektromos berendezéseken alapuló energiatermelés nagyon magas költsége és a változó rendelkezésre állás miatti kiszabályozási problémák. A szélenergiánál ez utóbbi a fő probléma, az előállítási ár már versenyképes lehetne. Ezért olyan ösztönző rendszer kialakítása a cél, amely elősegíti, hogy a napenergia alapú hő- és villamos-, illetve a szél által termelt villamos energia mennyisége is növekedjen összhangban a villamosenergia-rendszer szabályozhatóságának fejlesztésével. 2020 után nyílhat lehetőség a hazai napenergia potenciál közvetlen áramtermelésben való nagyobb arányú kihasználására a fotovillamos technológia árcsökkenése révén. A technológiák költségcsökkentése elősegíthető a megfelelő kutatás-fejlesztés és gyártás támogatásával, azonban sok esetben ezeken a területeken a nemzetközi folyamatok a mérvadóak. Az új, hazai innováción alapuló technológiák számára biztosítani kell a lehetőséget, hogy előzetes tanulmányok után mintaprojekt formájában bizonyíthassák életképességüket.

A becslések egyik legvitatottabb pontja a hazai biomassza potenciálra vonatkozó számítások. A becslések több szempontból is nagy eltéréseket mutatnak, amit nehezítenek a statisztikai besorolással kapcsolatos problémák (pl. biológiai és nem biológiai eredetű hulladék besorolása). A becslés a biomassza potenciál megtermelődő, megtermelhető mennyiségére vonatkozik, nem veszi azonban figyelembe a begyűjtéssel, szállítással, logisztikával kapcsolatos költségeket. A kiaknázható biomassza potenciálnak ezért egy felső becsléseként értelmezhető. A biomassza energetikai hasznosításának három fő területére fókuszálva a következő értékeket kapták (7. táblázat).

Biomassza Mennyiség

Biodízel alapanyag 250 20

Szilárd (tüzeléstechnikai) 188

Biogáz 25

7. táblázat – Biomassza hasznosítás energetikai potenciálja

Forrás: GKM 2008 – „Stratégia a magyarországi megújuló energiaforrások felhasználásának növelésére 2008 – 2020”

A környezetvédelmi szempontok figyelembevételével készített becslést a hazai biomassza potenciálra 2006-ban az Európai Környezetvédelmi Ügynökség (EEA). Az EEA vizsgálatai szerint a fenntarthatósági szempontok figyelembe vételével az összes hazai biomasszára alapuló megújuló energia potenciálja 145,5 PJ. Ez nagyságrendileg egybevág több hazai szakértői becslésben meghatározott, a ténylegesen kiaknázható biomassza potenciálra vonatkozó becsléssel.

A decentralizált megújuló energia termelési modell elterjesztése érdekében kiemelt fontosságú, hogy a jövőben a jogi környezet (engedélyezés, hálózatra csatlakozás, szabályozás) egyszerűsödjön, és befektető baráttá váljon, valamint a megfelelő technológiai keretek (hálózatra csatlakozás, hálózatfejlesztés) rendelkezésre álljanak. A megfelelő és ösztönző befektetői környezet biztosítása esetén a decentralizált modell

terjedését a helyi adottságok és hőigények, valamint a helyi fizetőképes kereslet fogja meghatározni. Emellett a kis rendszerek létesítése, beüzemelése és szervizelése nagyrészt kvalifikált munkaerőt igényel, valamint a decentralizált villamosenergia-termelés megvalósulásával a hálózati veszteség is csökkenthető. A lokális adottságok kihasználása mellett a decentralizált modell másik jellemzője az integráció, azaz többféle technológiák és funkciók egy rendszerbe illesztése. Egy ilyen komplex rendszerrel helyi szinten, a haszon helyben tartása mellett egyesíthetőek többek között az energetikai, a hulladékkezelési és a vidékfejlesztési szempontok is. Az ösztönzésre fordítható többletforrásoknál viszont figyelembe kell venni a teljes társadalom teherbíró képességét.

A 2020-ra kitűzött megújuló energia arány nem teljesíthető az erdészeti és mezőgazdasági biomassza fenntarthatósági kritériumoknak megfelelő energetikai hasznosítása nélkül, ezért az energetikai felhasználás mellé a fenntartható erdőgazdálkodásnak is kapcsolódnia kell. A fa energetikai hasznosításának feltételeit egyrészt szükséges szigorítani, megelőzendő, hogy tűzifán és erdészeti mellékterméken kívül más célra is hasznosítható fatermékek is elégetésre kerüljenek. Másrészt szigorúbb ellenőrzés szükséges a fenntartható erdőművelés igazolása terén is, különösen a magán erdőgazdálkodók esetén.

Ez nemcsak azt jelenti, hogy tartamos erdőgazdálkodást kell végezni, hanem azt is, hogy az erdő fennmaradása mellett ismétlődő fahasználat is megvalósuljon, így a mindenkori emberi igények kielégítése ne okozzon problémát, segítse a természetes CO2 körfolyamat és a környezet fennmaradását. Vizsgálni kell a tanúsítványt kiadó szervezetek jogosultságát és szakmai kompetenciáját. Természetvédelmi okokból a nehezen újuló bükkfa égetését meg kell tiltani, helyette az erdészeti és mezőgazdasági melléktermékek és hulladékok, valamint az energiaültetvények hasznosítására kell nagyobb súlyt helyezni. Emiatt az erdei tűzifa energetikai célú hasznosítása csak akkor elfogadható, ha a Nemzeti Erdőprogram keretén belül sikerül megvalósítani az erdőállomány folyamatos megújulását és gyarapodását, valamint sikerül kialakítani, illetve megerősíteni a tűzifa-kitermelés fenntarthatósági kritériumrendszerét, a hozzá kapcsolódó ellenőrzési rendszert, a szabályozás keretében. Az erdőterületek növelése hozzájárulhat a vidéki foglalkozatás bővítéséhez, a mélyszegénységben élő rétegek számára munkalehetőséget biztosít, szén-dioxid megkötése révén segíti a klímaváltozás enyhítését és kedvező árú energiahordozót biztosít a helyi ellátáshoz.

A nagy erőművekben alacsony hatékonyságú a fa hasznosítása. A hatásfok jelentős mértékben javítható, ha a jelenlegi rendszerrel szemben az elsődlegesen hőcélú decentralizált hő- energiatermelés valósul meg. A decentralizált rendszereknél elérhető, hogy nem kell nagy távolságról begyűjteni az energetikai alapanyagot, nem kell messzire szállítani a megtermelt hőt és biztos felvevőpiac lesz – a környező településeken – a hőmennyiségre. A decentralizált termeléssel könnyebben kivitelezhető a hamu talajba történő visszajuttatása is, amely csökkenti a talajerő-utánpótlás szükségességét.

A szintén jelentős geotermikus potenciál kiaknázásánál figyelembe kell venni az energetikai mellett az egyéb hasznosítási lehetőségeket (ivóvízellátás, gyógyászat,

turizmus) is azok megfelelő rangsorolásával. A termálvizek hasznosítása esetében, a helyi adottságok figyelembe vétele mellett meg kell határozni a rendelkezésre álló, valamint a károsodás nélkül kitermelhető termálvíz-készlet mennyiségét (figyelembe véve az engedéllyel rendelkező termálvízkivételek mennyiségét is). Ehhez szükséges a projektek egyedi elbírálása, a vízkészlet mennyiségi állapotának állandó rögzítése és a jogszabályi környezet megteremtése.

Az egyéni, lakossági alkalmazások tekintetében főleg a napenergia és a hőszivattyúk elterjedése reális, azonban a szélenergia is jelentős szerepet játszhat szigetüzemű működésben, különös tekintettel a tanyák villamosítására. Ez főleg ott jelentős, ahol a villamosenergia-ellátáshoz szükséges villamos hálózat kiépítése olyan magas költségekkel járna, hogy annak megtérülése kétséges lenne. Ilyen esetben érdemes megvizsgálni a megújuló energiából történő helyi villamosenergia-termelés lehetőségét, mérlegelve ennek a költségeit.

6.2 V

ILLAMOS

E

NERGIA

In document MAGYAR KÖZLÖNY (Pldal 130-137)