• Nem Talált Eredményt

IRODALOMJEGYZÉK

In document Jasper Andor (3)3 Tartalomjegyzék 1 (Pldal 114-119)

[1] Dr. Garbai, L.: Távhőellátás, Hőszállítás. Typotex Kiadó, 2012. ISBN: 978-963-279-739-7

[2] Dr. Mcskásy Árpád: Távfűtőberendezések tervezésének egyes kérdései.

Épületgépészet IV. évf. 6. szám, 1955 Budapest

[3] Belmann, R.E.: Dynamic Programing. Princeton University Press, Princeton 1957.

[4] Belmann, R.E.: Applied dynamic Programing. Princeton University Press, Princeton 1962.

[5] Garbai László: Sugaras rendszerű csőhálózatok, távfűtő hálózatok, gáz- és vízelosztó rendszerek optimalizálása. Kisdoktori értekezés, Budapest, 1975.

[6] Phetteplace, G.: Optimal Design of Piping Systems for District Heating, CRREL Report 95-17, 1995. http://www.crrel.usace.army.mil/library/crrelreports/CR95_17.pdf [7] Xiang-li L., Duanmun L., Hai-wen S.: Optimal design of distrect heating and cooling pipe network of seawater-source heat pump, Energy and Buildings 42 (2010), pp. 100-104. doi:10.1016/j.enbuild.2009.07.016

[8] Jamsek, M., Dobersek, D., Goricanec, D., Krope, J.: Determination of Optimal District Heating Pipe Network Configuration, WSEAS Transactions on Fluid Mechanics, Issue 3, Volume 5, July 2010, pp. 165-174. ISSN:1790-5087

[9] Tol H. İ., Svendsen S.: Improving the Dimensioning of Piping Networks and Network Layouts in Low-Energy District Heating Systems Connected to Low-Energy Buildings: A Case Study in Roskilde, Denmark, Energy, Volume 38, Issue 1, February 2012, pp. 276–290., doi:http://dx.doi.org/10.1016/j.energy.2011.12.002

[10] Hlebnikov, A., Dementjeva, N., Siirde, A.: Optimization of Narva District Heating Network and Analysis of Competitiveness of Oil Shale CHP Building in Narva, Oil Shale, 2009, Vol. 26, No. 3 Special, pp. 269–282. doi: 10.3176/oil.2009.3S.09

[11] M. H. Afshar, A. Afshar, M. A. Marińo, Hon. M. ASCE: An Iterative Penalty Method for the Optimal Design of Pipe Networks, International Journal of Civil Engineerng.

Vol. 7, No. 2, June 2009, pp. 109-123.

[12] Wang, W., Cheng, X., Liang, X.: Optimization modeling of district heating networks and calculation by the Newton method; Applied Thermal Engineering 61 (2013) 163-170; http://dx.doi.org/10.1016/j.applthermaleng.2013.07.025

[13] Sakawa, M., Matsui, T.: Fuzzy multiobjective nonlinear operation planning in district heating and cooling plants; Fuzzy Sets and Systems 231 (2013) 58 – 69;

doi:10.1016/j.fss.2011.10.020

[14] Gressner, P., Wacker, H.: Dynamische Optimierung, Carl Hanser Verlag, München, 1972.

[15] Nemhauser, G. L.: Introduction to Dynamic Programing, John Wiley & Sons, Inc.

1966.

[16] Ralph W. Pike: Optimization for Engineering Systems, Van Nostrand Reinhold Company Inc., New York, 1986.

[17] Garbai, L., Dezső, Gy.: Áramlás energetikai csővezeték rendszerekben, Műszaki Könyvkiadó, 1986.

[18] R. Poggemann: Anwendererfajrungen mit einem neu entwickelten, EVD-Werkzeug zur Optimierung von Fernwarmesystemen, Fernwarme International, 1998, Jg. 27, Heft ½, S. 68-77.

[19] G. Stock, A. Mertsch, R. Mertsch: Betriebsoptimierung mit Bofit am Beispiel einer Fernwarmeverbundnetzes, Fernwarme International, 1997, Jg. 26, Heft 11, S. 565-572.

115

[20] H. Zhao, J. Holst: Study on a network aggregation model in DH systems, 1998, Jg. 27, Heft 4/5, S. 38-136.

[21] M. Lucht, B. Pietschke, A. Steiff: Anwendung mathematischer Methoden zur Betriebsoptimierung von Fernwarmeanlagen in Rahmen des EDV-Systems Bofit, Fernwarme International, 1995, Jg. 24, Heft ½, S. 40-46

[22] H. Theeg, S. Gnüchtel, T. Sander: Einsatzoptimierung von Erzeugern und Speichern in Fernwarmesystem, Fernwarme International, 1997, Jg. 26, Heft 6, S. 238-244.

[23] A. Loewen, W. Althaus, A. Steiff: Sanierung und Betriebsoptimierung von Warmeverteilungsanlagen, Fernwarme International, 1995, Jg. 24., Heft 3, S 120-136 [24] M. Indenbirken, L. Tröster, A. Steiff: Zur wirtschaftlichen Optimierung des

Pumpeneinsatzes in Ferheiznetzen in Rahmen des EDV-Systems Bofit, Fernwarme International, 1995, Jg. 24. Heft ½, S. 28-38

[25] Szánthó Zoltán: Változó tömegáramú távhőszolgáltató rendszer optimális menetrendjének megállapítása. Ph.D. értekezés, Budapest, 2001.

[26] Kutatási jelentés a Debreceni távhőrendszer optimális távhő menetrendjének meghatározása, BME Épületgépészeti és Gépészeti Eljárástechnika Tanszék, 2009.

[27] Kutatási jelentés a Debreceni távhőrendszer keringetési üzemvitelének optimalizálása, BME Épületgépészeti és Gépészeti Eljárástechnika Tanszék, 2010

[28] Kutatási jelentés a független Szombathelyi távhőrendszerek összekötésének hidraulikai és üzemviteli vizsgálata, BME Épületgépészeti és Gépészeti Eljárástechnika Tanszék, 2010.

[29] Halász Györgyné: Távhőellátó rendszerek matematikai modellezése, különös tekintettel a fűtési fogyasztói rendszerek optimális szabályozására; doktori értekezés;

2001.

[30] Halász Gábor, Kristóf Gergely, Kullmann László: Áramlás csőhálózatokban;

Műegyetemi Kiadó, ISBN: 963 420 708 1

[31] Csoknyai, I., Doholuczki, T.: Több, mint hidraulika, Herz Armatúra Hungárai Kft., Budapest 2013., ISBN 978-963-08-7808-1

[32] Garbai, L.: 50 éves a BME I. Épületgépészeti Tanszéke, MAGYAR ÉPÜLETGÉPÉSZET 49:(8) pp. 3-4. (2000)

[33] Chen Xi, Lu LIn, Yang Hongxing: Long Term Operation of Solar Assisted Ground Coupled Heat Pump System for Space Heating and Domestic Hot Water, Energy and Bulidings, 43 (2011) pp.1835-1844.

[34] John C. Evarts, Lukas G. Swan: Domestic Hot Water consumption Estimates for Solar Thermal System Sizing, Energy and Buildings, 58 (2013), pp. 58-65.

[35] Jordan, U., Vajen, K. 2000. Influence of the DHW load profile on the fractional energy savings : A case study of a solar combi-system with Trnsys simulations. Solar Energy 69, pp. 197-208. 2001.

[36] U. Jordan and K. Vajen. DHWcalc: Program to generate domestic hot water profiles with statistical means for user defined conditions. In: Proceedings of the ISES Solar World Congress, Orlando, USA, 8-12 August 2005.

[37] Hendron, R., Burch, J., Barker, G. 2010. Tool for generating realistic residentialhot water event schedules. Proceedings of the Fourth National Conference of IBPSA-USA, Simbuild 2010. New York City, New York.

[38] B.Bøhm: Production and distribution of domestic hot water in selected Danish apartment buildings and institutions, Energy Concersion and Management (67) 2013 pp. 152-159.

[39] R. Spur, D. Fiala, D. Nevrala, D. Probert: Influence of the domestic hot-water daily draw-off profile on the performance of a hot-water store, Applied Energy, 83 (2006) pp.749-773.

116

[40] DIN 4708-2:1994; Zentrale Wassererwärmungsanlagen; Regeln zur Ermittlung des Wärmebedarfs zur Erwärmung von Trinkwasser in Wohngebäuden.

[41] Szánthó, Z., Némethi, B.: Measurement Study on Demand of Domestic Hot Water in Residential Buildings, Proceedings of the 2nd IASME/WSEAS Internatinal Conference on Energy & Environmen, pp. 68-73 Portorose, Slovenia, 15-17 May 2007.

[42] Lakóépületek mértékadó használatimelegvíz-fogyasztásának meghatározása, Budapesti Távhőszolgáltató Zrt. (összeállította: Dr Szánthó Zoltán, Némethi Balázs), 2005.

[43] Dr. Garbai László, Lakatos Tibor, Irlinger Gábor, Ignácz Csaba, Dr. Bajcsay Pál: A használati melegvízfogyasztás mérése kiértékelési eljárása, a feldolgozást elvégző számítógépi programok. Tanulmány. Budapest, 1985. december 19.

[44] Meszéna György. Ziermann Margit: Valószínűségelmélet és matematikai statisztika, Közgazdasági és Jogi Könyvkiadó, Budapest 1981, ISBN 963 220 982 6.

[45] Devore, J., Farnum, N.: Applied Statistic for Engineers and Scientists, Duxbury Press, Pacific Grove, 1999, p. 656.

[46] Halász, G., Huba, A.: Műszaki mérések, Műegyetemi Kiadó (Budapest), 2003, Tankönyvi szám: 45067.

[47] H. Brohus, C. Frier, P. Heiselberg, F. Haghigat, Quantification of uncertainty in predicting building energy consumption: A stochastic approach, Energy and Buildings 55 (2012), 127-140.

[48] L. Wang, P. Mathew, X. Pang, Uncertainties in energy consumption introduced by building operations and weather for medium-size office building, Energy and Buildings 53 (2015), 152-158.

[49] L. Pedersen, J. Stang, R. Ulseth, Load prediction method for heat and electricity demand in buildings for the purpose of planning for mixed energy distribution systems, Energy and Building 40 (2008), 1124-1134.

[50] K. Pietrzyk, Thermal performance of a building envelop – A probabilistic approach, Journal of Building Physics, 34 (2010), 77-96.

[51] G. Pernigotto, A. Gasparella, Extensive comparative analysis of building energy simulation codes: Heating and cooling energy needs and peak loads calculation in TRNSYS and EnergyPlus for southern Europe climates, HVAC and R Research 19 (2013), 481-492.

[52] T. Nagai, A. Nagata, Probabilistic approach to determination of internal heat gains in office, building for peak load calculations, Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association (2013), 2444-2450.

[53] Szanthó, Z., Németh, G.: The Role of Pipe-Diameters in Operating the Non-balanced Domestic Hot Water Circulation Systems; WSEAS Transaction on Heat and Mass Transfer, Issue 6, Volume 1, June 2006 p.660-665. ISSN 1790-5044

[54] Garbai, L., Barna, L., Szánthó, Z.: Hydraulic analysis of two-pipe central heating networks, IASME Transactions, Issue 9. Volume 2. November 2005. 1809-1814;

ISSN:1790-031X

[55] Dobersek, D., Goricanec, D., Krope, J.: Calibration of Pipe Networks for District Heating using the Non-linear Optimization Method, International Journal of Nonlinear Sciences and Numerical Simulation. Volume 7, Issue 2, Pages 225–228, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: 10.1515/IJNSNS.2006.7.2.225, May 2011

[56] Dobersek, D., Goricanec, D.: Optimisation of tree path pipe network with nonlinear optimization method, Applied Thermal Engineering, Volume 29, Issues 8–9, June

117

2009, Pages 1584-1591, ISSN 1359-4311,

http://dx.doi.org/10.1016/j.applthermaleng.2008.07.017.

[57] Urbancl, D., Goricanec, D.: Optimisation of tree path pipe network with nonlinear optimization method. Applied thermal engineering, ISSN 1359-4311. [Print ed.],

2009, vol. 29, iss. 8/9, str. 1584-1591.

http://dx.doi.org/10.1016/j.applthermaleng.2008.07.017, doi:

10.1016/j.applthermaleng.2008.07.017

[58] Urbancl, D., Goricanec, D., Krope, J.: Calibration of pipe networks for district heating using the nonlinear optimization method. International journal of nonlinear sciences and numerical simulation, ISSN 1565-1339. [Print ed.], 2006, vol. 7, no. 2, str. 225-228.

[59] Goricanec, D., Krope, J., Pristovnik, A.: Calculation of two-phase flow-pressure conditions and pipe systems. International journal of nonlinear sciences and numerical simulation, ISSN 1565-1339. [Print ed.], 2006, vol. 7, no. 2, str. 229-232.

[60] Guelpa, E., Toro, C., Sciacovelli, A., Melli, R., Sciubba, E., Verda, V.: Optimal operation of large district heating networks through fast fluid-dynamic simulation, Energy, Volume 102, 1 May 2016, Pages 586-595, ISSN 0360-5442, http://dx.doi.org/10.1016/j.energy.2016.02.058.

(http://www.sciencedirect.com/science/article/pii/S0360544216301098)

[61] Sciacovelli, A., Guelpa, E., Verda, V.: Pumping cost minimization in an existing district heating network. In: Proceedings of IMECE; 2013. November15-21; San Diego, California, USA.

[62] Ancona, M.A., Melino, F., Peretto, A.: An Optimization Procedure for District Heating Networks, Energy Procedia, Volume 61, 2014, Pages 278-281, ISSN 1876-6102, http://dx.doi.org/10.1016/j.egypro.2014.11.1107.

(http://www.sciencedirect.com/science/article/pii/S1876610214029373)

[63] Teet-Andrus, K., Alo M., Ular P.: The new dimensioning method of the district heating network, Applied Thermal Engineering, Volume 71, Issue 1, 5 October 2014,

Pages 78-82, ISSN 1359-4311,

http://dx.doi.org/10.1016/j.applthermaleng.2014.05.087.

(http://www.sciencedirect.com/science/article/pii/S1359431114004633)

[64] Wang H, Yin W, Zhou Z, Lahdelma R. Optimizing the design of a district heating network. In: Proceedings of ECOS; 2015. Pau, France June 30-July 3.

[65] Phetteplace, G.: Optimal Design of Piping Systems for District Heating, CRREL Report 95-17, 1995. http://www.crrel.usace.army.mil/library/crrelreports/CR95_17.pdf [66] Xiang-li L., Duanmun L., Hai-wen S.: Optimal design of distrect heating and cooling pipe network of seawater-source heat pump, Energy and Buildings 42 (2010), pp. 100-104. doi:10.1016/j.enbuild.2009.07.016

[67] Jamsek, M., Dobersek, D., Goricanec, D., Krope, J.: Determination of Optimal District Heating Pipe Network Configuration, WSEAS Transactions on Fluid Mechanics, Issue 3, Volume 5, July 2010, pp. 165-174. ISSN:1790-5087

[68] Tol H. İ., Svendsen S.: Improving the Dimensioning of Piping Networks and Network Layouts in Low-Energy District Heating Systems Connected to Low-Energy Buildings: A Case Study in Roskilde, Denmark, Energy, Volume 38, Issue 1, February 2012, pp. 276–290., doi:http://dx.doi.org/10.1016/j.energy.2011.12.002

[69] Hlebnikov, A., Dementjeva, N., Siirde, A.: Optimization of Narva District Heating Network and Analysis of Competitiveness of Oil Shale CHP Building in Narva, Oil Shale, 2009, Vol. 26, No. 3 Special, pp. 269–282. doi: 10.3176/oil.2009.3S.09

118

[70] M. H. Afshar, A. Afshar, M. A. Marińo, Hon. M. ASCE: An Iterative Penalty Method for the Optimal Design of Pipe Networks, International Journal of Civil Engineerng.

Vol. 7, No. 2, June 2009, pp. 109-123.

[71] Wang, W., Cheng, X., Liang, X.: Optimization modeling of district heating networks and calculation by the Newton method; Applied Thermal Engineering 61 (2013) 163-170; http://dx.doi.org/10.1016/j.applthermaleng.2013.07.025

[72] Sakawa, M., Matsui, T.: Fuzzy multiobjective nonlinear operation planning in district heating and cooling plants; Fuzzy Sets and Systems 231 (2013) 58 – 69;

doi:10.1016/j.fss.2011.10.020

119

In document Jasper Andor (3)3 Tartalomjegyzék 1 (Pldal 114-119)

KAPCSOLÓDÓ DOKUMENTUMOK