• Nem Talált Eredményt

LYSIS BY Bacillus subtilis

C Enzyme and acti

1. LYSIS BY Bacillus subtilis

Historically, B. subtilis was t h e first organism recognized1 8 2 as having the ability to lyse other bacteria such as pneumococci and it h a s been sub­

jected to a n u m b e r of later studies. An autolysin was studied1 8 3 in a m ­ monium sulfate precipitates prepared from autolysates of t h e organism which could lyse isolated cell walls of B. subtilis itself; it also hydrolyzed a polysaccharide obtained b y alkaline t r e a t m e n t of t h e cells. An enzyme­

like substance formed extracellularly h a s been studied3 1 ·1 8 4 which will lyse either living cells or dissolve cell walls prepared from Micrococcus lyso­

deikticus, Sarcina lutea, S. flava, B. megaterium, and B. subtilis a t about t h e

same relative rates as can crystalline lysozyme from egg white. T h e p H optimum is higher for the bacterial than the egg white enzyme; the prod­

ucts formed by both from cell walls appear to be similar although the criteria a t present available are rather vague.

2. OTHER Bacillus SPECIES

A number of organisms of this group, for example, B. cereus, B. mega-terium, and B. anthracis spores, contain1 8 5 active principles of enzymelike nature which are able to lyse vegetative cells both of the same and other species. Again soluble material of a mucopeptide nature (i.e., containing amino acids, amino sugars, and other sugars) was detected as a soluble product formed by the enzyme.

3. LYSIS BY Staphylococcus aureus

A logarithmically growing culture of these organisms diluted in distilled water shows cell lysis; diluted in hypertonic solutions, such as strong su­

crose or salt solution, it shows the formation of protoplasts.1 8 6 Lysates of the cells were able also to lyse Micrococcus lysodeikticus. One strain of this organism has now been shown3 1 to form a potent extracellular activity against Micrococcus lysodeikticus. For example, 1 ml. of supernatant a t the end of the logarithmic growth phase of a shaken broth culture contains the equivalent of 8-10 μg. of crystalline egg white lysozyme. This enzyme will not, however, lyse living staphylococcal cells b u t it will lyse cell walls prepared from them, liberating products similar to those obtained from Micrococcus lysodeikticus cells by the action of egg white lysozyme.

4. LYSIS BY Streptomyces albus

Welsch1 8 7 found t h a t m a n y strains of actinomycetes produced a soluble substance which lysed m a n y heat-killed Gram-negative organisms and living Gram-positive forms. This substance he called actinomycetin.

Examination1 8 8 of filtrates from one strain, Streptomyces albus, showed a principle very active against either cells or cell walls from Streptococcus hemolyticus. Solution of the walls appeared to be due to a polysaccharidase rather t h a n to a protease which was also present.

In contrast, a system t h a t appears to hydrolyze peptide bonds has been s t u d i e d ;1 8 9 , 1 9 0 this lyses a variety of organisms including staphylococci and dissolves cell walls prepared from them. The active principles have been purified and two enzymes with synergistic action recognized. During action on cell walls small dialyzable peptides are liberated and either alanine, glycine, or both, apparently according to the organism from which the cell walls have been prepared.

5 . A LYSIN ASSOCIATED WITH Streptococcus haemolyticus

T h e ability of phage lysates of a Lancefield group C streptococcus t o lyse streptococci of t h e same a n d other serological groups (A, C, a n d E ) h a s been d e m o n s t r a t e d .1 9 1 As t h e a u t h o r says, " I t is n o t y e t clear w h e t h e r t h e lytic factor is produced b y t h e phage alone or whether it is a streptococ­

cal p r o d u c t t h a t activates some substance liberated b y t h e phage, it is, however, only demonstrable when phage lysis h a s t a k e n place.''

REFERENCES

1 N . Fleming and A. C. Thaysen, Biochem. J. 14, 25 (1920).

2 R. G. H. Siu, "Microbiological Decomposition of Cellulose." Reinhold, New York, 1951.

3 R. J. Dubos and Ο. T. Avery, J. Exptl. Med. 54, 51 (1931).

* R. H. McBee, Bacteriol. 56, 653 (1958).

6 Α. Η. T. Robb-Smith, Lancet 249, 362 (1945).

6 M. G. Macfarlane and B. C. J. G. Knight, Biochem. J. 35, 884 (1941).

7 A. N . Payza and E. D . Korn, / . Biol. Chem. 223, 853 (1956).

8 M. Richmond, unpublished communication, 1958.

9 R. S. Breed, E. G. D . Murray, and N . R. Smith, "Bergey's Manual of Determina­

tive Bacteriology," 7th ed. Williams & Wilkins, Baltimore, Maryland, 1957.

1 0 A. G. Benton, Λ Bacteriol. 29, 449 (1935).

1 1 D . McClean, Biochem. J. 37, 169 (1943).

1 2 S. Tolksdorf, Μ. H. McCready, D. R. McCullagh, and E. Schwenk, Lab. Clin..

Med. 34, 74 (1949).

1 3 Ζ. I. Kertesz, in "The Enzymes" (J. B. Sumner and K. Myrback, eds.), Vol. 1, Pt. 2, p. 745. Academic Press, New York, 1951.

1 4 M. McCarty, J. Exptl. Med. 88, 181 (1948).

1 6 W. E . van Heyningen, Biochem. J. 34, 1540 (1940).

1 6 M. Kunitz, J. Gen. Physiol. 24, 15 (1940).

1 7 G. Halliwell, J. Gen. Microbiol. 17, 153 (1957).

1 8 B. W. Smith and J. H. Roe, J. Biol. Chem. 179, 53 (1949).

1 9 H. Gibian, Ergeb. Enzymforsch. 13, 1 (1954).

2 0 M. Laskowski and Μ. K. Seidel, Arch. Biochem. Biophys. 7, 465 (1945).

2 1 P. M. Gallop, S. Seifter, and E. Meilman, J. Biol. Chem. 227, 891 (1957).

2 2 Μ. V. Stack and W. T. J. Morgan, Brit. J. Exptl. Pathol. 30, 470 (1949).

2 3 D . McClean and C. W. Hale, Biochem. J. 35, 159 (1941).

2 4 Μ. B. Mathews, Arch. Biochem. Biophys. 61, 367 (1956).

2 6 H. Muir, Biochem. J. 69, 195 (1958).

2 6 H. J. Rogers and P. C. Spensley, Biochem. J. 60, 635 (1955).

2 7 H. J. Rogers, Ann. Ν. Y. Acad. Sci. 65, 132 (1956).

2 8 W. Kochalaty, L. Weil, and L. Smith, Biochem. J. 32, 1685 (1938).

2 9 H. J. Rogers, J. Gen. Microbiol. 10, 209 (1954).

3 0 H. J. Rogers, J. Gen. Microbiol. 16, 22 (1957).

3 1 M. Richmond, Biochim. et Biophys. Acta. 33, 78 (1959).

3 2 M. Richmond, Biochim. et Biophys. Acta. 31, 564 (1958).

3 3 M. Nomura, B. Maruo, and S. Akabori, / . Biochem. (Tokyo) 43, 143 (1956).

3 4 M. Nomura, J. H o s o d a , B . Maruo and S. Akabori, J. Biochem. (Tokyo) 43, 841 (1956).

8 8 Ο. Τ. Avery and G. Ε. Cullen, Exptl. Med. 32, 547, 583 (1920).

3 8 Ο. T. Avery and G. E. Cullen, J. Exptl. Med. 32, 571 (1920).

8 7 L. Weil and W. Kochalaty, Biochem. J. 31, 1255 (1937).

3 8 E. Maschmann, Biochem. Z. 295, 391 (1938).

3 91 . Mandl, L. T. Ferguson, and S. F. Zaffuto, Arch. Biochem. Biophys. 69,565 (1957).

4 0 R. Y. Stanier, Bacteriol. Revs. 6, 143 (1942).

4 1 S. Winogradsky, Ann. inst. Pasteur 43, 549 (1929).

4 2 G. E. Woodward, J. Biol. Chem. 166, 143 (1944).

6 2 D. H. Northcote, Biol. Revs. Cambridge Phil. Soc. 33, 53 (1958).

6 8 R. F. Nickerson, Advances in Carbohydrate Chem. 5, 103 (1950).

6 4 R. L. Whistler and W. M. Corbett, in "The Carbohydrates/' (W. Pigman, ed.), p. 662. Academic Press, New York, 1957.

8 8 A. G. Norman and W. H. Fuller, Advances in Enzymol. 2, 239 (1942).

8 8 R. H. McBee, Bacteriol. Revs. 14, 51 (1950).

8 7 R. E. Hungate, Bacteriol. Revs. 14, 1 (1950).

8 8 P. H. Clark and Μ. V. Tracey, Gen. Microbiol. 14, 188 (1956).

8 9 R. E. Hungate, J. Bacteriol. 63, 631 (1947).

8 0 S. Winogradsky, Ann. inst. Pasteur 43, 549 (1929).

8 1 H. Pringsheim, Z. Physiol. Chem., Hoppe-Seyler's 78, 266 (1912).

8 2 Η. S. Levinson, G. R. Mandel and Ε. T. Reese, Arch. Biochem. Biophys. 31, 351 (1951).

8 8 P. Kooiman, P. A. Roelofsen, and S. Sweeris, Enzymologia 16, 237 (1953).

8 4 R. A. Aitken, B. P. Eddy, M. Ingram, and C. Weurman, Biochem. J. 64, 63 (1956).

7 1 C. T. Greenwood, Advances in Carbohydrate Chem. 11, 335 (1956).

7 2 T. J. Schoch, Advances in Carbohydrate Chem. 3, 247 (1945).

7 8 M. L. Caldwell, Advances in Carbohydrate Chem. 5, 229 (1950).

7 4 W. J. Whelan, Biochem. Soc. Symposia (Cambridge, Engl.) 11, 17 (1953).

7 8 Κ. H. Meyer, M. Fuld, and P. Bernfeld, Experientia 3, 411 (1947).

7 8 S. Akabori, Y. Okada, S. Fujiwara, and K. Sugae, J. Biochem. (Tokyo) 43, 741

8 2 A. Markovitz, H. P. Klein, and E. Fischer, Biochim. et Biophys. Acta 19, 267 (1956).

8 8 P. S. Thayer, / . Bacteriol. 66, 656 (1953).

8 4 G. Noelting and P. Bernfeld, Helv. Chim. Acta 31, 286 (1948).

8 6 F. Schardinger, Z. Untersuch. Nahr u. Genussm. 6, 865 (1904).

8 8 D. French, Advances in Carbohydrate Chem. 12, 189 (1957).

8 7 H. Lineweaver and D . Burk, Advances in Enzymol. 11, 267 (1951).

8 7» W. K. Smith, / . Gen. Microbiol. 18, 33, 42 (1958).

8 7 b G. W. Lanigan, / . Bacteriol. 77, 1 (1959).

8 8 S. A. Waksman, C. L. Carey, and M. C. Allen, / . Bacteriol. 28, 213 (1934).

8 9 E. Kass, I. Lid, and J. Molland, Avhandl. Norske Videnskaps-Akad. Oslo. I. Mat.

Naturv. Kl. 11, 1-22 (1945).

9 0 Th. Thjotta and E. Kass, Avhandl. Norske Videnskaps-Akad. Oslo. I. Mat. Naturv.

Kl. 6, 1-20 (1945).

9 1 P. Kooiman, Biochim. et Biophys. Acta 13, 338 (1954).

9 1 a I. Katsuhiro and Y. Ando, Nippon Nogei-Kagaku Kaishi 30, 742 (1956) (Chem.

Abstr. 52, 8270, 1958).

9 2 C. E. ZoBell and S. C. Rittenberg, / . Bacteriol. 35, 275 (1938).

9 8 W. Benecke, Botan. Ztg. (1 Abb.) 63, 227 (1905).

9 4 L. L. Campbell and Ο. B. Williams, / . Gen. Microbiol. 5, 894 (1951).

9 8 R. Y. Stanier, J. Bacteriol. 53, 297 (1947).

9 8 Η. Veldkamp, Mededel. Landbouwhogeschool Wageningen 55, 127 (1955).

9 7 P. Karrer and A. Hofmann, Helv. Chim. Acta 12, 616 (1929).

9 8 P. Karrer and G. von Francois, Helv. Chim. Acta 12, 986 (1929).

9 9 L. Zechmeister, G. Toth and M. Balint, Enzymologia 5, 302 (1938).

1 0 0 C. Jenniaux, Arch, intern, physiol. 58, 350 (1950).

1 0 0 a L. Berger and D . M. Reynolds, Biochim. et Biophys. Acta 29, 522, (1958).

1 0 0 b C. Jenniaux, Arch, intern, physiol. et biochem. 65,135 (1957); Biochem. J. 66, 29P.

1 0 1 Μ. V. Tracey, Biochem. J. 61, 579 (1955).

1 0 2 A. G. Ogston and J. Stanier, Biochem. J. 46, 364 (1950); 49, 585 (1951).

1 0 8 V. Faber and K. Rosendal, Acta Pathol. Microbiol. Scand. 35, 159 (1954).

1 0 4 A. P. MacLennan, Gen. Microbiol. 14, 134, 143; 15, 485 (1956).

1 1 1 Η. Schwabacher, A. C. Cunliffe, R. E. O. Williams, and C. J. Harper, Brit. J.

Weissman, K. Meyer, P. Sampson, and A. Linker, J. Biol. Chem. 208, 417 (1954);

A. Linker, K. Meyer, and B. Weissman, / . Biol. Chem. 213, 237 (1955); A. Linker, K. Meyer, and P. Hoffman, J. Biol. Chem. 219, 13 (1956); P. Hoffman, K. Meyer, and A. Linker, J. Biol. Chem. 219, 653 (1956); K. Meyer, A. Linker, and Μ. M.

Rapport, J. Biol. Chem. 192, 275 (1951).

1 2 4 C. Neuberg and O. Rubin, Biochem. Z. 67, 82 (1914).

Exptl. Med. 65, 175 (1957); I. Naylor and H. Baer, J. Bacteriol. 77, 771 (1959).

1 4 8 E. D. Korn, J. Biol. Chem. 226, 841 (1957).

1 4 8 W. Kochalaty, L. Smith, and L. Weil, Biochem. J. 32, 1691 (1938).

1 4 7 R. De Bellis, I.Mandl, J. D. MacLennan, and E. L. Howes, Nature 174,1191 (1954).

1 4 8 I. H. Lepow, S. Katz, J. Pensky, and L. Pillemer, / . Immunol. 69, 435 (1952).

1 4 9 C. L. Oakley and G. H. Warrack, J. Gen. Microbiol. 4, 365 (1950).

160 ψ Kochalaty and L. E. Krejci, Arch. Biochem. Biophys. 18, 1 (1948).

1 δ 0 β J. D . MacLennan, I. Mandl, and E. L. Howes, J. Gen. Microbiol. 18, 1 (1958); C.

L. Oakley and G. H. Warrack, J. Gen. Microbiol. 18, 9 (1958); I. Mandl andS. F.

Zaffuto, J. Gen. Microbiol. 18, 13 (1958).

1 5 0 b S. Seifter, P. M. Gallop, L. Klein, and E. Meilman, / . Biol. chem. 234, 285 (1959).

1 5 0 0 Y. Nagai and H. Noda, Biochim. et Biophys. Acta 34, 298 (1959); W. Grassman,

H. Horman, A. Nordwig, and E. Wunsch, Z. physiol. Chem., Hoppe-Seyler's 316, 287 (1959).

1 6 1 K. Linderstr0m-Lang and M. Ottesen, Nature 159, 807 (1947).

1 6 2 Α. V. Guntelberg, Compt. rend. trav. lab. Carlsberg. Ser. chim. 29, 27 (1953-56).

1 6 3 Α. V. Guntelberg and M. Ottesen, Nature 170, 802 (1952) Compt. rend. trav. lab.

Carlsberg. Ser. chim. 29, 36 (1953-56).

1 6 4 A. Abrams and C. F. Jacobsen, Compt. rend. trav. lab. Carlsberg. Ser. chim. 27, 447

(1949-51).

1 6 5 K. Linderstr0m-Lang and M. Ottesen, Compt. rend. trav. lab. Carlsberg. Ser. chim.

27 , 447 (1949-51).

1 6 6 N. Eeg-Larson, K. Linderstr0m-Lang, and M. Ottesen, Arch. Biochem. Biophys.

19, 340 (1948).

1 5 7 M. Ottesen and C. Villee, Compt. rend. trav. lab. Carlsberg. Ser. chim. 27,421 (1951).

1 8 8 M. Ottesen and A. Wollenberger, Nature 170, 801 (1952).

1 6 9 P. Edman, Acta Chem. Scand. 4, 283 (1950).

1 6 0 H. Tuppy, Biochim. et Biophys. Acta 11, 449 (1953).

1 6 0* S. M. Kalman, K. Linderstr0m-Lang, M. Ottensen, and F. M. Richards, Biochim.

et Biophys. Acta 16, 297 (1955).

1 7 9 G. Η. Warrack, Ε. Bidwell and C. L. Oakley, J. Pathol. Bacteriol. 63, 293 (1951).

l 7 9» S. Nishimura and M. Nomura, Biochim. et Biophys. Acta, 30, 430 (1958); J. Bio­

chem. (Tokyo) 46, 161 (1959).

1 8 0 A. Fleming, Proc. Roy. Soc. B93, 306 (1922).

1 8 1 M. R. J. Salton, Nature 170, 746 (1952); Biochim. et Biophys. Acta 22, 495 (1956).

1 8 2 M. Nicolle, Ann. inst. Pasteur 21, 613 (1907).

1 8 8 M. Nomura and J. Hosoda, J. Bacteriol. 72, 573 (1956).

1 8 4 Y. Satomura, S. Okada, and J. Fukumoto, Chem. Abstr. 51, 13998 (1957).

1 8 8 R. E. Strange and F. A. Dark, / . Gen. Microbiol. 16, 236 (1957).

1 8 8 P. Mitchell and J. Moyle, J. Gen. Microbiol. 16, 184 (1957).

1 8 7 M. Welsch, "Phonomenes d'Antibiose chez les Actinomycetes. J. Ducolt,

Geint-loux (Belgium), 1947.

1 8 8 M. McCarty, J. Exptl Med. 96, 555, 569 (1952).

1 8 9 J. Μ. Ghuysen, Those d'Agrogation de l'Enseignement Suporieur, University de

Li£ge, Liege, 1957.

1 9 0 M. R. J. Salton and J. M. Ghuysen, Biochim. et Biophys. Acta 24, 160 (1957)

1 9 1 W. R. Maxted, J. Gen. Microbiol. 16, 584 (1957).