• Nem Talált Eredményt

A legfontosabb eredmények tézispontokban

Less attractive More attractive

9. A legfontosabb eredmények tézispontokban

1. A tesztelt búzafajták antixenotikus hatását táplálékválasztási kísérleten keresztül teszteltük. A megvizsgált hexaploid és tetraploid fajták nagy százaléka a Rhopalosiphum padi levéltetvek számára kedvezőbb tulajdonságokkal rendelkezett a hexaploid kontrollnál. A levéltetvek a diploid fajtákat választották a legkevésbé tápnövényként.

2. A reprodukciós vizsgálat során a diploid fajtákon a levéltetvek kevesebb utódot produkáltak, mint a hexaploid és tetraploid fajtákon. A legkevesebb nympha a B genomú Aegilops speltoides-en volt megszámlálható.

3. Különböző búzafajták (Triticum aestivum és T. durum) levelének hidroxámsav (HA) tartalmát analizáltuk. Azonosítottuk a nem toxikus DIMBOA-glükozidot és a toxikus aglukont, valamint a DIMBOA-t kombinálva a HDMBOA-glükoziddal. Az A genomú diploid fajták levelében hidroxámsavval rokon vegyületet nem találtunk, de két ismeretlen vegyületet azonosítottunk a HPLC-vel történő analízis során.

A B genomú Ae. longissima, Ae. sharonensis és Ae. bicornis levelében a hidroxámsavakat egyáltalán nem, míg Ae. searsii levelében kis mennyiségben azonosítottuk. Ezen négy fajta levelének analizálása során ugyancsak egy ismeretlen vegyület tűnt fel. Legnagyobb mennyiségben az Ae. speltoides tartalmazott hidroxámsavakat, amely a legközelebbi rokona a hexaploid fajták B genom donor ősének.

4. A táplálkozási kísérlet során helyi reakciót figyeltünk meg a tesztelt hexaploid fajtákban, a toxikus aglükon szintje növekedett a levélnek azon a részén, ahol a levélre elhelyezett ketrecben levéltetvek táplálkoztak.

A diploid Ae. speltoides koleoptiljében és a növény talajszint feletti többi részében is a hidroxámsav tartalom kismértékű változása jelentkezett s nemcsak azon a levélrészeken, ahol a levéltetvek táplálkoztak. Azokban a fajtákban, melyekben a levélanalízis során nem találtunk hidroxámsavakat, a levéltetű táplálkozása sem eredményezte ezen vegyületek termelését.

5. A HA termelő búzafajták levelén táplálkozó levéltetvek mézharmatjában DIMBOA-glükozidot találtunk.

6. A 2 mM DIMBOA-t tartalmazó mesterséges tápanyagon tartott levéltetvek túlélési százaléka 24 óra után szignifikánsan csökkent..

7. A hidroxámsavakat tartalmazó növények sejt közötti folyadékvizsgálata során kis mennyiségű DIMBOA-glükozidot és DIMBOA-t találtunk, ami szignifikánsan kevesebb volt, mint amit előzőleg a levélanalízis során rögzítettünk. A levéltetvek táplálkozásának hatására az Ae. speltoidesben a, a DIMBOA mennyisége 4 mmol/kg FW fölé emelkedett, mely szint szignifikánsan magasabb volt, mint amit korábban a mesterséges tápanyagon toxikusnak találtunk.

8. Szántóföldi körülmények között vizsgáltuk mindhárom ploidia szint egy-egy képviselőjének a hidroxámsav tartalom változását. A növények HA tartalma szignifikánsan alacsonyabbnak bizonyult a szántóföldön a kontrollált laboratóriumi körülményekhez képest. A levéltetvek táplálkozásának hatására a hidroxámsavak mennyiségének változása nem volt szignifikáns.

9. Elemeztük az eltérő hőmérséklet, fényerősség és táptalaj hatását a HA szint változására. Megállapítást nyert, hogy az alacsony hőmérséklet és fényerősség jelentős mértékben befolyásolja ezen vegyületek szintjét, szignifikánsan kevesebb DIMBOA-glükozidot és több DIMBOA-t (+HDMBOA-glukozidot) mértünk az optimális körülmények között fejlődött növényekhez képest.

A táptalajnak nem volt hatása a DIMBOA (+HDMBOA-glükozid) tartalomra, de a DIMBOA-glükozid szintje szignifikánsan alacsonyabb volt a vizvisszatartó képességet javító adalékkal dúsitott táptalajban.

10. References

Agelopoulos, N., Birkett, A.M., Hick, J.A., Hooper, M.A., Pickett, A.J., Pow, M.E., Smart, E.L., Smiley, M.W.D., Wadhams, J.L. Woodcock, M.C. (1999): Exploting semiochemicals in insect control. Pest Science, 55. p225-235

Ahmad, S., Veyrat, N., Gordon–Weeks, R., Zhang, Y., Martin, J., Smart, L., Glauser, G., Erb, M., Frey, M. and Ton, J. (2011): Benzoxazinoid Metabolites Regulate Innate Immunity against Aphids and Fungi in Maize. Plant Physiology, 157. 317-327.

Al-Ayedh, H.Y. (1997): Antixenosis: The effect of plant resistance on insect behavior.

www.colostate.edu/Depts/Entomology/courses/en507/papers_1997/alayedh.html

Anonymous (1995-2013): Insect pest management in winter cereals. Department of Agriculture, Fisheries and Forestry, Australia.

http://www.daff.qld.gov.au/26_19744.htm#Aphids

Anonymous (2009): Bird cherry-oat aphids and greenbugs on wheat. Agronomy e-Updates November 6., Kansas State University, 217. p1-5.

Argandona, V.H., Chaman, M., Cardemil, L., Munoz, O., Zuniga, G.E. and Corcuera, L.J.

(2001): Ethylene production and peroxidase activity in aphid-infested barley. Journal of Chemical Ecology, 27. 1. p53-68.

Argandona, H.V., Corcuera, L., Niemeyer, H.M. and Campbell, C.B. (1983): Toxicity and feeding deterrency of hydroxamic acids from Gramineae in synthetic diets against the greenbug, Schizaphis graminum. Entomologia Experimentalis et Applicata, 34. 134-138.

Argandona, H.V., Niemeyer, H.M. and Corcuera, J.L. (1981): Effect of content and distribution of hydroxamic acids in wheat on infestation by the aphid Schizaphis graminum. Phytochemistry, 20. 673-676.

Arzani, A., Peng, J. H. and Lapitan, N. L. V. (2004): DNA and morphological markers for Russian wheat aphid resistance gene. Euphytica,139. 2. p167-172

Barria, N.B., Copaja, V.S. and Niemeyer, H.M. (1992): Occurance of DIBOA in wiled Hordeum species and its relation to aphid resistance. Phytochemistry, 31. 1. p89-91

Bartoš, P., Šip, V., Hanzalová, A., Kučera, L, Ovesná, J., Valkoun, J.,Chrpová, J., Hanušová, R., Dumalosová, V., Stuchliková, E. and Zadražil, K. (2005): Utilization of wild relatives and primitive forms of wheat in Czech wheat breeding. Czech Journal of Genetics and Plant Breeding, 41. p284-287

Basky, Zs. (2005): Levéltetvek. Mezőgazda Kiadó

Baumeler, A., Hesse, M. and Werner, C. (2000): Benzoxazinoids-cyclic hydroxamic acids, lactams and their corresponding glucosides in the genus Aphelandra (Acanthaceae).

Phytochemistry, 53. p213-222

Beck, D.L., Dunn, G.M., Routley, D.G. and Bowman, J.S. (1983): Biochemical basis of resistance in corn to the corn leaf aphid. Crop Science, 23. p995-998

Bernays, A.E. and Chapman, F.R. (1994): Host-plant selection by phytophagus insects.

Chapman & Hall, New York, London, p25-32, 95-165

Blackman, R. (1974): Aphids. Ginn & Company Limited

Blackman R.L. and Eastop V.F. (2000): Aphids on the World’s Crop. An Identification and Information Guide. John Wiley Ltd., London.

Blackman, L.R. and Eastop, F.V. (2006): Aphids on the world’s herbaceous plants and shrabs, Volume 1, The Natural History Museum, England, p1141-1142

Blackman, L. R., Spence, M. J. and Normark, B. B. (2000): High diversity of structurally heterozygous karyotypes and rDNA arrays in parthenogenetic aphids of the genus Trama (Aphididae: Lachninae). Heredity, 84. 2. p254-260

Bruce T.J.A., Martin J., Pickett J.A., Pye B.J., Smart L.E. and Wadhams L.J. (2003): Cis-Jasmone treatment induces resistance in wheat plants against grain aphid, Sitobion avenae (Fabricius) (Homoptera:Aphididae). Pest Management Science, 59. p1031-1036

Cadle, M.M. and Murray, T.D.(1997): Identification of resistance to Pseudocercosporella herpotrichoides in Triticum monococcum. Plant Disease, 81. 10. p1181-1186

Cakmak, I., Cakmak, O., Eker, S., Ozdemir, A., Watanabe, N. and Braun, H.J. (1999):

Expression of high zinc efficiency of Aegilops tauschii and Triticum monococcum in synthetic hexaploid wheats. Plant and Soil, 215. p203–209.

Cambier, V., Hance, T. and de Hoffmann, E. (1999): Non-injured maize contains several 1,4-benzoxazin-3-one related compounds but only as glucoconjugates. Phytochemical Analysis, 10. p119-126.

Cambier, V., Hance, T. and de Hoffmann, E. (2000): Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry, 53.

p223-229.

Cambier, V., Hance, T. and de Hoffmann, E. (2001): Effects of 1,4-benzoxazin-3-one derivates from maize on survival and fecundity of Metpolophium dirhodum (Walker) on artificial diet. Journal of Chemical Entomology, 27. 2. p359-370.

Capinera, L.J. (2008): Encyclopedia of Entomology. Springer, USA, p191-215.

Carver, F.B. (2009): Wheat: Science and Trade. Wieley-Blackwell, USA, p5-23.

Castro, M. A., Vasicek, A., Ellerbrook, C., Giménez, D., Tocho, E., Tacaliti, S. M., Clúa, A. A. and Snape W. J. (2004): Mapping quantitative trait loci in wheat for resistance against greenbug and Russian wheat aphid. Plant Breeding, 123. p361-365.

Castro, M. A., Vasicek, A., Manifiesto, M., Giménez, O. D., Tacaliti, M. S., Dobrovolskaya, O., Röder, M. S., Snape W. J. and Börner A. (2005): Mapping antixenosis genes on chromosome 6A of wheat to greenbug and to a new biotype of Russian wheat aphid. Plant Breeding, 124. p229-233.

Castro, M. A., Vasicek, A., Ramos, S., Worland, A., Suárez, E., Muñoz, M., Giménez, D.

and Clúa, A. A. (1999): Different types of resistance against greenbug, Schizaphis graminum Rond, and the Russian wheat aphid, Diuraphis noxia Mordvilko, in wheat. Plant Breeding, 118. p131-137.

Chamberlain, K., Pickett, A.J. and Woodcock, M.C. (2000): Plant signaling and induced defence in insect attack. Molecular Plant Pathology, 1. 1. p67-72

Chinese Spring, chromosome arm survey data at http://urgi.versailles.inra.fr.

Chrzanowski, G., Ciepiela, A. P., Sprawka, I., Sempruch, C., Sytykiewicz H. and Czerniewicz, P. (2003): Activity of Polyphenoloxidase in the ears of spring wheat and triticale infested by Grain aphid (Sitobion avenae /F./). Electronic Journal of Polish Agricultural Universities, 6. 2.

http://www.ejpau.media.pl/series/volume6/issue2/biology/art-04.html

Cognetti, G.(1961): Endomeiosis in parthenogenetic lines of aphids. Experimentia, 17.

p168-169.

Copaja, V.S., Niemeyer, H.M. and Wratten, D.S. (1991): Hydroxamic acid levels in Chilean and British wheat seedlings. Annals of Applied Biology, 118. p223-227.

Damsteegt, V. D., Gildow, F. E., Hewings, A. D. & Caroll, T. W. (1992): A clone of the Russian Wheat Aphid (Diuraphis noxia) a vector of the Barley Yellow Dwarf, Barley Stripe Mosaic and Brome Mosaic Viruses. Plant Diseases, 76. 11. p1155-1160.

Delmotte, F., Leterme, N., Boonhomme, J., Rispe, C. and Simon, J.-C. (2001): Multiple routes to asexuality in an aphid species. The Royal Society, 268. p2291-2299.

Du Toit, F. (1987); Resistance in wheat (Triticum aestivum) to Diuraphis noxia (Hemiptera: Aphididae). Cereal Research Communication, 15. p175-179.

El Khishen, A., Bohn, O. M., Prischmann-Voldseth, A. D., Dashiell, E. K., French, W. B.

and Hibbard, E. B. (2009): Native resistance to western corn rootworm (Coleoptera:

Chrysomelidae) larval feeding: Characterization and Mechanisms. Journal of Economic Entomology, 102. 6. p2350-2359.

Emden van, F.H. and Harrington, R. (2007): Aphids as crop pests. Cromwell Press, Trowbridge, UK, p12-21.

Epstein, W.W., Rowsemitt, C.N., Berger, P.J. and Negus, N.C. (1986): Dynamics of 6-methoxybenzoxazolinone in winter wheat – Effeccts of photoperiod and temperature.

Journal of Chemical Ecology, 12. p2011-2020.

Erb, M., Flors, V., Karlen, D., De Lange, E., Planchamp, C., D’Alessandro, M., Turlings, T.C.J. and Ton, J. (2009): Signal signature of aboveground-induced resistance upon belowground herbivory in maize. The Plant Journal, 59. p292-302.

Escobar, C.A., Sicker, D. and Niemeyer, H.M.: Evaluation of DIMBOA analogs as antifeedants and antibiotics towards the aphid Sitobion avenae in artificial diets. Journal of Chemical Ecology, 25. 7. p1543-1554.

Figueroa, C.C., Simon, J., Gallic, J., Prunier – Leterme, N., Briones, L.M., Dedryver, C.

and Niemeyer, H.M. (2004): Effect of host defense chemicals on clonal distribution and

performance of different genotypes of the cereal aphid Sitobion avenae. Journal of Chemical Ecology, 30. 12. p2515-2525.

Fischl, G., Horváth, J., Kadlicskó, S., Kiss, E. és Pintér, Cs. (1995): A szántóföldi növények betegségei. Mezőgazda Kiadó, p46-47.

Frey, M., Chomet, P., Glawischnig, E., Stettner, C., Grün, S., Winklmair, A., Eisenreich, W., Bacher, A., Meeley, B.R., Briggs, P.S., Simcox, K. And Gierl, A. (1997): Analysis of a chemical plant defense mechanism in Grasses. Science, 277. p696-699.

Frébortová, J. (2010): Function of plant defense secondary metabolite in cytokinin degradation. Plant Signalling & Behavior, 5. 5. p 523-525.

Frost, C.J., Mescher, M.C., Carlson, J.E., De Moraes, C.M. (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiology, 146. p818-824.

Furuta, Y., Nishikawa, K. and Kimizuka, T. (1976): Quantitative comparison of the nuclear DNA in section sitopsis of the genus Aegilops. Japanese Journal of Genetics, 52.

2. p107-115.

GenStat Release 13 (2010): VSN International, Hemel Hempstead. www.genstat.co.uk Gianoli, E., Caillaud, C.M., Chaubet, B., Di Pietro, J.P. and Niemeyer, H.M. (1997):

Variability in grain aphid (Homoptera: Aphididae) performance and aphid-induced phytochemical responses in wheat. Environmental Entomology, 26. 3. p638-641.

Gianoli, E., Ríos, J.M. and Niemeyer, H.M. (2000): Allocation of a hydroxamic acid and biomass during vegetative development in rye. Acta Agriculturae Scandinavica, Section B.

Soil and Plant Science, 50. p35-39.

Givovich, A. and Niemeyer, H.M. (1991): Effect of hydroxamic acids in wheat on BYDV transmission by Rhopalosiphum padi L. CIMMYT. Barley Yellow Dwarf Newsletter 4.

p75-77.

Givovich, A. and Niemeyer, H.M. (1991): Hydroxamic acids affecting barley yellow dwarf virus transmission by the aphid Rhopalosiphum padi. Entomologia Experimentalis et Applicata, 59. 1. p79-85.

Givovich, A. and Niemeyer, H.M. (1994): Effect of hydroxamic acids on feeding behavior and performance of cereal aphids on wheat. European Journal of Entomology, 91. p371-374.

Givovich, A. and Niemeyer, H. M. (1995): Comparison of the effect of hydroxamic acids from wheat on five species of cereal aphids. Entomologia Experimentalis et Applicata, 74.

p115-119.

Givovich, A., Sandström, J., Niemeyer, H. M. and Pettersson J. (1994): Presence of a hydroxamic acid glucoside in wheat phloem sap, and its consequences for performance of Rhopalosiphum padi (L.) (Homoptera: Aphididae). Jurnal of Chemical Ecology, 20. 8.

p1923-1930.

Givovich, A., Morse, S., Niemeyer, H.M., Wratten, S.D. and Edwards, P.J. (1992):

Hydroxamic acid glucosides in honeydew of aphids feeding on wheat. Journal of Chemical Ecology, 18. 6. p 841-846.

Glinwood, T.R. and Pettersson, I. (2000): Change in response of Rhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate. Entomologia Experimentalis et Applicata, 94. 3. p325–330.

Gonzáles, L.W., Fuentes-Contreras, E. and Niemeyer, H.M. (1999): Semiochemicals associated to spacing behaviour of the bird cherry-oat aphid Rhopalosiphum padi L.

(Hem., Aphididae) do not affect the olfactometric behaviour of the cereal aphid parasitoid Aphidius rhopalosiphi De Stephani-Pérez (Hym., Braconidae). Journal Applied Entomology, 123. p413-415.

Gordon-Weeks R., Smart L., Ahmad S., Zhang Y., Elek H., Jing H., Martin J.,Pickett J.

(2010): The role of the benzoxazinone pathway in aphid resistance in wheat. HGCA, project report no. PR473

Goryunova, S.V., Chikida, N.N., and Kochieva, E.Z. (2008): Molecular analysis of the phylogenetic relationships among the diploid Aegilops Species of the Section. Russian Journal of Genetics, 44. 1. p115-118.

Hales, F. D, Wilson, C. C. A., Sloane, A. M., Christophesimon, J., Legallic, J.-F. and Sunnucks, P. (2002): Lack of detectable genetic recombination on the X chromosome during the parthenogenetic production of female and male aphids. Genetic Research, 79.

p203-209.

Hamilton, R.H. (1964): Tolerance of several grass species to 2-chloro-s-triazine herbicides in relation to degradation and content of benzoxazinone derivates. Journal of Agricultural and Food Chemistry, 12. p14-17.

Hand, C.S. (1989): The overwintering of cereal aphids on Gramineae in southern England, 1977-1980. Annual Applied Biology, 115. p17-29.

Hardie, J, Pickett, A.J., Pow, M.E. and Smiley, M.W.D. (1999): Aphids. Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants, CAB International, p227-250.

Harfouche, A.L., Shivaji, R., Stocker, R., Williams, P.W. and Luthe, D.S. (2006): Ethylane signalling mediates a maize defense response to insect herbivory. MPMI, 19. p189-199.

Heie, O.E. (1992): The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica, 25. p98-105.

Heie, O.E. (1996): The evolutionary history of aphids and a hypothesis on the fcoevolution of aphids and plants. Bollettino di Zoologia Agraria e di Bachicoltura, 28. p149-155.

Hesler, S.L., Riedell, E.W., Kieckhefer, W. R., Haley, D. S. and Collins, D. R. (1999):

Resistance to Rhopalosiphum padi (Homptera: Aphididae) in wheat germplasm accessions. Journal of Economic Entomology. 92. 5. p 1234-1238.

Heyns, I., Grenewald, E., Marais, F., Francois du Toit and Tolmay, V. (2006):

Chromosomal location of the Russian wheat aphid resistance gene, Dn5. Crop Sience, 46.

p630-636.

Hofman, J. and Hofmanová, O. (1969): 1,4-Benzoxazine derivatives in plants. European Journal of Biochemistry, 8. p109-112.

Hooper, M.A. and Pickett, A.J. (2004): Semiochemistry. Encyclopaedia of Supramolecular Chemistry, Marcel Dekker, New York, p1270-1277.

Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R. and Gornicki, P.

(2002): Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum / Aegilops complex and the evolutionary history of polyploidy wheat. PNAS, 99. 2. p8133-8138.

Hussien, T., Bowden, R.L., Gill, B.S. and Cox, T.S. (1998): Chromosomal locations in common wheat of three new leaf rust resistance genes from Triticum monococcum.

Euphytica, 10. p127-131.

Jiménez-Martínez, S. E., Bosque-Pérez, A. N., Berger, H. P., Zemetra, S. R., Ding, H. and Eigenbrode, D. S. (2004): Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley Yellow Dwarf virus-infected transgenic and untransformed wheat. Environmental Entomology, 33. 5. p1207-1216.

Jing, H.C., Lovell, D., Gutteridge, R., Jenk, D., Kornyukhin, D., Mitrofanova, O.P., Kema, G.H., Hammond-Kosack, K.E. (2008): Phenotypic and genetic analysis of the Triticum monococcum-Mycosphaerella graminicola interaction. New Phytologist. 179. 4. p1121-32.

Johnson, D. and Hershman, D. (1996): A survey of cereal aphids which may vector Barley yellow dwarf virus in Kentucky wheat fields: Common species and distribution. Trans.

Kentucky Acad. Sci. 57. p15-17.

Johnson, D. and Townsend, L. (1999): Aphids and Barley yellow dwarf (BYD) in Kentucky grown wheat. University of Kentucky Entomology, Entfact. 121 http://www.uky.edu/Ag/Entomology/entfacts/fldcrops/ef121.htm

Klun, J.A. and Robinson, J.F. (1969): Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of the plant and its relation to resistance of the host plant to the European corn borer. Journal of Economic Entomology, 62. p214-220.

Kole, C. (2011): Wild crop relatives: Genomic and breeding Resources cereals. Springer, Berlin, p1-77.

Kuroli, G. (1994): Növényvédelem II., Növényvédelmi állattan, Keszthely p92-94.

Lapierre, H. and Signoret P.A. (2004): Viruses and virus diseases of Poacea (Gramineae).

Institut National De La Recherche Agronomique, Paris p115-121.

Leather, S.R., Walters, K.F.A. and Dixon A.F.G. (1989): Factors determining the pest status of the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Europe: a study and review. Bulletin of Entomological Research, 79. p345–360.

Legrand, A. and Barbosa, P. (2000): Pea aphid (Hom.: Aphididae) fecundity, rate of increase, and within plant distribution unaffected by plant morphology. Environmental Entomology, 29. p987–993.

Leighton, V., Niemeyer, H.M. and Jonsson, L.M.V. (1994): Substrate specificity of a glucosyltransferase and an N-hydroxylase involved in the biosynthesis of cyclic hydroxamic acids in Gramineae. Phytochemistry, 36. p887-892.

Leszczyński, B., Józwiak, B., Urbańska, A. and Dixon A. F. G. (2003): Does cyanogenesis influence host alternation of Bird cherry-oat aphid? Electronic Journal of Polish Agricultural Universities, 6. 1.

http://www.ejpau.media.pl/series/volume6/issue1/biology/art-01.html

Liu, X. M., Smith, C. M., Friebe, B. R. and Gill B. S. (2005): Molecular mapping and allelic relationships of Russian wheat aphid – resistance genes. Crop Science, 45. p2273-2280.

Loxdale, H.D. (2008): The nature and reality of the aphid clone: genetic variation, adaptation and evolution. Agricultural and Forest Entomology, 10. p 81-90.

Lupton, F.G.H. (1987): Wheat breeding: Its scientific basis. London New York, Chapman and Hall, p31-51.

Mann, J. A., Harrington, R., Carter, N. and Plumb R. T. (1996): Control of aphids and barley yellow dwarf virus in spring-sown cereals. Crop Protection, 16. p81-87.

Manuwoto, S. and Scriber, J.M. (1985): Neonate larval survival of European corn borer, Ostrinia nubilalis, on high and low DIMBOA genotypes of maize: Effects of light intensity and degree of insect breeding. Agriculture, Ecosystems and Environment, 14. p221-236.

Mclntosh, R. A., Porter, D. R., Baker, C. B. and Webster, J. A. (1998): Inheritance of Russian wheat aphid resistance in PI 140207 spring wheat. Plant Breeding. 117. 3. p293.

McLean, I., Cater, N. and Watt, A. (1977): Pests out of control? New Scientist, 76. 1073.

p74-75.

Mendlinger, S. and Zohary, D. (1995): The extent and structure of genetic variation in species of the Sitopsis group of Aegilops. Heredity, 74. p616-627.

Messina, J.F., Taylor, R. and Karren, E.M. (2002): Divergent responses of two cereal aphids to previous infestation of their host plant. Entomologia Experimentalis et Applicata, 16. p43-50.

Migui, S.M. and Lamb, R.J. (2004): Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat.

Bulletin of Entomological Research, 94. p35-46.

Mohase, L. and Van der Westhuizen, A. J. (2002): Glycoproteins from Russian wheat aphid infested defence responses. Zeitschrift für Naturforschung, 57. p867-873.

Mohase, L. and Van der Westhuizen, A. J. (2002 b): Salicylic acid is involved in resistance responses in the Russian wheat aphid – wheat interaction. Journal of Plant Physiology, 159. 6. p585-590.

Nakagawa, T., Ishigai, M., Hiramatsu, Y., Kinoshita, H., Ishitani,Y., Ohkubo, K. and Okazaki, A. (1995): Determination of the new fluoroquinolone balofloxacin and its metabolites in biological fluids by high performance liquid chromatography.

Arzneimittelforschung, 45. 6. p716-8.

Nevo, E., Korol, A.B., Beiles, A. and Fahima, T. (2002): Evolution of wild emmer and wheat improvement. Springer, Germany, p4-8.

Nicol, D., Copaja, S.V., Wratten, S.D. and Niemeyer, H.M. (1992): A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. Annual Applied Biology. 121. p11-18.

Nicol, D., Wratten, S.D., Eaton, N., Copaja, S.V. and Niemeyer, H.M. (1993):

Hydroxamic acids in wheat: antibiosis, antixenosis and effects upon aphid susceptibility to an insecticide. IOBC/WPRS Bulletin 16. p130-139.

Niemeyer, H.M. (1988): Hydroxamic acid content of triticum species. Euphytica, 37.

p289-293.

Niemeyer, H. M. (2009) Hydroxamic Acids Derived from 2-Hydroxy-2H-1,4-Benzoxazin-3(4H)-one: Key Defense Chemicals of Cereals. Journal of Agricultural and Food Chemistry, 57. p1677–1696.

Niemeyer, H.M., Copaja, V.S. and Barria, N.B. (1992): The Triticeae as sources of hydroxamic acids, secondary metabolites in wheat conferring resistance against aphids.

Hereditas, 116. p295-299.

Niemeyer, H.M. and Givovich, A. (2000): Use of electropenetration graphs and phloem sap chemical analysis in studies of the effects of hydroxamic acids in cereals on aphid (Homoptera: Aphididae) feeding behavior. In Principles and Applications of Electronic Monitoring and Other Techniques in the Study of Homopteran Feeding Behavior, Walker, G.P. & Backus, E.A., eds. Thomas Say Publications in Entomology: Proceedings of the Entomological Society of America, Lanham, MD, USA, p237-244.

Niemeyer, H.M. and Jerez, J. M. (1997): Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestivum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity, 79. p10-14.

Nomura, T., Ishihara, A., Yanagita, R.C., Endo, T.R. and Iwamura, H. (2005): Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proceedings of the National Academy of Sciences, 102. 45. p16490-16495.

Nomura, T., Ishihara, A., Iwamura, H. and Endo, T.R. (2007): Molecular characterisation of benzoxazinone – deficient mutation in diploid wheat. Phytochemistry, 68. p1008-1016.

Oberholster, A. (2002-2003) Cereal Genomics

http://66.249.93.104/search?q=cache:dSZnO3CX0BQJ:fabinet.up.ac.za/biennialreport/doc

s/report5.pdf+Oberholster,+A.+(2002-2003)+Cereal+Genomics&hl=en&gl=uk&ct=clnk&cd=1

Oikawa, A., Ishihura, A., Morifumi, H., Kodama, O. and Iwamura, H. (2001): Induced accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) in maize leaves. Phytochemistry, 56. p669-675.

Oikawa, A., Ishihura, A. and Iwamura, H. (2002): Induction of HDMBOA-Glc accumulation and DIMBOA-Glc 4-O-methyltransferase by jasmonic acid in poaceous plants. Phytochemistry, 61. p331-337.

Oikawa, A., Ishihura, A., Tanaka, C., Mori, N., Tsuda, M. and Iwamura, H. (2004):

Accumulation of HDMBOA-glc is induced by biotic stresses prior to the release of MBOA in maize leaves. Phytochemistry, 65. p2995-3001.

Paré, W.P. and Tumlison, H.J. (1999): Plant volatiles as a defense against insect herbivores. Plant Physiology, 121. p325-331

Park, C.K. and Hardie, J. (2003): Electroantennogram responses of aphid nymphs to plant volatiles. Phisiological Entomology, 28. p215-220.

Petersen, G.,Seberg, O., Yde, M. and Berthelsen, K. (2006): Phylogenetic relationship of Triticum and Aegilops and evidence for the origin of the A, B and D genomes of common wheat (Triticum aestivum). Molecular Phylogenetics and Evolution, 39. p70-82.

Pickett, A. J., Birkett, A. M., Bruce, A. J. T., Chamberlain, K., Gordon-Weeks, R., Matthes, C. M., Moraes, B. C., Napier, A. J., Smart, E. L., Wadhams, J. L. and Woodcock, M. C. (2005): Cis – Jasmone as an allaelopathic agent through plant defence induction.

Forth World Congress on Allelopathy

http://www.regional.org.au/au/allelopathy/2005/1/3/2481_pickettja.htm

Pickett, A.J., Bruce, A.J.T., Chamberlain, K., Hassanali, A., Khan, R.Z., Matthes, C.M., Napier, A.J., Smart, E.L., Wadhams, J.L. and Woodcock M.C. (2006): Chemical ecology:

from gene to ecsystem. Marcel Dicke and Willem Takken (eds.), Springer, p161-173.

Pickett, A.J. and Poppy, M.G. (2001): Swiching on plant genes by external chemical signals. Trend in Plant Science, 6. p137-139.

Pickett, A.J., Rasmussen, B.H., Woodcock, M.C., Matthes, M. and Napier, A.J. (2003):

Plant stress signaling: understading and exploiting plant-plant interactions. Biochemical Society Transactions, 31. 1. p123-127.

Pickett, A.J., Wadhams, J.L. and Woodcock, M.C. (1997): First steps in the use of aphid sex pheromones. Insect Pheromone Research: New Directions, Chapman and Hall, New York, p439-444.

Pike, K. S. and Schaffner, R. L.(1985): Development of Autumn Populations of Cereal Aphids., Rhopalosiphum padi (L.) and Schizaphis graminum (Rondani) (Homoptera:

Aphididae) and Their Effects on Winter Wheat in Washington State. Journal of Economic Entomology, 78. 3. p676-680.

Plamenov, D., Belchev, I., Kiryakova, V. and Spetsov, P. (2009): Fungal resistance of Triticum durum – T. monococcum ssp. aegilopoides amphiploid. Journal of Plant Diseases and Protection, 116. 2. p60–62.

Pons, X., Comas, J. and Albajes, R. (1993): Overwintering of cereal aphids (Homoptera:

Aphididae) on durum wheat in a Mediterranean climate. Environmental Entomology, 22.

Aphididae) on durum wheat in a Mediterranean climate. Environmental Entomology, 22.