• Nem Talált Eredményt

1 Frank R. Riley: Silicon Nitride and Related Materials. Journal of the American Ceramic Society 83(2):245-265, 2000.

2 Szépvölgyi János: Korszerű műszaki kerámiák – egy figyelemreméltó anyagcsalád, Magyar tudomány, 8. szám, 1994.

3 Arató Péter, Wéber Ferenc: Szilícium-nitrid alapú kerámiák mechanikai jellemzőinek vizsgálata. Fémkohászat, 133 évf., 3. szám, 2000.

4 D.W. Richerson: Ceramics for Turbine Engines, Mech. Eng., September, 1997.

5 Cs. Balazsi, Z. Konya, F. Weber, L.P. Biro, P. Arato: Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Mater. Sci. Eng. C, 23(6–8):1133– 37, 2003.

6 Y. Hamano: Progress in Structural Applications of Silicon Nitride in Silicon-Based Structural Ceramics, B.W. Sheldon and S.C. Danforth, ed., American Ceramic Society, Westerville, OH, p. 3-14, 1994

7 M. Hadfield, S. Tobe: Residual stress measurements of hot isostatically pressed silicon nitride rolling elements. Ceramics International 24:387-392, 1998.

8 P. R. Hernandez, C. Taboada, L. Leija, Evaluation of biocompatibility of pH-ISFET materials during long-term subcutaneous implantation. Sensors and Actuators B, 133-138, 1998.

9 R. Kue, A. Sohrabi, D. Nagle, Enchanced proliferation and osteocalcin production by human osteoblast-like MG-63 cells on silicon nitride ceramic discs. Biomaterials 20:1195-1201, 1999

10 M. Amaral, M. A. Lopes, Densification route and mechanical properties of Si3N4-bioglass biocomposites. Biomaterials 23:857-862, 2002.

11 M. Amaral, M.A. Costa, M.A. Lopes, R.F. Silva, J.D. Santos, M.H. Fernandes: Si3N4-bioglass composites stimulate the proliferation of MG63 osteoblast-like cells and support the osteogenic differentiation of human bone marrow cells. Biomaterials, 23:4897-4906, 2002.

12 A.J.S. Fernandes, E. Salgueiredo, Directly NPCVD diamond coated Si3N4 disks for dental applications. Diamond and Rel. Mater. 14:626-630, 2005.

13 K. K. Chawla: Ceramic matrix Composites, Chapman&Hall New York, ISBN 0 4123 6740.

8: 1-489, 1993.

14 F. C. Peillon, F. Thevenot: Microstructural designing of silicon nitride related to toughness.

Journal of European Ceramic Society, 22:271-278, 2002.

15 M. Yudasaka, R. Kikuchi, Y. Ohki, E. Ota, S. Yoshimura, Appl. Phys. Lett. 70(14):1817,

19 M.-F. Yu et al: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287(5453):637, 2000.

20 R.S. Ruoff, et al. Radial deformation of carbon nanotubes by van der Waals forces. Nature 364(514):6437, 1993.

21 J.E. Fischer et al. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes.

Phys. Rev. B 55:R4921, 1997.

22 S. Hong, S. Myung: Nanotube Electronics: A flexible approach to mobility. Nature

23 A. K. Geim and K. S. Novoselov: The rise of graphene. Nature Materials 6(3):183–191, 2007.

24 "The Nobel Prize in Physics 2010". Nobelprize.org. 16 Mar 2012 http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/

25 A. K. Geim and P. Kim: Carbon Wonderland. Scientific American. April 2008.

26 K. S. Novoselov, et al.: Electric Field Effect in Atomically Thin Carbon Films. Science 306(5696): 66–9, 2004.

27 Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nature Nanotechnol 4, 217-224 (2009)

28 Li X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foil. Science 324, 1312-1314 (2009)

29C. Lee, X. Wei, J. W. Kysar, J. Hone: Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321(5887):385, 2008.

30 S. Stankovich, D. A. Dikin, Geoffrey H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A.

Stach, R. D. Piner, S. T. Nguyen , R. S. Ruoff: Graphene-based composite materials. Nature 442:282-286,2006.

31 K. Bolotin et al. Ultrahigh electron mobility in suspended graphene Solid State Commun.

246:351, 2008.

32 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau:

Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett., , 8(3):902–907, 2008.

33 Standard Test Method for Flexural Strength of Advanced Ceramics at Elavated Temperatures, ARTM C1211-98a, American Society for Testing and Materials, Philadelphia, 1998

34 Flexural strength of high performance ceramics at ambient temperatures, MIL-STD-1942A,

35 Talapatra A., Ultrasound 66:28, 2011.

36 I. Gaál, M. Kocsisné Baán, Gy. Lenkeyné Bíró, J. Lukács, M. Marosné Berkes, Gy. Nagy, M. Tisza, Anyagvizsgálat, 1-494, 2001.

37 K. Nihara: A fracture mechanics analysis of indentation-induced palmqvist crack in ceramics. Mat Sci Lett, 2:221-223, 1983.

38 O. Glatter and O. Kratky: Small-angle X-ray Scattering, Academic Press, London, 1982.

39 D.W. Schaefer, R.S. Justice: How nano are nanocomposites? Macromolecules 40:8501, 2007.

40 L. An, W. Xu, S. Rajagopalan, C. Wang, H. Wang, Yi. Fan, L. Zang, D. Jiang, J. Kapat, L.

Chow, B. Guo, J. Liang, R. Vajdyanathan: Carbon-nanotube-reinforced polymer-derived ceramic composites. Adv. Mater. 16(22):2036–2040, 2004.

41 O. Khamman, W. Chaisan, R. Yimnirun, S. Ananta: Effect of vibro-milling time on phase formation and particle size of lead zirconate nanopowders. Materials Letters 61(13):2822-2826, 2007.

42 E. Gordo, B. Gómez, E.M. Ruiz-Navas, J.M. Torralba: Influence of milling parameters on the manufacturing of Fe–TiCN composite powders. Materials Processing Technology 162-163(15):59-64, 2005.

43 B. Gómez, E. Gordo, J.M. Torralba, Influence of milling time on the processing of Fe–

TiCN composites. Materials Science and Engineering A, 430(1-2):59-63, 2006.

44 A. Chaipanich, T. Tunkasiri, Effect of milling time on the properties of Pb(Mg1/3Nb2/3)O3 ceramics using the starting precursors PbO and MgNb2O6. Current Applied Physics 7(3):

281-284, 2007.

45 Z. Kónya, I. Vesselenyi, K. Niesz, A. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z.

Mekhalif, J. B.Nagy, A. A. Koós, Z. Osváth, A. Kocsonya, L. P. Biró, I. Kiricsi: Large scale

production of short functionalized carbon nanotubes. Chemical Physics Letters 360(5-6):429-435, 2002.

46 O. Koszor, L. Tapasztó, M. Márton, Cs. Balázsi: Characterizing the global dispersion of carbon nanotubes in ceramic matrix nanocomposites. App. Phys. Lett. 93(20):201910, 2008.

47 E. Flahaut, A. Peigney, Ch. Laurent, Ch. Marliere, F. Chastel, A. Rousset: Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Materialia, 48(14):3803-3812, 2000.

48 A. Kukovecz, T. Kanyo, Z. Konya, I. Kiricsi: Long-time low-impact ball milling of multi-wall carbon nanotubes. Carbon 43(5):994-1000, 2005.

49 M. Nygren, Z. Shen: On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering. Solid State Sci. 5:125–31, 2003.

50 Z. Shen, H. Peng, J. Liu, M. Nygren: Conversion from nano- to micron-sized structures:

experimental observations. J. Eur. Ceram. Soc., 24:3447–52, 2004.

51 R.S. Dobedoe, G.D. West, M.H. Lewis: Spark plasma sintering of ceramics. Bull. Eur. Cer.

S., 1:19–24, 2003.

52 E.L. Corral, J. Cesarano, A. Shyam, E. Lara-Curzio, N. Bell, J. Stuecker, N. Perry, M.

DiPrima, Z. Munir, J. Garay, and E.V. Barrera: Engineered Nanostructures for Multifuntional Single-Walled Carbon Nanotube Reinforced Silicon Nitride Nanocomposites. J. Am. Ceram.

Soc., 91(10):3129-37, 2008.

53 J.R. Groza, A. Zavaliangos: Sintering activation by external electrical field. Mater. Sci.

Eng, 287:171–77, 2000.

54 A. Díaz, S. Hampshire, J-F Yang, T. Ohji and S. Kanzaki: Comparison of Mechanical Properties of Silicon Nitrides with Controlled Porosities Produced by Different Fabrication Routes. J. Am. Ceram. Soc. 88:698–706, 2005.

55 G. R. Anstis, P. Chantikul, B. R. Lawn, D. B. Marshall: A Critical Evaluation or

Indentation Techniques for Measuring Fracture Toughness: I , Direct Crack Measurements, J.

Am. Ceram Soc., 64:533-38, 1981.

56 T. Laha, A. Agarwal, T. McKechnie, S. Seal. Mat. Sci. Eng. A, 381:249-258, 2004.

57 E. Flahaut, A. Peigney, C. Laurent, C. Marliere, F. Chastel, A. Rousset. Acta Mater.

48:3803-3812, 2000.

58 Cs. Balazsi , F. S. Cinar, O. Addemir, F. Weber, P. Arato. J. Eur. Cer. Soc. 24:3287-3294, 2004.

59 K. Yurekli, C. A. Mitchell, R. Krishnamoorti. JACS 126:9902-9903, 2004.

60 L. A. Hough, M. F. Islam, B. Hammouda, A. G. Yodh, P. A. Heiney. Nano Lett. 6.313-317, 2006.

61 C. Zhao, G. Hu, R. Justice, D. W. Schaefer, S. Zhang, M. Yang, C. C. Han. Polymer, 46:5125-5132, 2005.

62 R. S. Justice, D. H. Wang, L.-S. Tan, D. W. Schaefer, J. Appl. Crystallogr, 40:S88-S92, 2007.

63 L. Rosta, Appl. Phys. A, 74:S52-S54, 2002.

64 J. M. Brown , D. P. Anderson , R. S. Justice, K. Lafdi, M. Belfor, K. L. Strong, D. W.

Schaefer, Polymer, 46:10854-10865, 2005.

65 J. A. Fagan , B. J.. Landi , I. Mandelbaum, J. R. Simpson, V. Bajpai, B. J. Bauer, K.

Migler, A. R. H. Walker, R. Raffaelle, E. K. Hobbie, J. Phys. Chem. B, 110:23801-23805, 2006.

66 W. Zhou , M. F. Islam , H. Wang, D. L. Ho, A. G. Yodh, K. I. Winey, J. E. Fischer, Chem.

Phys. Lett., 384:185–189, 2004.

67 C. Balazsi, B. Fenyi, N. Hegman, Z. Kover, F. Weber, Z. Vertesy, Comp. Sci. Technol.,

68 T. He, J.L. Li, L.J. Wang, J.J. Zhu, W. Jiang, Mater Trans. 50:749, 2009.

69 M.V. Antisari, A. Montone, N. Jovic, E. Piscopiello, C. Alvani, L. Pilloni, Scripta Materiala, 55:1047, 2006.

70 L.L. Rosta, Appl. Phys. A, 74:S52, 2002.

71 O. Koszor, L. Tapaszto, M. Marko, C. Balazsi, Appl. Phys. Lett., 93:201910, 2008

72 J.M. Brown, D.P. Anderson, R.S. Justice, K. Lafdi, M. Belfor, K.L. Strong, Polymer 46:10854, 2005.

73 L.A. Hough, M.F. Islam, B. Hammouda, A.G. Yodh, P.A. Heiney, Nano Lett. 6:313, 2006.

74 J. Zhu, J.D. Kim, H.Q. Peng, J.L. Margrave, V.N. Khabashesku, E.V. Barrera, Nano Lett 3:1107, 2003.

75 C.A. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, R. Krishnamoorti, Macromolecules 35:8825, 2002.

76 T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, et al., Nature Nanotechnol 3:327, 2008.