• Nem Talált Eredményt

1. Hecht, J., City of light: The story of fiber optics, New York: Oxford University Press. 1999

2. Jackson, J.D., Classical Electrodinamics, New York: John Wiley&Sons, Inc., 1998 3. Kozma, P., et al., Integrated planar optical waveguide interferometer biosensors: A

comparative review, Biosensors & Bioelectronics, 58: p. 287-307, 2014

4. Tien, P.K., Integrated optics and new wave phenomena in optical waveguides, Reviews of Modern Physics, 49(2): p. 361-420, 1977

5. Newton, I., Opticks, Book 3, London: William Innys. 1730

6. de Fornel, F., Evanescent Waves: From Newtonian Optics to Atomic Optics.

Springer Series in Optical Sciences. Vol. 73. Springer. 2002

7. Thompson, L.L., Sankar, S., and Tong, Y., Complex wave-number dispersion analysis of stabilized finite element methods for acoustic fluid - structure interaction, Proceedings of SECTAM-XX, 2000

8. Hunsperger, R.G., Integrated Optics: Theory and Technology, 3rd edBerlin:

Springer. 1991

9. Borner, S., et al., Evanescent field sensors and the implementation of waveguiding nanostructures, Applied Optics, 48(4): p. B183-B189, 2009

10. Hecht, B., et al., Scanning near-field optical microscopy with aperture probes:

Fundamentals and applications, Journal of Chemical Physics, 112(18): p. 7761-7774, 2000

11. Barbastathis, G., Optics course notes, MIT, 2002

12. Fan, X., et al., Sensitive optical biosensors for unlabeled targets: A review, Analytica Chimica Acta, 620(1–2): p. 8-26, 2008

13. Janner, D., et al., Micro-structured integrated electro-optic LiNbO3 modulators, Laser & Photonics Reviews, 3(3): p. 301-313, 2009

14. Ormos, P., et al., Protein-based integrated optical switching and modulation, Applied Physics Letters, 80(21): p. 4060-4062, 2002

15. Hampp, N., Bacteriorhodopsin as a photochromic retinal protein for optical memories, Chemical Reviews, 100(5): p. 1755-1776, 2000

16. Luecke, H., et al., Structure of bacteriorhodopsin at 1.55 angstrom resolution, Journal of Molecular Biology, 291(4): p. 899-911, 1999

17. Erokhin, V., et al., On the role of molecular close packing on the protein thermal stability, Thin Solid Films, 284: p. 805-808, 1996

18. Cladera, J., et al., The role of retinal in the thermal-stability of the purple membrane, European Journal of Biochemistry, 207(2): p. 581-585, 1992

19. Lozier, R.H., Bogomolni, R.A., and Stoeckenius, W., Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium, Biophysical Journal, 15(9): p.

955-962, 1975

20. Ovchinnikov, Y.A., et al., The structural basis of the functioning of bacteriorhodopsin: An overview, FEBS Letters, 100(2): p. 219-224, 1979

21. Stoeckenius, W., Lozier, R.H., and Bogomolni, R.A., Bacteriorhodopsin and the purple membrane of halobacteria, Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, 505(3–4): p. 215-278, 1979

22. Váró, G. and Bryl, K., Light- and dark-adaptation of bacteriorhodopsin measured by a photoelectric method, Biochimica et Biophysica Acta (BBA) - Bioenergetics, 934(2): p. 247-252, 1988

23. Kouyama, T., Bogomolni, R.A., and Stoeckenius, W., Photoconversion from the light-adapted to the dark-adapted state of bacteriorhodopsin, Biophysical Journal, 48(2): p. 201-208, 1985

24. Stuart, J.A., Marcy, D.L., and Birge, R.R., Photonic And Optoelectronic Applications Of Bacteriorhodopsin, in Bioelectronic Applications of Photochromic Pigments, A. Dér, L.K., Editor, IOS Press: Amsterdam. p. 15-29, 2001

25. Fischer, U. and Oesterhelt, D., Chromophore equilibria in bacteriorhodopsin, Biophysical Journal, 28(2): p. 211-230, 1979

26. Casadio, R., et al., Light-dark adaptation of bacteriorhodopsin in Triton-treated purple membrane, Biochimica et Biophysica Acta (BBA) - Bioenergetics, 590(1):

p. 13-23, 1980 decomposition with self-modeling: A critical evaluation using realistic simulated data, Journal of Physical Chemistry B, 108(13): p. 4199-4209, 2004

30. Oesterhelt, D., The structure and mechanism of the family of retinal proteins from halophilic archaea, Current Opinion in Structural Biology, 8(4): p. 489-500, 1998 31. Haupts, U., Tittor, J., and Oesterhelt, D., Closing in on bacteriorhodopsin:

Progress in understanding the molecule, Annual Review of Biophysics and Biomolecular Structure, 28: p. 367-399, 1999

32. Stoeckenius, W., Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps, Protein Science, 8(2): p. 447-459, 1999

33. Hessling, B., et al., Fourier transform infrared double-flash experiments resolve bacteriorhodopsin's M-1 to M-2 transition, Biophysical Journal, 73(4): p. 2071-2080, 1997

34. Ormos, P., Dancsházy, Z., and Keszthelyi, L., Electric-response of a back photoreaction in the bacterhiorodopsin photocycle, Biophysical Journal, 31(2): p.

207-213, 1980

35. Ludmann, K., Ganea, C., and Váró, G., Back photoreaction from intermediate M of bacteriorhodopsin photocycle, Journal of Photochemistry and Photobiology B-Biology, 49(1): p. 23-28, 1999

36. Tóth-Boconádi, R., Taneva, S.G., and Keszthelyi, L., Photoexcitation of the O intermediate of bacteriorhodopsin and its mutant E204Q, Journal of Biological Physics and Chemistry, 1: p. 58–63, 2001

37. Tóth-Boconádi, R., et al., Excitation of the L intermediate of bacteriorhodopsin:

Electric responses to test X-ray structures, Biophysical Journal, 90(7): p. 2651-2655, 2006

38. Wooten, F., Optical Properties of Solids, New York: Academic Press. 1972 39. Boyd, R.W., Nonlinear Optics 3rd ed., New York: Academic Press. 2008

40. Oesterhelt, D. and Stoeckenius, W., Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature New Biology, 39(233): p. 149-152, 1971

41. Oesterhelt, D. and Stoeckenius, W., Functions of a new photoreceptor membrane, PNAS, 70(10): p. 2853-2857, 1973

42. Dér, A., Hargittai, P., and Simon, J., Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel, Journal of Biochemical and Biophysical Methods, 10(5–6): p. 295-300, 1985

43. Oesterhelt, D., Brauchle, C., and Hampp, N., Bacteriorhodopsin - A biological-material for information-processing, Quarterly Reviews of Biophysics, 24(4): p.

425-478, 1991

44. Stuart, J.A., et al., Volumetric optical memory based on bacteriorhodopsin, Synthetic Metals, 127(1-3): p. 3-15, 2002

45. Crivello, J.V. and Reichmanis, E., Photopolymer Materials and Processes for Advanced Technologies, Chemistry of Materials, 26(1): p. 533-548, 2014

46. Thorlabs. http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=196.

47. Tortora, G.J. and Derrickson, B.H., Principles of anatomy and physiology, 13th ed:

John Wiley & Sons. 2011

48. Gravesen, P., Branebjerg, J., and Jensen, O.S., Microfluidics - a review, Journal of Micromechanics and Microengineering, 3(4), 1993

49. Becker, H. and Locascio, L.E., Polymer microfluidic devices, Talanta, 56(2): p.

267-287, 2002

50. Santini, J.T., Cima, M.J., and Langer, R., A controlled-release microchip, Nature, 397(6717): p. 335-338, 1999

51. Ramsey, J.M., Jacobson, S.C., and Knapp, M.R., Microfabricated Chemical Measurement Systems, Nature Medicine, 1(10): p. 1093-1096, 1995

52. Roberts, M.A., et al., UV laser machined polymer substrates for the development of microdiagnostic systems, Analytical Chemistry, 69(11): p. 2035-2042, 1997 53. Ford, S.M., et al., Micromachining in plastics using X-ray lithography for the

fabrication of micro-electrophoresis devices, Journal of Biomechanical Engineering-Transactions of the Asme, 121(1): p. 13-21, 1999

54. Nguyen, N.-T. and Wereley, S.T., Fundamentals and Applications of Microfluidics:

Artech House, 2002

55. McDonald, J.C., et al., Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, 21(1): p. 27-40, 2000

56. Friend, J. and Yeo, L., Fabrication of microfluidic devices using polydimethylsiloxane, Biomicrofluidics, 4(2), 2010

57. Oesterhelt, D. and Stoeckenius, W., Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane, Methods Enzymol, 31: p. 667-78, 1974

58. Alocilja, E.C. and Radke, S.M., Market analysis of biosensors for food safety, Biosensors and Bioelectronics, 18(5–6): p. 841-846, 2003

59. Klenkar, G. and Liedberg, B., A microarray chip for label-free detection of narcotics, Analytical and Bioanalytical Chemistry, 391(5): p. 1679-1688, 2008 60. Turner, A.P.F., Biosensors: sense and sensibility, Chemical Society Reviews,

42(8): p. 3184-3196, 2013

61. Clark, L.C. and Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of sciences, 102(1): p.

29-45, 1962

62. Alivisatos, A.P., Less is more in medicine - Sophisticated forms of nanotechnology will find some of their first real-world applications in biomedical research, disease diagnosis and, possibly, therapy, Scientific American, 285(3): p. 66-73, 2001 63. Jain, K.K., Nanotechnology in clinical laboratory diagnostics, Clinica Chimica

Acta, 358(1–2): p. 37-54, 2005

64. Cooper, M.A., Optical biosensors in drug discovery, Nat Rev Drug Discov, 1(7):

p. 515-528, 2002

65. Kozma, P., et al., A novel handheld fluorescent microarray reader for point-of-care diagnostic, Biosensors and Bioelectronics, 47(0): p. 415-420, 2013

66. Heideman, R.G. and Lambeck, P.V., Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system, Sensors and Actuators B-Chemical, 61(1-3): p. 100-127, 1999

67. Ymeti, A., et al., Development of a multichannel integrated interferometer immunosensor, Sensors and Actuators B-Chemical, 83(1-3): p. 1-7, 2002

68. Schmitt, K., et al., Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions, Biosensors &

Bioelectronics, 22(11): p. 2591-2597, 2007

69. Shew, B.Y., et al., UV-LIGA interferometer biosensor based on the SU-8 optical waveguide, Sensors and Actuators A: Physical, 120(2): p. 383-389, 2005

70. Bissonnette, L. and Bergeron, M.G., Infectious Disease Management through Point-of-Care Personalized Medicine Molecular Diagnostic Technologies, J Pers Med, 2(2): p. 50-70, 2012

71. Ramsden, J.J., et al., Optical Method, for Measurement of Number and Shape of Attached Cells in Real-Time, Cytometry, 19(2): p. 97-102, 1995

72. Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems ed. Zourob, M., Elwary, S., and Turner, A.P.F.: Springer Science &

Business Media. 2008

73. Moore, G.E., Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965), Proceedings of the Ieee, 86(1): p. 82-85, 1998

74. Excerpts from a conversation with Gordon Moore: Moore’s law, Video Transcript, 2005

75. Brenner, K.-H., Digital Optical Computing, in Organic Materials for Photonics, Zerbi, G., Editor, Elsevier: Oxford. p. 399-417, 1993

76. Schaller, R.R., Moore's Law: Past, present, and future, Ieee Spectrum, 34(6): p.

52-&, 1997

77. Roy, S., Optical Computing Circuits, Devices and Systems, Iet Circuits Devices &

Systems, 5(2): p. 73-75, 2011

78. Keyes, R.W., Optical logic - In the light of computer-technology, Optica Acta, 32(5): p. 525-535, 1985

79. Caulfield, H.J., Vikram, C.S., and Zavalin, A., Optical logic redux, Optik, 117(5):

p. 199-209, 2006

80. Caulfield, H.J., Soref, R.A., and Vikram, C.S., Universal reconfigurable optical logic with silicon-on-insulator resonant structures, Photonics and Nanostructures-Fundamentals and Applications, 5(1): p. 14-20, 2007

81. Sawchuk, A.A. and Strand, T.C., Digital optical computing, Proceedings of the Ieee, 72(7): p. 758-779, 1984

82. Lytel, R., et al., Optical interconnections within modern high-performance computing systems, Proceedings of the Ieee, 88(6): p. 758-763, 2000

83. Intel:

86. Simonite, T. Computing at the Speed of Light, Computing News, 2010.

87. Smit, M., van der Tol, J., and Hill, M., Moore's law in photonics, Laser &

Photonics Reviews, 6(1), 2012

88. Hoq, M.E., Krile, T.F., and Walkup, J.F., Optical logic function implementation using a one-dimensional deformable mirror device, Optical Engineering, 31(11):

p. 2413-2421, 1992

89. Rao, D.V.G.L.N., et al., All-optical logic gates with bacteriorhodopsin films, Optics Communications, 127(4-6): p. 193-199, 1996

90. Chattopadhyay, T., Table-top mirror based parallel programmable optical logic device, Optics and Laser Technology, 64: p. 308-318, 2014

91. Singh, C.P. and Roy, S., All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates, Optics Communications, 218(1-3): p. 55-66, 2003

92. Roy, J.N., Mach-Zehnder interferometer-based tree architecture for all-optical logic and arithmetic operations, Optik, 120(7): p. 318-324, 2009

93. Roy, S. and Prasad, M., Design of All-Optical Reconfigurable Logic Unit With Bacteriorhodopsin Protein Coated Microcavity Switches, Ieee Transactions on Nanobioscience, 10(3): p. 160-171, 2011

94. Nazemosadat, E.S. and Shum, P.P., All-optical XOR logic gate operating on inputs with different modulation formats, Optik, 123(22): p. 2028-2030, 2012

95. Nurmohammadi, T., et al., Design of an ultrafast all-optical NOR logic gate based on Mach-Zehnder interferometer using quantum-dot SOA, Optik, 125(15): p.

4023-4029, 2014

96. Topolancik, J. and Vollmer, F., All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities, Applied Physics Letters, 89(18), 2006 97. Chattopadhyay, T. and Roy, J.N., Design of SOA-MZI based all-optical Bacteriorhodopsin Protein-Coated Microresonators, Advances in Optical Technologies, 2012: p. 12, 2012

100. Li, Z.Y. and Meng, Z.M., Polystyrene Kerr nonlinear photonic crystals for building ultrafast optical switching and logic devices, Journal of Materials Chemistry C, 2(5): p. 783-800, 2014

101. Wolff, E.K. and Dér, A., All-optical logic, Nanotechnology Perceptions, 6: p. 1-6, 2010

102. Dér, A., et al., Integrated optical switching based on the protein bacteriorhodopsin, Photochemistry and Photobiology, 83(2): p. 393-396, 2007

103. Hurst, S.L., Multiple-valued logic - Its status and its future, Ieee Transactions on Computers, 33(12): p. 1160-1179, 1984

104. Connelly, J., Ternary Computing Testbed 3-Trit Computer Architecture, Computer Engineering Department, California Polytechnic State University: San Luis Obispo, California. 2008

105. Porat, D.I. Three-valued digital systems, Proceedings of the Institution of Electrical Engineers, 1969. 116, 947-954

106. Smith, K.C., The Prospects for Multivalued Logic: A Technology and Applications View, Computers, IEEE Transactions on, C-30(9): p. 619-634, 1981

107. Balla, P.C. and Antoniou, A., Low power dissipation MOS ternary logic family, Solid-State Circuits, IEEE Journal of, 19(5): p. 739-749, 1984

108. Wu, C.-Y. and Huang, H.-Y., Design and application of pipelined dynamic CMOS ternary logic and simple ternary differential logic, Solid-State Circuits, IEEE Journal of, 28(8): p. 895-906, 1993

109. Fábián, L., et al., Protein-based ultrafast photonic switching, Optics Express, 19(20): p. 18861-18870, 2011