• Nem Talált Eredményt

Irodalomjegyzék

In document Témavezető Dr. Tömösközi Sándor (Pldal 145-159)

AACC, 1999a. Basic Straight-Dough Bread-Baking Method—Long Fermentation. 10-09.

AACC, 1999b. Baking Quality of Bread Flour- Sponge-Dough, Pound-Loaf Method. 10-11.

AACC, 1999c. Optimized Straight-Dough Bread-Making Method. 10-10B.

AACC International, 1999a. Approved Methods of Analysis, 11th Ed. Method 10-09.01. Basic Straight-Dough Bread-Baking Method - Long Fermentation. Approved November 3, 1999.

AACC International, 1999b. Approved Methods of Analysis, 11th Ed. Method 10-10.03.

Optimized Straight-Dough Bread-Making Method. Approved November 3, 1999.

Al-Saleh, A., Brennan, C.S., 2012. Bread Wheat Quality: Some Physical, Chemical and Rheological Characteristics of Syrian and English Bread Wheat Samples. Foods 1, 3–17.

https://doi.org/10.3390/foods1010003

Alvarez-Jubete, L., Arendt, E.K., Gallagher, E., 2010. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol. 21, 106–113.

https://doi.org/10.1016/j.tifs.2009.10.014

Anderson, S., Purhagen, J.K., Bason, M.L., 2014. AACCI approved methods technical committee report: Collaborative study on bread volume determination by laser topography using a bread volume meter. Cereal Foods World 59, 294–296. https://doi.org/10.1094/CFW-59-6-0294

Anglani, C., 1998. Wheat minerals - A review. Plant Foods Hum. Nutr. 52, 177–186.

https://doi.org/10.1023/A:1008065420536

Autio, K., Laurikainen, T., 1997. Relationships between flour/dough microstructure and dough handling and baking properties. Trends Food Sci. Technol. 8, 181–185.

https://doi.org/10.1016/S0924-2244(97)01039-X

Ayala-Soto, F.E., Serna-Saldívar, S.O., Welti-Chanes, J., 2017. Effect of arabinoxylans and laccase on batter rheology and quality of yeast-leavened gluten-free breads. J. Cereal Sci.

73, 10–17. https://doi.org/10.1016/j.jcs.2016.11.003

Badiu, E., Aprodu, I., Banu, I., 2014. TRENDS IN THE DEVELOPMENT OF GLUTEN-FREE BAKERY PRODUCTS. Food Technol. 38, 21–36.

Bagdi, A., Balázs, G., Schmidt, J., Szatmári, M., Schoenlechner, R., Berghofer, E., Tömösközi, S., 2011. Protein Characterization and Nutrient Composition of Hungarian Proso Millet Varieties and the Effect of Decortication. Acta Aliment. 40, 128–141.

https://doi.org/10.1556/AAlim.40.2011.1.15

Bagdi, A., Tömösközi, S., Nyström, L., 2017. Structural and functional characterization of oxidized feruloylated arabinoxylan from wheat. Food Hydrocoll. 63, 219–225.

https://doi.org/10.1016/j.foodhyd.2016.08.045

Bagdi, A., Tóth, B., Lőrincz, R., Szendi, S., Gere, A., Kókai, Z., Sipos, L., Tömösközi, S., 2016.

Effect of aleurone-rich flour on composition, baking, textural, and sensory properties of bread. LWT - Food Sci. Technol. 65, 762–769. https://doi.org/10.1016/j.lwt.2015.08.073 Bálint, A.F., Kovács, G., Sutka, J., 2000. Origin and Taxonomy of Wheat in the Light of Recent

Research. Acta Agron. Hungarica 48, 301–313. https://doi.org/10.1556/AAgr.48.2000.3.11 Bardella, M.T., Fredella, C., Prampolini, L., Molteni, N., Giunta, A.M., Bianchi, P.A., 2000. Body composition and dietary intakes in adult celiac disease patients consuming a strict gluten-free diet. Am. J. Clin. Nutr. 72, 937–939.

»

146

«

Barrera, G.N., Pérez, G.T., Ribotta, P.D., León, A.E., 2007. Influence of damaged starch on cookie and bread-making quality. Eur. Food Res. Technol. 225, 1–7.

https://doi.org/10.1007/s00217-006-0374-1

Baryeh, E.A., 2002. Physical properties of millet. J. Food Eng. 51, 39–46.

https://doi.org/10.1016/S0260-8774(01)00035-8

Beasley, H.L., Uthayakumaran, S., Stoddard, F.L., Partridge, S.J., Daqiq, L., Chong, P., Békés, F., 2002. Synergestic and Additive Effects of Three High Molecular Weight Glutenin Subunit Loci. II. Effect on Wheat Dough Functionality and End-Use Quality. Cereal Chem.

79, 301–307.

Beitane, I., Krumina-Zemture, G., Sabovics, M., 2015. Technological properties of pea and buckwheat flours and their blends. Res. Rural Dev. 1, 137–142.

Békés, F., Schoenlechner, R., Tömösközi, S., 2017. Ancient Wheats and Pseudocereals for Possible use in Cereal-Grain Dietary Intolerances, in: Wrigley, C.W., Batey, I.L., Miskelly, D. (Eds.), Cereal Grains: Assessing and Managing Quality. Woodhead Publishing, pp. 353–

389. https://doi.org/https://doi.org/10.1016/B978-0-08-100719-8.00014-0

Belderok, B., Mesdag, J., Donner, D.A., 2000. Bread-Making Quality of Wheat: A Century of Breeding in Europe. Springer-Science+Business Media, B.V.

Bender, D., Nemeth, R., Wimmer, M., Götschhofer, S., Biolchi, M., Török, K., Tömösközi, S., D’Amico, S., Schoenlechner, R., 2017a. Optimization of Arabinoxylan Isolation from Rye Bran by Adapting Extraction Solvent and Use of Enzymes. J. Food Sci. 00, 1–7.

https://doi.org/10.1111/1750-3841.13920

Bender, D., Schmatz, M., Novalin, S., Nemeth, R., Chrysanthopoulou, F., Tömösközi, S., Török, K., Schoenlechner, R., Amico, S.D., 2017b. Chemical and rheological characterization of arabinoxylan isolates from rye bran. Chem. Biol. Technol. Agric. 4, 1–8.

https://doi.org/10.1186/s40538-017-0096-6

Bieliková, M., Kraic, J., 2011. Parameters of Wheat Flour, Dough, and Bread Fortified by Buckwheat and Millet Flours. Agric. 57, 144–153. https://doi.org/10.2478/v10207-011-0015-y

Biliaderis, C.G., Izydorczyk, M.S., Rattan, O., 1995. Effect of arabinoxylans on bread-making quality of wheat flours. Food Chem. 53, 165–171. https://doi.org/10.1016/0308-8146(95)90783-4

Buksa, K., Nowotna, A., Ziobro, R., 2016a. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread. Food Chem. 192, 991–996.

https://doi.org/10.1016/j.foodchem.2015.07.104

Buksa, K., Praznik, W., Loeppert, R., Nowotna, A., 2016b. Characterization of water and alkali extractable arabinoxylan from wheat and rye under standardized conditions. J. Food Sci.

Technol. 53, 1389–1398. https://doi.org/10.1007/s13197-015-2135-2

Buksa, K., Ziobro, R., Nowotna, A., Gambuś, H., 2013. The influence of native and modified arabinoxylan preparations on baking properties of rye flour. J. Cereal Sci. 58, 23–30.

https://doi.org/10.1016/j.jcs.2013.04.007

Buksa, K., Ziobro, R., Nowotna, A., Praznik, W., Gambuś, H., 2012. Isolation, modification and characterization of soluble arabinoxylan fractions from rye grain. Eur. Food Res. Technol.

235, 385–395. https://doi.org/10.1007/s00217-012-1765-0

Buléon, A., Colonna, P., Planchot, V., Ball, S., 1998. Starch granules: structure and biosynthesis.

Int. J. Biol. Macromol. 23, 85–112. https://doi.org/10.1016/S0141-8130(98)00040-3

»

147

«

Bunzel, M., Ralph, J., Steinhart, H., 2005. Structural elucidation of new ferulic acid-containing phenolic dimers and trimers isolated from maize bran. Tetrahedron Lett. 46, 5845–5850.

https://doi.org/10.1016/j.tetlet.2005.06.140

Burešová, I., Kráčmar, S., Dvořáková, P., Středa, T., 2014. The relationship between rheological characteristics of gluten-free dough and the quality of biologically leavened bread. J. Cereal Sci. 60, 271–275. https://doi.org/10.1016/j.jcs.2014.07.001

Campbell, G.M., Ross, M., Motoi, L., 2008. Expansion Capacity of Bran-Enriched Doughs in Different Scales of Laboratory Mixers, in: Bubbles in Food II: Novelty, Health, and Luxury.

Eagan Press, pp. 323–336.

Capocchi, A., Cinollo, M., Galleschi, L., Saviozzi, F., Calucci, L., Pinzino, C., Zandomeneghi, M., 2000. Degradation of gluten by proteases from dry and germinating wheat (Triticum durum) seeds: An in vitro approach to storage protein mobilization. J. Agric. Food Chem.

48, 6271–6279. https://doi.org/10.1021/jf0006170

Capriles, V.D., Arêas, J.A.G., 2014. Novel approaches in gluten-free breadmaking: Interface between food science, nutrition, and health. Compr. Rev. Food Sci. Food Saf. 13, 871–890.

https://doi.org/10.1111/1541-4337.12091

Capriles, V.D., dos Santos, F.G., Arêas, J.A.G., 2016. Gluten-free breadmaking: Improving nutritional and bioactive compounds. J. Cereal Sci. 67, 83–91.

https://doi.org/10.1016/j.jcs.2015.08.005

Carvajal-Millan, E., Guilbert, S., Doublier, J.-L., Micard, V., 2006. Arabinoxylan/protein gels : Structural, rheological and controlled release properties. Food Hydrocoll. 20, 53–61.

https://doi.org/10.1016/j.foodhyd.2005.02.011

Carvajal-Millan, E., Landillon, V., Morel, M.H., Rouau, X., Doublier, J.L., Micard, V., 2005.

Arabinoxylan gels: Impact of the feruloylation degree on their structure and properties.

Biomacromolecules 6, 309–317. https://doi.org/10.1021/bm049629a

Carver, B.F., 2009. Wheat Science and Trade, Wheat Science and Trade.

https://doi.org/10.1002/9780813818832

Cauvain, S.P., 2012. Breadmaking: An overview, in: Breadmaking: Improving Quality.

Woodhead Publishing Limited, pp. 9–31. https://doi.org/10.1533/9780857095695.9 Cauvain, S.P., Young, L.S., 2012. Breadmaking, Breadmaking. Elsevier.

https://doi.org/10.1533/9780857095695.2.499

Clare Mills, E.N., Wellner, N., Salt, L.A., Robertson, J., Jenkins, J.A., 2012. Breadmaking, Breadmaking. Elsevier. https://doi.org/10.1533/9780857095695.1.100

Collar, C., Rosell, C.M., 2013. Relationship Between the Mixolab and Other Devices, in: Dubat, A., Rosell, C.M., Gallagher, E. (Eds.), Mixolab: A New Approach to Rheology. AACC International, Inc., pp. 23–30.

Courtin, C.M., Delcour, J. a., 2002. Arabinoxylans and Endoxylanases in Wheat Flour Bread-making. J. Cereal Sci. 35, 225–243. https://doi.org/10.1006/jcrs.2001.0433

Courtin, C.M., Delcour, J.A., 2001. Relative Activity of Endoxylanases Towards Water-extractable and Water-unWater-extractable Arabinoxylan. J. Cereal Sci. 33, 301–312.

https://doi.org/10.1006/jcrs.2000.0354

Dap, T., Poji, M., Hadna, M., Torbica, A., 2011. The Role of Empirical Rheology in Flour Quality Control, in: Akyar, I. (Ed.), Wide Spectra of Quality Control. pp. 335–360.

Day, L., 2011. Wheat gluten: Production, properties and application, Handbook of Food Proteins.

Woodhead Publishing Limited. https://doi.org/10.1016/B978-1-84569-758-7.50010-1

»

148

«

Decamps, K., Gryp, G., Joye, I.J., Courtin, C.M., Delcour, J.A., 2014. Impact of pyranose oxidase from Trametes multicolor, glucose oxidase from Aspergillus niger and hydrogen peroxide on protein agglomeration in wheat flour gluten-starch separation. Food Chem. 148, 235–

239. https://doi.org/10.1016/j.foodchem.2013.10.036

Decamps, K., Joye, I.J., Courtin, C.M., Delcour, J.A., 2012a. Glucose and pyranose oxidase improve bread dough stability. J. Cereal Sci. 55, 380–384.

https://doi.org/10.1016/j.jcs.2012.01.007

Decamps, K., Joye, I.J., Haltrich, D., Nicolas, J., Courtin, C.M., Delcour, J.A., 2012b.

Biochemical characteristics of Trametes multicolor pyranose oxidase and Aspergillus niger glucose oxidase and implications for their functionality in wheat flour dough. Food Chem.

131, 1485–1492. https://doi.org/10.1016/j.foodchem.2011.10.041

Decamps, K., Joye, I.J., Rakotozafy, L., Nicolas, J., Courtin, C.M., Delcour, J.A., 2013. The bread dough stability improving effect of pyranose oxidase from trametes multicolor and glucose oxidase from aspergillus niger: Unraveling the molecular mechanism. J. Agric. Food Chem.

61, 7848–7854. https://doi.org/10.1021/jf4021416

Defloor, I., Delcour, J.A., 1999. Impact of maltodextrins and antistaling enzymes on the differential scanning calorimetry staling endotherm of baked bread doughs. J. Agric. Food Chem. 47, 737–741. https://doi.org/10.1021/jf9806356

Denli, E., Ercan, R., 2001. Effect of Added Pentosans Isolated from Wheat and Rye Grain on some Properties of Bread. Eur. Food Res. Technol. 212, 374–376.

Deora, N.S., Deswal, A., Mishra, H.N., 2015. Functionality of alternative protein in gluten-free product development. Food Sci. Technol. Int. 21, 364–379.

https://doi.org/10.1177/1082013214538984

Devisetti, R., Yadahally, S.N., Bhattacharya, S., 2014. Nutrients and antinutrients in foxtail and proso millet milled fractions: Evaluation of their flour functionality. LWT - Food Sci.

Technol. 59, 889–895. https://doi.org/10.1016/j.lwt.2014.07.003

Dias, A.R.G., Zavareze, E.D.R., Helbig, E., Moura, F.A. De, Vargas, C.G., Ciacco, C.F., 2011.

Oxidation of fermented cassava starch using hydrogen peroxide. Carbohydr. Polym. 86, 185–191. https://doi.org/10.1016/j.carbpol.2011.04.026

Dobraszczyk, B.J., Morgenstern, M.P., 2003. Rheology and the breadmaking process. J. Cereal Sci. 38, 229–245.

Dobraszczyk, B.J., Salmanowicz, B.P., 2008. Comparison of predictions of baking volume using large deformation rheological properties. J. Cereal Sci. 47, 292–301.

Dogan, I.S., Yildiz, Ö., Taşan, B., 2012. Determination of the bread-making quality of flours using an automatic bread machine. Turkish J. Agric. For. 36, 608–618.

https://doi.org/10.3906/tar-1202-48

Dogan, I.S., Yildiz, Ö., Taşan, B., 2010. Spread and microwave oven baking test for bread making quality. Int. J. Agric. Biol. 12, 697–700.

Dubat, A., Boinot, N., 2012. Mixolab Application Handbook: Rheological and enzyme analyses, 2012th ed. Chopin Technologies.

Eggum, B.O., Kreft, I., Javornik, B., 1980. Chemical composition and protein quality of buckwheat (Fagopyrum esculentum Moench). Plant Foods Hum. Nutr. 30, 175–179.

https://doi.org/10.1007/BF01094020

El Khoury, D., Balfour-Ducharme, S., Joye, I.J., 2018. A review on the gluten-free diet:

Technological and nutritional challenges. Nutrients 10, 1–25.

»

149

«

https://doi.org/10.3390/nu10101410

Encyclopaedia Britannica, 1996. Commercial bread making [WWW Document]. URL https://www.britannica.com/topic/continuous-bread-making/media/135069/169 (accessed 4.6.19).

Fadda, C., Sanguinetti, A.M., Del Caro, A., Collar, C., Piga, A., 2014. Bread staling: Updating the view. Compr. Rev. Food Sci. Food Saf. 13, 473–492. https://doi.org/10.1111/1541-4337.12064

FAO, 1995. Sorghum and millets in human nutrition, Food and Agriculrure Organization of the United Nations. https://doi.org/10.1093/hmg/ddw069

Flander, L., Holopainen, U., Kruus, K., Buchert, J., 2011. Effects of tyrosinase and laccase on oat proteins and quality parameters of gluten-free oat breads. J. Agric. Food Chem. 59, 8385–

8390. https://doi.org/10.1021/jf200872r

Frauenlob, J., Nava, M., D’Amico, S., Grausgruber, H., Lucisano, M., Schoenlechner, R., 2017.

A new micro-baking method for determination of crumb firmness properties in fresh bread and bread made from frozen dough. Die Bodenkultur J. L. Manag. Food Environ. 68, 29–

39. https://doi.org/10.1515/boku-2017-0003

Gallagher, E., Gormley, T.R., Arendt, E.K., 2004. Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci. Technol. 15, 143–152.

https://doi.org/10.1016/j.tifs.2003.09.012

Gally, T., Rouaud, O., Jury, V., Le-Bail, A., 2016. Bread baking using ohmic heating technology;

a comprehensive study based on experiments and modelling. J. Food Eng. 190, 176–184.

https://doi.org/10.1016/j.jfoodeng.2016.06.029

Gamero, A., Ingoglia, C., De Jong, C., 2013. Microbread: use of a micro-scale screening bread-baking platform for high-throughput screening of new ingredients and formulations in baked goods, in: Hoffmann, T., Krautwurst, D., Schieberle, P. (Eds.), Current Topics in Flavor Chemistry & Biology. Proceedings of the 10th Wartburg Symposium. Deutsche Forschungsanstalt für Lebensmittelchemie, Eisenach, pp. 359–362.

Gan, Z., Ellis, P.R., Schofield, J.D., 1995. Mini review- Gas cell stabilisation and gas retention in wheat bread dough. J. Cereal Sci. 21, 215–230. https://doi.org/10.1006/jcrs.1995.0025 Gänzle, M.G., 2014. Enzymatic and bacterial conversions during sourdough fermentation. Food

Microbiol. 37, 2–10. https://doi.org/10.1016/j.fm.2013.04.007

Gänzle, M.G., Loponen, J., Gobbetti, M., 2008. Proteolysis in sourdough fermentations:

mechanisms and potential for improved bread quality. Trends Food Sci. Technol. 19, 513–

521. https://doi.org/10.1016/j.tifs.2008.04.002

Gasztonyi, K., 2002a. A kenyérkészítés folyamatai I. Sütőiparosok, pékek 49, 8–14.

Gasztonyi, K., 2002b. A kenyérkészítés folyamatai II. Sütőiparosok, pékek 49., 19–27.

Gebruers, K., Dornez, E., Bedõ, Z., Rakszegi, M., Courtin, C.M., Delcour, J.A., 2010. Variability in xylanase and xylanase inhibition activities in different cereals in the HEALTHGRAIN diversity screen and contribution of environment and genotype to this variability in common wheat. J. Agric. Food Chem. 58, 9362–9371. https://doi.org/10.1021/jf100474m

Goaesaert, H., Brijs, K., Veraverbeke, W.S., Courtin, C.M., Gebruers, K., Delcour, J.A., 2005.

Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 16, 12–30.

Gray, J.A., Bemiller, J.N., 2003. Bread Staling: Molecular Basis and Control. Compr. Rev. Food Sci. Food Saf. 2, 1–21.

»

150

«

Gudmundsson, M., Eliasson, A., 2006. Carbohydrates in Food: Starch.

Gujral, H.S., Guardiola, I., Carbonell, J.V., Rosell, C.M., 2003a. Effect of cyclodextrin glycosyl transferase [corrected] on dough rheology and bread quality from rice flour. J. Agric. Food Chem. 51, 3814–8. https://doi.org/10.1021/jf034112w

Gujral, H.S., Haros, M., Rosell, C.M., 2003b. Starch Hydrolyzing Enzymes for Retarding the

Staling of Rice Bread. Cereal Chem. 80, 750–754.

https://doi.org/10.1094/CCHEM.2003.80.6.750

Habiyaremye, C., Matanguihan, J.B., D’Alpoim Guedes, J., Ganjyal, G.M., Whiteman, M.R., Kidwell, K.K., Murphy, K.M., 2017. Proso Millet (Panicum miliaceum L.) and Its Potential for Cultivation in the Pacific Northwest, U.S.: A Review. Front. Plant Sci. 7, 1–17.

https://doi.org/10.3389/fpls.2016.01961

Hamada, S., Suzuki, K., Aoki, N., Suzuki, Y., 2013. Improvements in the qualities of gluten-free bread after using a protease obtained from Aspergillus oryzae. J. Cereal Sci. 57, 91–97.

https://doi.org/10.1016/j.jcs.2012.10.008

Haros, C.M., Schoenlechner, R., 2017. Pseudocereals: Chemistry and Technology. Wiley-Blackwell.

Hatta, E., Matsumoto, K., Honda, Y., 2015. Bacillolysin, papain, and subtilisin improve the quality of gluten-free rice bread. J. Cereal Sci. 61, 41–47.

https://doi.org/10.1016/j.jcs.2014.10.004

Heitmann, M., Zannini, E., Arendt, E., 2018. Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review. Crit. Rev. Food Sci.

Nutr. 58, 1152–1164. https://doi.org/10.1080/10408398.2016.1244153

Hizukuri, S., 1986. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 147, 342–347. https://doi.org/10.1016/S0008-6215(00)90643-8

Hoseney, R.C., Rogers, D.E., 1990. The formation and properties of wheat flour doughs. Crit.

Rev. Food Sci. Nutr. 29, 73–93.

Hrušková, M., Škodová, V., Blazek, J., 2002. Wheat Sedimentation Values and Falling Number.

Czech J. Food Sci. 22, 51–57.

Hrušková, M., Skvrnová, J., 2003. Use of Maturograph and oven spring for the determination of wheat flour baking characteristics. Czech J. Food Sci. 21, 71–77.

Hung, P. Van, Maeda, T., Morita, N., 2009. Buckwheat Starch: Structure and Characteristics – A Review. Eur. J. Plant Sci. Biotechnol. 3, 23–28.

Husejin, K., Mirsad, S., Amra, O., Midhat, J., Nihada, A., Indira, S., 2009. The Importance of Determination of some Physical – Chemical Properties of Wheat and Flour. Agric. Conspec.

Sci. 74, 197–200.

ICC, 1980. Method for Test Baking of Wheat Flours. No. 131.

ISO, 1985. ISO 6820:1985. Wheat flour and rye flour - General guidance on the drafting of bread-making tests.

Izydorczyk, M.S., Dexter, J.E., 2008. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products–a Review. Food Res. Int. 41, 850–

868. https://doi.org/10.1016/j.foodres.2008.04.001

Jayaram, V.B., Cuyvers, S., Lagrain, B., Verstrepen, K.J., Delcour, J.A., Courtin, C.M., 2013.

Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough

»

151

«

reveals succinic acid as pH-determining factor. Food Chem. 136, 301–308.

https://doi.org/10.1016/j.foodchem.2012.08.039

Jekle, M., Fuchs, A., Becker, T., 2018. A normalized texture profile analysis approach to evaluate firming kinetics of bread crumbs independent from its initial texture. J. Cereal Sci. 81, 147–

152. https://doi.org/10.1016/j.jcs.2018.04.007

Jelaca, S.L., Hlynka, I., 1972. Effect of Wheat-Flour Pentosans in Dough, Gluten, and Bread.

Cereal Chem.

Jiang, Z., Li, X., Yang, S., Li, L., Tan, S., 2005. Improvement of the breadmaking quality of wheat flour by the hyperthermophilic xylanase B from Thermotoga maritima. Food Res. Int.

38, 37–43. https://doi.org/10.1016/j.foodres.2004.07.007

Jing, R., Li, H.Q., Hu, C.L., Jiang, Y.P., Qin, L.P., Zheng, C.J., 2016. Phytochemical and pharmacological profiles of three Fagopyrum buckwheats. Int. J. Mol. Sci. 17.

https://doi.org/10.3390/ijms17040589

Kalinová, J., 2007. Nutritionally Important Components of Proso Millet (Panicum miliaceum L.).

Food 1, 91–100.

Karunaratne, R., Zhu, F., 2016. Physicochemical interactions of maize starch with ferulic acid.

Food Chem. 199, 372–379. https://doi.org/10.1016/j.foodchem.2015.12.033

Khan, K., Shewry, P.R., 2009. Wheat: Chemistry and Technology, 4th ed. AACC International, Inc.

Kieffer, R., Belitz, H.-D., Zweier, M., Ipfelkofer, R., Fischbeck, G., 1993. Der Rapid-Mix-Test als 10-g-Mikrobackversuch. Z. Lebensm. Unters. Forsch. 197, 134–136.

Kieffer, R., Wieser, H., Henderson, M.H., Graveland, a., 1998. Correlations of the Breadmaking Performance of Wheat Flour with Rheological Measurements on a Micro-scale. J. Cereal Sci. 27, 53–60. https://doi.org/10.1006/jcrs.1997.0136

Kletke, J., Izydorczyk, M.S., Dexter, J., Dushnicky, L., McMillan, T., Bazin, S., 2013. Canadian buckwheat: A unique, useful and under-utilized crop. Can. J. Plant Sci. 94, 509–524.

https://doi.org/10.4141/cjps2013-075

Koehler, P., Wieser, H., 2013. Chemistry of Cereal Grains, in: Gobbetti, M., Gänzle, M. (Eds.), Handbook on Sourdough Biotechnology. Springer Science+Business Media, pp. 11–45.

https://doi.org/10.1007/978-1-4614-5425-0

Lamacchia, C., Camarca, A., Picascia, S., Di Luccia, A., Gianfrani, C., 2014. Cereal-based gluten-free food: How to reconcile nutritional and technological properties of wheat proteins with safety for celiac disease patients. Nutrients 6, 575–590. https://doi.org/10.3390/nu6020575 Langó, B., Fehér, A.G., Bicskei, B.Z., Jaksics, E., Németh, R., Bender, D., Amico, S.D., Schoenlechner, R., Tömösközi, S., 2018. The Effect of Different Laboratory-scale Sample Preparation Methods on the Composition of Sorghum ( Sorghum bicolor L .) and Millet ( Panicum miliaceum L .) Milling Fractions. Period. Polytech. Chem. Eng. 62, 426–431.

https://doi.org/10.3311/PPch.12846

Larroque, O.R., Bekes, F., 2000. Rapid size-exclusion chromatography analysis of molecular size distribution for wheat endosperm protein. Cereal Chem. 77, 451–453.

https://doi.org/10.1094/CCHEM.2000.77.4.451

Lebwohl, B., Ludvigsson, J.F., Green, P.H.R., 2015. Celiac disease and non-celiac gluten sensitivity. BMJ 351, h4347. https://doi.org/10.1136/bmj.h4347

Leitner, C., Volc, J., Haltrich, D., 2001. Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor. Appl. Environ. Microbiol. 67, 3636–44.

»

152

«

https://doi.org/10.1128/AEM.67.8.3636-3644.2001

Li, Y., Ma, D., Sun, D., Wang, C., Zhang, J., Xie, Y., Guo, T., 2015. Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. Crop J.

https://doi.org/10.1016/j.cj.2015.04.004

MacRitchie, F., Gras, P.W., 1973. The Role of Flour Lipids. Am. Assoc. Cereal Chem. 50, 292–

302.

Magyar Élelmiszerkönyv, 2014. Codex Alimentarius Hungaricus 2-201 számú irányelv Malomipari termékek.

Mandala, I.G., 2005. Physical properties of fresh and frozen stored, microwave-reheated breads,

containing hydrocolloids. J. Food Eng. 66, 291–300.

https://doi.org/10.1016/j.jfoodeng.2004.03.020

Mansberger, A., D’Amico, S., Novalin, S., Schmidt, J., Tömösközi, S., Berghofer, E., Schoenlechner, R., 2014. Pentosan extraction from rye bran on pilot scale for application

in gluten-free products. Food Hydrocoll. 35, 606–612.

https://doi.org/10.1016/j.foodhyd.2013.08.010

Marcela, S., Julie, L., Alena, M., Šárka, H., Pavel, S., 2017. Effect of the dough mixing process on the quality of wheat and buckwheat proteins. Czech J. Food Sci. 35, 522–531.

https://doi.org/10.17221/220/2017-cjfs

Masure, H.G., Fierens, E., Delcour, J.A., 2015. Current and Forward Looking Experimental Approaches in Gluten-Free Bread Making Research. J. Cereal Sci. 67, 92–111.

https://doi.org/10.1016/j.jcs.2015.09.009

Matos, M.E., Rosell, C.M., 2014. Understanding gluten-free dough for reaching breads with physical quality and nutritional balance. J. Sci. Food Agric. 95, 653–661.

https://doi.org/10.1002/jsfa.6732

McDonough, C.M., Rooney, L.W., Serna-Saldivar, S.O., 2000. The Millets, in: Kulp, K., Ponte, J.G. (Eds.), Handbook of Cereal Science and Technology. Marcel Dekker, New York, pp.

177–181.

Mckevith, B., 2004. Nutritional aspects of cereals. Nutr. Bull. 29, 111–142.

https://doi.org/10.1111/j.1467-3010.2005.00472.x

Mendis, M., Simsek, S., 2014. Arabinoxylans and human health. Food Hydrocoll. 42, 239–243.

https://doi.org/10.1016/j.foodhyd.2013.07.022

Meybodi, N.M., Mohammadifar, M.A., Feizollahi, E., 2015. Gluten-Free Bread Quality : A Review of the Improving Factors. J. Food Qual. Hazards Control 2, 81–85.

Mir, S.A., Shah, M.A., Naik, H.R., Zargar, I.A., 2016. Influence of hydrocolloids on dough handling and technological properties of gluten-free breads. Trends Food Sci. Technol. 51, 49–57. https://doi.org/10.1016/j.tifs.2016.03.005

Moon, H.M., Giddings, J.C., 1993. Rapid separation and measurement of particle size distribution of starch granules by sedimentation/steric field-flow fractionation. J. Food Sci. 58, 1166–

1171.

Moore, M.M., Dal Bello, F., Arendt, E.K., 2008. Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. Eur. Food Res.

Technol. 226, 1309–1316. https://doi.org/10.1007/s00217-007-0659-z

Moore, M.M., Heinbockel, M., Dockery, P., Ulmer, H.M., Arendt, E.K., 2006. Network formation in gluten-free bread with application of transglutaminase. Cereal Chem. 83, 28–

»

153

«

36. https://doi.org/10.1094/CC-83-0028

MSZ:6369/8, 1988. Lisztvizsgálati Módszerek. Sütéspróba.

Naqash, F., Gani, A., Gani, A., Masoodi, F.A., 2017. Gluten-free baking: Combating the challenges - A review. Trends Food Sci. Technol. 66, 98–107.

https://doi.org/https://doi.org/10.1016/j.tifs.2017.06.004

Németh, R., 2015. Sütőipari végtermék tesztek fejlesztése: Módszer- és műszerfejlesztés, a mintamennyiség csökkentésének lehetősége. Diplomamunka. Budapesti Műszaki és Gazdaságtumányi Egyetem, Alkalmazott Biotechnológia és Élelmiszertudományi Tanszék.

Németh, R., 2012. Laboratóriumi lisztminősítés során alkalmazott automatizált mikro sütési teszt fejlesztése. Szakdolgozat. Budapesti Műszaki és Gazdaságtudományi Egyetem, Alkalmazott Biotechnológia és Élelmiszertudományi Tanszék.

Nunes, M.H.B., Moore, M.M., Ryan, L.A.M., Arendt, E.K., 2009. Impact of emulsifiers on the quality and rheological properties of gluten-free breads and batters. Eur. Food Res. Technol.

228, 633–642. https://doi.org/10.1007/s00217-008-0972-1

Obendorf, R.L., Horbowicz, M., Taylor, D.P., 1993. Structure and Chemical Composition of Developing Buckwheat Seed, in: Janick, J., Simon, J.E. (Eds.), New Crops. Wiley, New York, pp. 244–251.

Osborne, T.B., 1907. The proteins of wheat kernel. Carnegie Institute of Washington, Washington, D.C.

Ozturk, S., Kahraman, K., Tiftik, B., Koksel, H., 2008. Predicting the cookie quality of flours by using Mixolab®. Eur. Food Res. Technol. 227, 1549–1554. https://doi.org/10.1007/s00217-008-0879-x

Padalino, L., Conte, A., Del Nobile, M.A., 2016. Overview on the General Approaches to Improve Gluten-Free Pasta and Bread. Foods 5, 87. https://doi.org/10.3390/foods5040087

Pareyt, B., Finnie, S.M., Putseys, J.A., Delcour, J.A., 2011. Lipids in bread making: Sources, interactions, and impact on bread quality. J. Cereal Sci. 54, 266–279.

https://doi.org/10.1016/j.jcs.2011.08.011

Patel, B.K., Waniska, R.D., Seetharaman, K., 2005. Impact of different baking processes on bread firmness and starch properties in breadcrumb. J. Cereal Sci. 42, 173–184.

Peat, S., Whelan, W.J., Thomas, G.J., 1956. The Enzymic Synthesis und Degradation of Starch.

Part XXII* Evidence of Multiple Branching in Waxy-maize Starch. A Correction. J. Chem.

Soc. 3025–3030.

Pellegrini, N., Agostoni, C., 2015. Nutritional aspects of gluten-free products. J. Sci. Food Agric.

95, 2380–2385. https://doi.org/10.1002/jsfa.7101

Pereira, J.M., Evangelho, J.A., Moura, F.A., Gutkoski, L.C., Zavareze, E.R., Dias, A.R.G., 2017.

Crystallinity, thermal and gel properties of oat starch oxidized using hydrogen peroxide. Int.

Food Res. J. 24, 1545–1552.

Pflaum, T., Selmair, P.L., Horlacher, P., Koehler, P., 2013. Isolation and baking performance of ginsenosides from Panax ginseng. Eur. Food Res. Technol. 236, 89–100.

https://doi.org/10.1007/s00217-012-1862-0

Phongthai, S., D’Amico, S., Schoenlechner, R., Rawdkuen, S., 2016. Comparative study of rice bran protein concentrate and egg albumin on gluten-free bread properties. J. Cereal Sci. 72, 38–45. https://doi.org/10.1016/j.jcs.2016.09.015

Piber, M., Koehler, P., 2005. Identification of dehydro-ferulic acid-tyrosine in rye and wheat:

»

154

«

Evidence for a covalent cross-link between arabinoxylans and proteins. J. Agric. Food Chem. 53, 5276–5284. https://doi.org/10.1021/jf050395b

Pisanelli, I., Kujawa, M., Spadiut, O., Kittl, R., Halada, P., Volc, J., Mozuch, M.D., Kersten, P., Haltrich, D., Peterbauer, C., 2009. Pyranose 2-oxidase from Phanerochaete chrysosporium-Expression in E. coli and biochemical characterization. J. Biotechnol. 142, 97–106.

https://doi.org/10.1016/j.jbiotec.2009.03.019

Przybylski, R., Gruczyĕska, E., 2009. A Review of Nutritional and Nutraceutical Components of Buckwheat. Eur. J. Plant Sci. Biotechnol. 3, 10–22.

Purlis, E., 2010. Browning development in bakery products – A review. J. Food Eng. 99, 239–

249.

Purlis, E., Salvadori, V.O., 2009. Modelling the browning of bread during baking. Food Res. Int.

42, 865–870.

Ral, J.P., Whan, A., Larroque, O., Leyne, E., Pritchard, J., Dielen, A.S., Howitt, C.A., Morell, M.K., Newberry, M., 2016. Engineering high α-amylase levels in wheat grain lowers Falling Number but improves baking properties. Plant Biotechnol. J. 14, 364–376.

https://doi.org/10.1111/pbi.12390

Rani, K.U., Prasada Rao, U.J.S., Leelavathi, K., Haridas Rao, P., 2001. Distribution of enzymes in wheat flour mill streams. J. Cereal Sci. 34, 233–242.

https://doi.org/10.1006/jcrs.2000.0393

Rathnayake, H.A., Navaratne, S.B., Navaratne, C.M., 2018. Porous Crumb Structure of Leavened Baked Products. Int. J. Food Sci. 2018, 1–15. https://doi.org/10.1155/2018/8187318 Renzetti, S., Courtin, C.M., Delcour, J.A., Arendt, E.K., 2010. Oxidative and proteolytic enzyme

preparations as promising improvers for oat bread formulations: Rheological, biochemical and microstructural background. Food Chem. 119, 1465–1473.

https://doi.org/10.1016/j.foodchem.2009.09.028

Renzetti, S., Rosell, C.M., 2016. Role of enzymes in improving the functionality of proteins in

non-wheat dough systems. J. Cereal Sci. 67, 35–45.

https://doi.org/10.1016/j.jcs.2015.09.008

Różyło, R., Laskowski, J., 2011. Predicting Bread Quality (Bread Loaf Volume and Crumb Texture). Polish J. Food Nutr. Sci. 61, 61–67. https://doi.org/10.2478/v10222-011-0006-8 Saha, S., Gupta, A., Singh, S.R.K., Bharti, N., Singh, K.P., Mahajan, V., Gupta, H.S., 2011.

Compositional and varietal influence of finger millet flour on rheological properties of dough and quality of biscuit. LWT - Food Sci. Technol. 44, 616–621.

https://doi.org/10.1016/j.lwt.2010.08.009

Sandhu, K.S., Singh, N., 2007. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem. 101, 1499–

1507. https://doi.org/10.1016/j.foodchem.2006.01.060

Saulnier, L., Guillon, F., Chateigner-Boutin, A.L., 2012. Cell wall deposition and metabolism in wheat grain. J. Cereal Sci. 56, 91–108. https://doi.org/10.1016/j.jcs.2012.02.010

Saulnier, L., Guillon, F., Sado, P.E., Rouau, X., 2007a. Plant Cell Wall Polysaccharides in Storage Organs: Xylans (Food Applications), in: Comprehensive Glycoscience: From Chemistry to Systems Biology. pp. 653–689. https://doi.org/10.1016/B978-044451967-2/00147-1 Saulnier, L., Sado, P.-E., Branlard, G., Charmet, G., Guillon, F., 2007b. Wheat arabinoxylans:

Exploiting variation in amount and composition to develop enhanced varieties. J. Cereal Sci.

46, 261–281. https://doi.org/10.1016/j.jcs.2007.06.014

In document Témavezető Dr. Tömösközi Sándor (Pldal 145-159)