• Nem Talált Eredményt

s as the length of a xed segment relative to the length of the diameter of the unit ball

In document Cvexiy ad  E (Pldal 124-127)

interseted by the half-line ontaining the segment

[O, P ]

. This means that we an determine

the hange of the length of a diameter of a xed diretion if we hange the shape of the

body by the time. Consider a representation of the body by polaroordinates with respet to

its enter

O

. Sine the boundary of the body is of lass

C 2

, all of their oordinate funtions

have the analogous property. This funtion depends also on the time

τ

, the hange of the

unit ball implies the hange of its oordinate funtions. We say that the trajetory

K(τ)

is

a ontinuously dierentiable funtion if for a xed oordinate representation its oordinate

funtionsareontinuouslydierentiablefuntionsofthetime.Thisisequivalenttotheproperty

that the support funtion

h (K(τ))

is ontinuously dierentiable as the funtion of the time

τ

.

The dierentiability property of the trajetory impliesthe analogous dierentiability property

of the hange of the norm of a x vetor sine the points of the boundary of the unit ballhas

anequation of the form

r τ = (r(ϕ 1 , · · · , ϕ n − 1 )) τ

. We an onlude that if the trajetory

K(τ)

is a ontinuously dierentiable funtion, this holds also for the funtion

τ → p

[s, s] τ

. In a

spae

S

with an inner produt the polarity equation implies the required assumption. If

S

is

(only)a smooth normedspae withasemi innerprodut, weneedfurther omments.Sinefor

adierentiable normfuntion MShane's equality holds, we have

[x, y] τ = k y k τ (( k · k τ ) x (y)) = k y k τ ( k · k x (y)) τ .

On the other hand, the funtion

( k · k x (y)) τ

is also ontinuously dierentiable funtion of

y

,

thusthe threadusingonthe normfuntionabove isappliableforit,too.Thismeansthat the

dierentiabilitypropertyofthetrajetoryimpliestheanalogousdierentiabilitypropertyofthe

funtion

τ → ( k · k x (y)) τ

. Using the rule of the produt funtion we alsohave that

τ → [x, y] τ

isontinuously dierentiable if the trajetory

τ → K (τ )

holds this property.

We now dene a dierentiable trajetory through the points

i , K(τ i ))

. If

τ, τ i ∈ [τ i , τ i+1 ]

denoteby

K Bezier (τ )

the formalBeziersplineofseondorderthroughthe points

(τ i , K(τ i ))

and

(τ i+1 , K(τ i+1 ))

with "tangents"through the point

i , L(τ i ))

. Thuswe have by denition

K Bezier (τ) :=

1 − τ − τ i τ i+1 − τ i

2

K(τ i )+2

1 − τ − τ i τ i+1 − τ i

τ − τ i τ i+1 − τ i

L(τ i )+

τ − τ i τ i+1 − τ i

2

K(τ i+1 ),

where the addition is the Minkowski addition and the produt is the respetive homotheti

mapping. If we assume that for all values of

i

(

1 < i < s

) the body

K(τ i )

is a Minkowski

onvex ombination of the bodies

L(τ i )

and

L(τ i+1 )

the funtion

K Bezier (τ )

is valid on the

wholeinterval

1 , τ s ]

. Sine for positive onstants

α

,

β

we have

h αK +βK ′′ (x) = αh K (x) + βh K ′′ (x),

we alsoget that

K Bezier (τ )

isa ontinuously dierentiable trajetory in its whole domain.We havetoproveyetthatforaxed

τ

, theset

K Bezier (τ )

isaentrallysymmetrionvexompat

body with

C 2

-lass boundary but these statements follow immediately from the onept of Minkowski linear ombination.

Finally we normalize this trajetory under the volume funtion and extrat it to the whole

T

. The funtion

K(τ )

determines a required deterministi time-spae model if we dene it as

follows:

K(τ) =

 

 

 

 

n

q vol(B E )

vol(K Bezier (τ s )) K Bezier (τ s )

if

τ s < τ

n

q vol(B E )

vol(K Bezier (τ)) K Bezier (τ )

if

τ 1 ≤ τ ≤ τ s

n

q vol(B E )

vol(K Bezier (τ 1 )) K Bezier (τ 1 )

if

τ < τ 1

.

An important onsequeneof this theorem that withoutlossof generalitywe an assume,that

the time-spae model isdeterministi.

APPENDIX A

Relativity theory in time-spae

Our model desribed in the previous setion an be onsidered also as a model of the universe 1

. The

deterministi variant obviously ontains as aspeial ase the model of Minkowski spae-time. On the other

hand it an be extended to ageneralization of the Robertson-Walkerspae-time, too. The advantage of our

modelthat

S

anbeonsideredalsoasageneralnormedspae(withoutinnerprodut).

Thetime-spaean bedened in a moreonvenientway, using ashapefuntion. Itregulatesthemethods of

alulationsintime-spaeandgivesthepossibilitytorewritetheequalityofspeialandglobalrelativity.

A.1. Onthe formulasof speial relativitytheory

Considertheupperpartoftheimaginarysphereofparameter

c

inafour-dimensionaldeterministitime-spae model. Withouttheimaginaryunit sphereweonsider theimaginaryunit sphere

H c

ofparameter

c

with the

orrespondingprodut

[x , x ′′ ] +,T := [s , s ′′ ] τ ′′ + c 2 , τ ′′ ]

. Pratiallythe onstant

c

anbeonsidered asthe

speedofthelightinvauum.Assumethattheshape-funtionisatwo-timesontinuouslydierentiablefuntion.

Weneedtwoaxiomstointerpretintime-spaeoftheusualaxiomsofspeialrelativitytheory.Firstweassume

that:

Axiom A.1.1. The laws of physis are invariant under transformations between frames. The laws of physis

willbethe same whether you are testingthem in frame "at rest", ora frame moving witha onstant veloity

relative tothe "rest"frame.

AxiomA.1.2. The speedof lightinavauumismeasuredtobethe sameby allobserversin frames.

Thesetwoaxiomsanbetransformedintothelanguageofthetime-spaebythemethodofMinkowski[123℄.To

thisweuse

H c

introduedandthegroup

G c

asthesetofthoseisometriesofthespaewhihleaveinvariant

H c

.

Suhanisometryanbeinterpretedasaoordinatetransformationofthetime-spaewhihsendstheaxisofthe

absolutetimeinto anothertime-axis

t

,andalsomapstheintersetionpointoftheabsolutetime-axiswiththe imaginarysphere

H c

intotheintersetionpointofthenewtime-axisand

H c

.Anisometry ofthetime-spaeis

alsoahomeomorphismthusitmapsthesubspae

S

intoatopologialhyperplane

S

oftheembeddingnormed

spae.

S

isorthogonaltothenewtime-axisinthesensethatitstangenthyperplaneattheoriginisorthogonal

to

t

withrespettotheprodutofthespae.Ofoursethenewspae-axesareontinuouslydierentiableurves in

S

whih tangentsat theoriginareorthogonal to eah other. Sinethe absolutetime-axisis orthogonalto

the imaginary sphere

H c

the new time-axis

t

must holds this property, too. Thus the investigations in the previoussetion are essentialfrom this point of view. Assumingthat the denition of the time-spae implies

thispropertyweangetsomeformulassimilartoofspeialrelativity.Wenotethat thefuntion

K(v, τ )

holds

theorthogonalitypropertyof vetorsof

S

and bytheequality

[K(v, τ ), K(v, τ )] τ = k v k 2 E

weansee alsothat

theformulason time-dilatation and length-ontrationare valid, too.This impliesthat usingthe well-known

notations

β = kvk c E

,

γ = √ 1

1−β 2

wegetthattheonnetionbetweenthetime

τ 0

and

τ

ofaneventmeasuringby

twoobserversoneofatrestandtheothermoveswithanonstantveloity

k v k E

withrespettothetime-spae

is

τ = γτ 0

.Considernowamovingrodwhihpointsmoveonstantveloitywithrespettothetime-spaesuh

thatitisalwaysparalleltotheveloityvetor

K(v, τ)

.Thenwehave

k v k E = L T 0

where

T

isthetimealulated

fromthelength

L 0

andtheveloityvetor

v

bysuhanobserverwhihmoveswiththerod. Anotherobserver

analulatethelength

L

fromthemeasuredtime

T 0

and theveloity

v

bytheformula

k v k E = T L 0

.Usingthe

aboveformulaofdilatationwegettheknownFitzgeraldontrationof therod:

L = L 0

p 1 − β 2 = L γ 0

.

Lorentz transformationin timespae alsobasedontheusual experimentin whih wesend arayoflightto a

mirrorin diretionoftheunitvetor

e

withdistane

d

fromme.

Ifweatrestweandetermineintimespaethepoints

A

,

C

and

B

ofdeparture,turnandarrivaloftherayof

light, respetively.

A

and

B

are ontheabsolute time-axisatheights

τ A

, and

τ B

, respetively. Thepositionof

C

is

(τ C − τ A )K(ce, τ C − τ A ) + τ C e 4 = τ B − τ A

2 K

ce, τ B − τ A

2

+ τ B + τ A

2 e 4 ,

1

Inthisappendixwehektheusabilityouroneptinpratie.Despitetheontentofthisappendixbelongs

totheareaoftheoretialphysisitis stronglyonnetedtotheuselessofmymathematialinvestigations.

115

sineweknowthatthelighttaketheroadbakandforthoverthesametime.Weobservethatthenormofthe

spae-likeomponent

s C

is

k s C k τ C = c τ B −τ 2 A

asin theusual aseofspae-time.

The moving observer synhronized its lok with the observer at rest in the origin, and moves in the

dire-tion

v

with veloity

k v k E

. We assume that the moving observeralso sees the experiment thus its time-axis

orresponding to the vetor

v

meats the world-line of the light in two points

A

and

B

positioning on the respetive urves

AC

and

CB

. This implies that the respetive spae-like omponents of the world-line of

the light and the world-line of the axis are parallels to eah other in every minutes. By formula we have:

k v k E K(e, τ ) = K(v, τ )

.Fromthiswegettheequality

τ A K(v, τ A ) + τ A e 4 = (τ A − τ A )K(ce, τ A − τ A ) + τ A e 4

.

1+β

,andwedeterminethe

newtimeoordinateofthepoint

C

withrespetto thenewoordinatesystem:

(τ C ) 0 = (τ A ) 0 + (τ B ) 0

On the other hand we also havethat the spae-likeomponent

((s C ) 0 ) S

of the transformedspae-likevetor

(s C ) 0

arisealsofromavetorparallelto

e

thusitisoftheform

K(((s C ) 0 ) S , τ ) = k ((s C ) 0 ) S k E K(e, τ )

. Forthe

world-lineofthelightinto

S

withthedenition

L b : K((s C ) 0 , (τ C ) 0 ) 7→ γ (K(s C , τ C ) − K(v, τ C )τ C ) .

Theonnetionbetweenthespae-likeoordinatesofthepointwithrespettothetwoframesnowhasamore

familiar form.Heneforth theLorentztransformationmeansforus theorrespondene:

s 7→ K(s \ , τ ) = γ (K(s, τ ) − K(v, τ )τ )

and theinverseLorentztransformationtheanotherone

K(s \ , τ ) 7→ K(s, τ) = γ (K(s , τ ) + K(v, τ ) τ 7→ τ = γ τ + [K(s , τ ), K(v, τ )] τ

c 2

! .

Firstnotethatweandeterminetheomponentsof

(s C ) 0

withrespettotheabsoluteoordinatesystem,too.

Sine

(s C ) 0

and

τK(v, τ ) + τ e 4

areorthogonaltoeah otherwegetthat

In document Cvexiy ad  E (Pldal 124-127)