• Nem Talált Eredményt

In this section, we obtain the existence of positive ground state solution of (1.6) by using Theorem1.2with λ=1, q= 4. Similarly to Section 4, we first estimate the level of mountain critical of the functional ˆJ corresponding to (1.6) and show that the critical level is below the non-compactness level of ˆJ by using approximation techniques. Then we are devoted to verify that the (PS) sequence of the functional ˆJ is also the one of the approximation functional associated to ˆJ. Finally, by the regularity theory of the elliptic equation, the positive ground state solution of (1.6) is obtained. In order to find the weak solutions to (1.6) and it is natural to consider the energy functional on H:

Jˆ(u) = 1

2kuk2+ b

4kuk4

Z

B

1

6+|x|α|u|6+|x|α. Then we have from Lemma2.2 that ˆJ is well defined onH and is ofC1, and

(Jˆ0(u),v) = (1+bkuk2)

Z

B

∇u∇v−

Z

B

|u|4+|x|αuv, u,v∈ H.

It is standard to verify that the weak solutions of (1.6) correspond to the critical points of the functional ˆJ.

Lemma 6.1. Letα2,β2,γ2 >0and define f2 :[0,∞)→Ras f2(t) = α2

2 t2+ β2

4 t4γ2 6 t6. Then

sup

t∈[0,∞)

f2(t) = 2β2γ2

+β32+4α2γ2

q

β22+4α2γ2+β22 q

β22+4α2γ2

24γ22 .

Proof. Fort ≥0, we have

f20(t) =α2t+β2t3γ2t5=t(α2+β2t2γ2t4). Letα2+β2t2γ2t4 =0, we write at

t2 = q

β22+4α2γ2+β22

.

Substituting it into f2(t), the result is valid. The proof is completed.

Lemma 6.2. Let

g2(t) = t

2

2kuεk2+ bt

4

4 kuεk4t6 6

Z

R3|uε|6, then we have, asε→0+,

sup

t0

g2(t)≤Λ1+O(ε), whereΛ1= b4S3+ b243S6+ 16S√

S4b2+4S+24b2S4

S4b2+4S.

Proof. It follows from Lemma6.1and the estimate (2.2) that g2(t) = t

2

2kuεk2+ bt

4

4 kuεk4t6 6

Z

R3|uε|6

= t

2

2(S3/2+O(ε)) + bt

4

4 (S3+O(ε))− t

6

6(S3/2+O(ε3))

b 4S3+ b

3

24S6+ 1 6Sp

S4b2+4S+ b

2

24S4p

S4b2+4S+O(ε), forε >0 sufficiently small. The proof is completed.

From Lemma 3.2, we know that the functional ˆJ possesses the mountain pass geometry.

Then there is a(PS)c2 sequence{un} ⊂Hfor ˆJ with the property that Jˆ(un)→c2, kJˆ0(un)kH1 →0, n→∞, wherec2is given by

c2= inf

ˆ

γΓmax

t∈[0,1]

Jˆ(γ(t)), and ˆΓ= {γ∈ C([0, 1],H):γ(0) =0, ˆJ(γ(1))<0}.

In the following we give an estimate of the upper bound of the critical level c2 by using above two lemmas.

Lemma 6.3. There holds0< c2 <Λ1.

Proof. Similar to Lemma5.4, there exists R2 >0 sufficiently large, such that ˆJ(R2uε)≤ 0 forε small enough, hence, we can find 0< tε <R2 satisfying

0< η2 ≤c2≤ max

t∈[0,R2]

Jˆ(tuε) =Jˆ(tεuε).

Since dtd Jˆ(tuε)|t=tε =0, we have

tεkuεk2+bt3εkuεk4=

Z

Bt5ε+|x|α|u|6+|x|α. Hence we deduce from (2.2) that

S32 +O(ε) +bt2ε(S3+O(ε)) =t4ε Z

B

|uε|6+t4ε Z

B

t|εx|α|uε|6+|x|α− |uε|6

=t4ε[S32 +O(ε3) +Aε]

=t4ε[S32 +O(ε3) +O(εα|logε|) +O(ε3/2)],

(6.1)

where Aε = O(εα|logε|) +O(ε3/2) is given in [21, page 14]. For convenience, we set A = S32 +O(ε),B = b(S3+O(ε))andC= S32 +O(ε3) +O(εα|logε|) +O(ε3/2). Thus, (6.1) can be rewritten asA+Bt2ε =Ct4ε. It is easy to see that

t2ε = B+√

B2+4AC

2C = bS

3+O(ε) +pb2S6+4S3+O(ε) +O(εα|logε|) 2S3/2+O(ε3/2) +O(εα|logε|) .

Thereby,t2ε >1 forεsmall enough, which implies Combining (6.3), (6.4) with (6.2) and using Lemma6.2, we derive

Jˆ(tεuε) = t

By choosingε>0 small enough, we derive by (6.5),

0<η2≤ c2≤ Jˆ(tεuε)<Λ1. The proof is completed.

Lemma 6.4. If{un}is a(PS)c2 sequence ofJ, then there exists uˆ ∈ H such that, up to a subsequence, un*u and Jˆ0(u) =0.

Proof. By Lemma3.3,{un}is bounded inH and hence, going if necessary to a subsequence, we may assume that un * u in H. Let A > 0 be such that R

where p(x) =6+|x|α. Hence, the Vitali theorem (see [28]) leads to norm and Fatou’s lemma that

c2≤ Jˆ(tuu)− 1 which is impossible. Thus,R

B|∇u|2 = A2and ˆJ0(u) =0. The proof is completed.

In order to obtain the nontrivial solution of (1.6), we need define the functional ˆI : H→R by

By repeating the arguments used in Lemma 3.3, it is easy to show that {un} is bounded in H. Then passing to a subsequence, we can find u ∈ H such that un * u in H. Now, let vn = un−u, we claim that kvnk → 0. In fact, we use an argument of contradiction and suppose that there exists a subsequence still denoted by {vn}such that kvnk → l˜ > 0. It is easy to verify that

kunk2= kvnk2+kuk2+o(1) (6.7) and

kunk4 =kvnk4+kuk4+2kvnk2kuk2+o(1). (6.8) From the Brezis–Lieb lemma in [9], we have

Z

Recall that ˆI0(un)→0 asn→∞, there holds by (6.7),

On the other hand, combining (6.7), (6.8) with (6.9) leads to Iˆ(un)−Iˆ(u) +o(1)

Similarly, by using (6.10) again, we deduce

o(1) =hIˆ0(un),uni −(kuk2+bl˜2kuk2+bkuk4

It follows from (6.12) and (6.13) that Iˆ(u) = Iˆ(un)− This together with (6.14) ensures that

Iˆ(u) =c2

which contradicts to (6.11). Therefore vn →0 strongly in H, or equivalently, un → uin Has n→∞. The proof is completed.

Proof of Theorem1.9. By Lemmas 6.4, 6.5, we know that the assumptions in Theorem 1.2 are valid. Hence, (1.6) possesses a nonnegative nontrivial ground state solution u ∈ H, which satisfies the following equation in weak sense

1+b

Z

B

|∇u|2

∆u= u5+|x|α inB.

Let us define

ˆ

g(u(x)) = u

5+|x|α

1+bR

B|∇u|2, x∈B.

It follows from Lemma2.2thatR

Bu6+32|x|α ≤C, which implies a= gˆ(u)

1+|u| ∈ L32(B).

Hence, we deduce immediately from Lemma 5.7 that u ∈ Lq(B) for any 1 < q < ∞. Then, there holds ˆg(u) ∈ Lq(B) for any 1 < q < ∞. By the Calderón–Zygmund inequality and Lp estimate given in [16,30], we derive u ∈ W2,q(B), whence also u ∈ C1,α2(B) by Sobolev embedding theorem for any 0 < α2 < 1. Moreover, the Harnack inequality [32] implies u(x)>0 for allx ∈B. The proof is completed.

7 Acknowledgement

This work was partially supported by National Natural Science Foundation of China (Grant Nos. 12071266, 12026217, 12026218) and Shanxi Scholarship Council of China (Grant No.

2020-005). The author would like to express their sincere gratitude to anonymous referees for his/her constructive comments for improving the quality of this paper.

References

[1] B. Almuaalemi, H. Chen, S. Khoutir, Existence of nontrivial solutions for Schrödinger–

Poisson systems with critical exponent on bounded domains, Bull. Malays. Math. Sci.

Soc. 42(2019), 1675–1686. https://doi.org/10.1007/s40840-017-0570-0; MR3963850;

Zbl 1421.35141

[2] C. O. Alves, M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger–

Poisson system in bounded domains,Z. Angew. Math. Phys.65(2014), 1153–1166.https:

//doi.org/10.1007/s00033-013-0376-3;MR3279523;Zbl 1308.35262

[3] A. Azzollini, P. d’Avenia, On a system involving a critically growing nonlinearity, J. Math. Anal. Appl.387(2012), 433–438.https://doi.org/10.1016/j.jmaa.2011.09.012;

MR2845762;Zbl 1229.35060

[4] A. Azzollini, P. d’Avenia, V. Luisi, Generalized Schrödinger–Poisson type systems, Commun. Pure Appl. Anal. 12(2013), 867–879. https://doi.org/10.3934/cpaa.2013.12.

867;MR2982795;Zbl 1270.35227

[5] A. Azzollini, P. d’Avenia, G. Vaira, Generalized Schrödinger–Newton system in di-mension N ≥3: Critical case,J. Math. Anal. Appl. 449(2017), 531–552. https://doi.org/

10.1016/j.jmaa.2016.12.008;MR3595217;Zbl 1373.35120

[6] Z. Ba, X. He, Solutions for a class of Schrödinger–Poisson system in bounded domains, J. Appl. Math. Comput.51(2016), 287–297.https://doi.org/10.1007/s12190-015-0905-7;

MR3490972;Zbl 1342.35094

[7] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal.11(1998), 283–293.https://doi.org/10.12775/TMNA.1998.

019;MR1659454;Zbl 0926.35125

[8] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving crit-ical Sobolev exponents,Comm. Pure Appl. Math.36(1983), 437–477.https://doi.org/10.

1002/cpa.3160360405;MR0709644;Zbl 0541.35029

[9] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and conver-gence of functionals,Proc. Amer. Math. Soc.88(1983), 486–490.https://doi.org/10.2307/

2044999;MR0699419;Zbl 0526.46037

[10] D. Cao, S. Li, Z. Liu, Nodal solutions for a supercritical semilinear problem with variable exponent, Calc. Var. Partial Differential Equations 57(2018), No. 2, Paper No. 38, 19 pp.

https://doi.org/10.1007/s00526-018-1305-2;MR3763423;Zbl 1392.35156

[11] S. Chen, B. Zhang, X. Tang, Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal. 9(2020), 148–167. https:

//doi.org/10.1515/anona-2018-0147;MR3935867;Zbl 1421.35100

[12] J. M. Coron, Topologie et cas limite des injections de Sobolev (in French) [Topology and limit case of Sobolev embeddings], C. R. Acad. Sci. Paris Ser. I 299(1984), 209–212.

MR0762722;Zbl 0569.35032

[13] F. J. S. A. Corrêa, G. Figueiredo, On an elliptic equation of p-Kirchhoff type via vari-ational methods, Bull. Aust. Math. Soc. 74(2006), 263–277. https://doi.org/10.1017/

S000497270003570X;MR2260494;Zbl 1108.45005

[14] F. J. S. A. Corrêa, G .M. Figueiredo, On the existence of positive solutions for an elliptic equation of Kirchhof-type via Moser iteration method, Bound. Value Probl.2006, Art. ID 79679, 10 pp.https://doi.org/10.1155/bvp/2006/79679;MR2251799

[15] X. Fan, D. Zhao, On the spacesLp(x)()andWm,p(x)(),J. Math. Anal. Appl.263(2001), 424–446.https://doi.org/10.1006/jmaa.2000.7617;MR1866056

[16] D. Gilbarg, N. S. Trudinger,Elliptic partial differential equations of second order, Reprint of the 1998 ed., Classics in Mathematics, Springer-Verlag, Berlin, 2001. https://doi.org/

10.1007/978-3-642-61798-0;MR1814364

[17] J. Kazdan, F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math.28(1975), 567–597.https://doi.org/10.1002/cpa.3160280502; MR0477445;

Zbl 0325.35038

[18] G. Kirchhoff,Mechanik, Teubner, Leipzig, 1883.

[19] F. Li, Y. Li, J. Shi, Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent, Commun. Contemp. Math.16(2014), No. 6, 1450036, 28 pp. https:

//doi.org/10.1142/S0219199714500369;MR3277956;Zbl 1309.35025

[20] J. Lions, On some questions in boundary value problems of mathematical physics, in: G.

M. de la Penha, L. A. Medeiros (Eds.),Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), North-Holland Math. Stud., Vol. 30, North-Holland, Amsterdam, 1978, pp. 284–346.MR519648

[21] J. Marcos doÓ, B. Ruf, P. Ubilla, On supercritical Sobolev type inequalities and related elliptic equations, Calc. Var. Partial Differential Equations 55(2016), No. 4, Art. 83, 18 pp.

https://doi.org/10.1007/s00526-016-1015-6;MR3514752;Zbl 1356.35106

[22] D. Naimen, On the Brezis–Nirenberg problem with a Kirchhoff type Perturbation, Adv. Nonlinear Stud.15(2015), No. 1, 135–156.https://doi.org/10.1515/ans-2015-0107;

MR3299386;Zbl 1317.35080

[23] D. Naimen, M. Shibata, Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension, Nonlinear Anal.186(2019), 187–208. https:

//doi.org/10.1016/j.na.2019.02.003;MR3987393;Zbl 1421.35116

[24] W. M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indi-ana Univ. Math. J. 31(1982), 801–807. https://doi.org/10.1512/iumj.1982.31.31056;

MR674869;Zbl 0515.35033

[25] L. Pisani, G. Siciliano, Note on a Schrödinger–Poisson system in a bounded do-main, Appl. Math. Lett. 21(2008), 521–528. https://doi.org/10.1016/j.aml.2007.06.

005;MR2402846;Zbl 1158.35424

[26] S. I. Pohozaev, Eigenfunctions of the equation ∆u+λf(u) = 0, Soviet Math. Doklady 6(1965), 1408–1411.MR0192184;Zbl 0141.30202

[27] O. Rey, Sur un problème variationnel non compact: l’effet de petits trous dans le do-maine (in French) [On a variational problem with lack of compactness: the effect of small holes in the domain], C. R. Acad. Sci. Paris Ser. I Math. 308(1989), 349–352. MR992090;

Zbl 0686.35047

[28] W. Rudin,Real and complex analysis, McGraw-Hill Science, New York, 1986.MR924157 [29] D. Ruiz, G. Siciliano, A note on the Schrödinger–Poisson–Salter equation on bounded

domain, Adv. Nonlinear Stud. 8(2008), 179–190. https://doi.org/10.1515/ans-2008-0106;MR2378870;Zbl 1160.35020

[30] M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Second Edition, Ergebnisse der Mathematik und ihrer Grenzge-biete (3), Vol. 30, Springer-Verlag, 1996.https://doi.org/10.1007/978-3-662-03212-1;

MR1411681

[31] X. H. Tang, B. T. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations 261(2016), 2384–2402. https:

//doi.org/10.1016/j.jde.2016.04.032;MR3505194;Zbl 1343.35085

[32] N. S. Trudinger, On Harnack type inequality and their applications to quasilinear elliptic equations, Comm. Pure Appl. Math. 20(1967), 721–747. https://doi.org/10.1002/cpa.

3160200406;MR226198

[33] M. Willem, Minimax theorems, Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1;MR1400007

[34] Q. Xie, X. Wu, C. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent,Commun. Pure Appl. Anal.12(2013), 2773–2786.https://doi.org/

10.3934/cpaa.2013.12.2773;MR3060908;Zbl 1264.65206

KAPCSOLÓDÓ DOKUMENTUMOK