• Nem Talált Eredményt

1. Abghari, H., Ahmadi, H., Besharat, S., Rezaverdinejad, V. (2012): Prediction of daily pan evaporation using wavelet neural networks. Water Resour. Manag., 26(12), 3639–

3652.

2. Adnan, R.M., Malik, A., Kumar, A., Parmar, K.S., Kisi, O. (2019): Pan evaporation modeling by three different neuro-fuzzy intelligent systems using climatic inputs.

Arabian J. Geosci., 12(19), 606.

3. Aldomany, M., Touchart, L., Bartout, P., Choffel, Q. (2018): Direct measurements and new mathematical methods to estimate the pond evaporation of the French Midwest.

A. Sci. and Innov. Res. 2(1), online.

4. Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998): Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. FAO, Rome 300 D05109.

5. Allen, R.G., Pruitt, W.O. (1991): FAO-24 reference evapotranspiration factors. J. Irrig.

Drain. Eng., 117(5), 758–773.

6. An, N., Wang, K., Zhou, C., Pinker, R.T (2017).: Observed variability of cloud frequency and cloud-based height within 3600 m above the surface over the contiguous United States. J. Climate, 30, 3725–3742.

7. Anda, A., Kocsis, T., Kovács, A., Tőkei, L., Varga, Z. (2010): Agrometeorológiai és klimatológiai alapismeretek. A víz a környezteben. Mezőgazda Kiadó. p. 110–144.

8. Anda, A., Simon, B., Soos, G., Teixeira da Silva, J.A., and Kucserka, T. (2016): Effect of submerged, freshwater aquatic macrohytes and littoral sediments on pan evaporation in the Lake Balaton region. Hungary. J. Hydrol., 542, 615–626.

9. Anda, A. Simon, B., Soós, G., Menyhárt, L., Teixeira, da Silva J.A., Kucserka, T.

(2018a): Extending Class A pan evaporation for a shallow lake to simulate the impact of littoral sediment and submerged macrophytes: a case study for Keszthely Bay (Lake Balaton, Hungary). Agr. Forest. Meteorol., 250–251, 277-289.

10. Anda, A. Simon, B., Soós, G., Kucserka, T. (2018b): Estimation of natural water body’s evaporation based on Class A pan measurements in comparison to reference evapotranspiration. Időjárás, 122(1), 41–58.

11. Anda, A., Soós, G. (2014): A nád (Phragmites Australis) párolgása a Balaton környékén. Légkör, 59(4), 145–149.

12. Anda, A., Teixeira da Silva, J.A. Soós, G. (2014): Evapotranspiration and crop coefficient of the common reed at the surroundings of Lake Balaton, Hungary. Aquat.

Bot., 116, 53‒59.

13. Antal, E. (1966): Egyes mezőgazdasági növényállományok potenciális evapotranspirációja. Öntözéses Gazdálkodás, 4, 69–86.

14. Antal, E., Baranyai, S., Kozmáné, T.E. (1977): A Balaton hőháztartása és párolgása.

Hidrológai Közlöny, 57(4), 182–189.

15. Arnell, N. (2002): Hydrology and global environmental change. Prentice Hall, Englewood Cliffs.

16. Asanuma, J., Kamimera, H. (2004): Long-term trend of pan evaporation measurements in Japan and its relevance to the variability of the hydrological cycle. Tenki, 51(9), 667–678.

17. Azhar, A.H., Perera, B. (2010): Evaluation of reference evapotranspiration estimation methods under Southeast Australian conditions. J. Irrig. Drain. Eng., 137, 268–279.

18. Bakó, G. (2012): Nagyfelbontású légifelvétel-térképek alkalmazása a vegetációkutatásban. Kitaibelia, 7(1)17, 1–8.

19. Balling Jr., R.C., Idso, S.B. (1990): Effects of greenhouse warming on maximum summer temperatures. Agr. Forest. Meteorol., 53, 143–147.

20. Bartholy, J., Pongrácz, R. (2019): Global and Regional Climate Change, Extreme Events. In: Palocz-Andresen M., Szalay D., Gosztom A., Sípos L., Taligás T. (eds) International Climate Protection. Springer, Cham, p. 21–28.

21. Behrooz, K., Salim, H., Abderrazek, S., Shun-Peng, Z.,Nguyen-Thoi, T. (2019): SVR-RSM: a hybrid heuristic method for modeling monthly pan evaporation. Environ. Sci.

Pollut. Res., 26, 35807–35826.

22. Belušić Vozila, A., Güttler, I., Ahrens, B., Obermann-Hellhund, A., Telišman Prtenjak, M. (2019): Wind over the Adriatic region in CORDEX climate change scenarios. J. Geophys. Res.-Atmos., 124, 110–130.

23. Benetti, M., Reverdin,G., Pierre, C., Merlivat, L., Risi, C., Steen-Larsen, H.S., Vimeux, F. (2014): Deuterium excess inmarine water vapor: Dependency onrelative humidity and surface windspeed during evaporation. J. Geophys. Res.-Atmos.,119, 584–593.

24. Billy, U.S., Utah, E.U., Akpan, U.E. (2013): Estimation of evaporation rate in Uyo, Nigeria using the modified Penman equation. Canadian J. Pure Appl., Sci., 7(1), 2277–

2281.

25. Bittelli, M., Ventura, F., Campbell, G.S., Snyder, R.L., Gallegati, F., Pisa, P.R. (2008):

Coupling of heat, water vapor, and liquid water fluxes to compute evaporationin bare soils. J. Hydrol., 362 (3), 191–205.

26. Blaney, H.F., Criddle, W.D. (1950): Determining water needs from climatological data. USDA Soil Conservation Service. SOS–TP, USA, 8–9.

27. Blanken, P.D., Rouse, W.R., Culf, A.D., Spence, C., Boudreau, L.D., Jasper, J.N., Kochtubajda, B., Schertzer, W.M., Marsh, P., Verseghy, D. (2000): Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories. Canada.

Water Resour. Res., 36, 1069–1077.

28. Bootsma, A. (1994): Long-term (100 years) climate trends for agriculture at selected locations in Canada. Climatic Change, 26, 65–88.

29. Borbás, V. (1900): A Balaton tavának és partmellékének növényföldrajza és edényes növényzete. BTTE II.2. p. 101–132.

30. Bormann, H. (2011): Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations. Climatic Change, 104, 729–753.

31. Bowen, I. S. (1926): The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27, 779-787.

32. Boyd, C.E. (1985): Pond evaporation. Trans. of Am. Fish. Soc., 114, 299–30.

33. Boyd, C.E. (1987): Evapotranspiration/evaporation (E/R0) ratios for aquatic plants. J.

Aquat. Plant Manage., 25, 1‒3.

34. Bölöni, J., Molnár, Z., Kun, A., Biró, M. (2007): Általános Nemzeti Élőhely-osztályozási Rendszer – ÁNÉR 2007. Vácrátót. p. 184.

35. Breslow, P.B., Sailor, D.J. (2002): Vulnerability of wind power resources to climate change in the continental United States. Renew. Energ., 27, 585–598.

36. Brouwer, C., Heibloem, M. (1986): Irrigation water management: irrigation water needs. FAO, Rome

37. Brunetti, M., Maugeri, M., Monti, F., Nanni, T. (2006): Temperature and precipitation variability in Italy in the last two centuries from homogenized instrumental time series.

Int. J. Climatol., 26, 345–381.

38. Bruton, J.M., McClendon, R.W., Hoogenboom, G. (2000): Estimating daily pan evaporation with artificial neural networks. Trans. Am. Soc. Agric. Eng., 43(2), 491–

496.

39. Brutsaert, W. (1982): Evaporation into the atmosphere: Theory, history, and applications, D. Reidel, Dordrecht, Netherlands.

40. Brutsaert, W., Parlange, M.B. (1998): Hydrologic cycle explains the evaporation paradox. Nature, 396, 30.

41. Budiko, M.I. (1956): Heat balance of the earth surface. Department of Commerce, U.S.

Weather Bureau, Washington. p. 213–230.

42. Budiko, M.I. (1956): Tyeplovoj balasz zemnoj proverhnosztyi. Gidromet. Izd.

Leningrád. 255, 253.

43. Burn, D.H., Hesch, N.M. (2007): Trends in evaporation for the Canadian Prairies. J.

Hydrol., 336, 61–73.

44. Camillo, P.J., Gurney, R.J. (1986): A resistance parameter for bare soil evaporationmodels. Soil Sci., 141(2), 95–105.

45. Casper, S.J., Krausch, H.D. (1980): Süßwasserflora von Mitteleuropa. Pteridophyta und Anthohphyta. 1. Teil: Lycopodiaceae bis Orchidaceae. Jena: Gustav Fischer Verlag. 403.

46. Chambers, P.A., Kalff, J. (1985): Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can. J. Fish. Aquat. Sci., 42, 701–709.

47. Chattopadhyay, N., Hulme, M. (1997): Evaporation and potential evaptranspiration in India under conditions of recent a future climate change. Agr. Forest. Meteorol., 87, 55–73.

48. Chen, J.L., Yang, H., Lv, M.Q, Xiao, Z.L., Wu, S.H. (2019): Estimation of monthly pan evaporation using support vector machine in Three Gorges Reservoir Area, China.

Theor. Appl. Climatol., https://doi.org/10.1007/s00704-019-02871-3.

49. Chen, S.B., Liu, Y.F., Thomas, A. (2006): Climatic change on the Tibetan Plateau:

potential evapotranspiration trend from 1961–2000. Climatic Change, 76, 291–319.

50. Chen, X., Buchberger, S.G., (2018): Exploring the relationships between warm-season precipitation, potential evaporation, and “apparent” potential evaporation at site scale. Hydrol. Earth Syst. Sc., 22, 4535–4545.

51. Chu, C.R., Li, M.H, Chen, C.H., Liu, J.S. (2016): Evaporation rate of a white class A evaporation pan. J. Irrig. Drain. E.-ASCE., 142(6), 04016018.

52. Chu, C.R., Li, M.H., Chen, Y.Y., Kuo, Y.H. (2010): A wind tunnel experiment on the evaporation rate of Class A evaporation pan. J. Hydrol., 381(3–4), 221–224.

53. Ciais, P.H., Reichstein, M., Viovy, N., Granier, A., Ogeé, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., Valentini, R. (2005): Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529–533.

54. Coates, M.J., Folkard, A. (2009): The effects of littoral zone vegetation on turbulent mixing in lakes. Ecol. Model., 220, 2714–2726.

55. Cohen, S., Ianetz, A., Stanhill, G. (2002): Evaporative climate changes at Bet Dagan, Israel, 1964–1998. Agr. Forest. Meteorol. 111, 83–91.

56. Cohen, S., Strzepek, K.M., Yates, D.N. (1996): Climate change and water balance components. In: Kaczmarek, Z., Strzepek, K.M., Somlyody, L., Priazhinskaya, V.

(eds) Water resources management in the face of climatic/hydrologic uncertainties.

International Institute for Applied Systems Analysis, Laxenburg.

57. Conceição, M.A.F. (2002): Reference evapotranspiration based on class A pan evaporation. Sci. Agr., 59(3), 417–420.

58. Cong, Z.T., Yang, D.W., Ni, G.H. (2009): Does evaporation paradox exist in China?

Hydrol. Earth Syst. Sc., 13, 357–366.

59. Coulibaly, P. (2004): Downscaling daily extreme temperatures with genetic programming. Geophys. Res. Lett., 31, L16203.

60. Cuenca, R.H. (1989): Irrigation system design: An engineering approach, Prentice-Hall, Englewood Cliffs, NJ.

61. Dai, A.G. (2006): Recent climatology, variability, and trends in global surface humidity. J. Clim. 19(15), 3589–3606.

62. Dale, H.M., Gillespie, T.J. (1977): Diurnal fl uctuations of temperature near bottom of shallow-water bodies as affected by solar-radiation, bottom color and water circulation. Hydrobiologia., 55, 87–92.

63. Dale, H.M., Gillespie, T.J. (2011): The influence of submersed aquatic plants on temperature gradient in shallow water bodies. Can. J. Botany., 55(16), 2216–2225.

64. Dalton, J. (1801): J. Nat. Philos. Chem. Arts., 5, 241–244.

65. de Bruin, H.A.R. (1978): A simple model for shallow lake evaporation. J. App.

Meteorol., 17, 1132–1134.

66. de Bruin, H.A.R., Keijman, J.Q. (1979): The Priestley-Taylor evaporation model applied to a large shallow lake in the Netherlands. J. App. Meteorol., 18, 898–903.

67. de Vries, D.A., Venema, H.J. (1954): Some considerations an the behaviour of the Piche evaporimeter. Vegetat. Acta Geobot., 8, 225–234.

68. Deng, B., Liu, S., Xiao, W., Wang, W., Jin, J., Lee, X. (2013): Evaluation of the CLM4 lake model at a large and shallow freshwater lake. J. Hydrometeorol., 14, 636–649.

69. Dessler, A.E., Sherwood, S.C. (2009): A matter of humidity. Science, 323(5917), 1020–1021.

70. Diffenbaugh, N.S., Ashfaq, M., Scherer, M. (2011): Transient regional climate change:

analysis of summer climate response in a high-resolution, century-scale ensemble experiment over the continental United States. J. Geo. Res., 1(16), D24111.

71. Dolman, A.J., de Jeu, R.A.M. (2010): Evaporation in focus. Nat. Geosci., 3, 296.

72. Doorenbos, J., Pruitt, W. O. (1977): Guidelines for predicting crop water requirements.

FAO Irrigation and Drainage, Rome.

73. Doorenbos, J., Pruitt, W.O. (1977): Guidelines for predicting crop water requirements.

FAO Irrigation and Rainage Paper, 24, 1–144.

74. Dunay, S. (1966): Párolgásmérés A típusú kádakkal. Időjárás, 70(6), 337–347.

75. Dunay, S., Posza, I., Varga-Haszonits, Z. (1968): Egyszerű módszer a tényleges evapotranspiráció és a talaj vízkészletének meghatározására. I. A párolgás meteorolgóiája. Öntözéses Gazdálkodás, 4(2), 39–48.

76. El Kenawy A.M, Lopez-Moreno J.I., McCabe M.F., Robaa S.M., Domínguez-Castro F., Peña-Gallardo M., Trigo R.M., Hereher M.E (2019): Daily temperature extremes over Egypt: Spatial patterns, temporal trends, and driving forces. Atmos. Res., 226, 219–239.

77. El Kenawy, A., López-Moreno, J.I., Vicente-Serrano, S.M. (2012): Trend and variability of surface air temperature in northeastern Spain (1920–2006): linkage to atmospheric circulation. Atmos. Res., 106, 159–180.

78. El Kenawy, A.M., López-Moreno, J.I., Stepanek, P., Vicente-Serrano, S.M. (2013):

An assessment of the role of homogenization protocol in the performance of daily temperature series and trends: application to northeastern Spain. Int. J. Climatol., 33(1), 87–108.

79. Entz G., Sebestyén O. (1940): A Balaton élete. MBKM 12(1), 169.

80. Entz G., Sebestyén O. (1942): A Balaton élete. M.Kir. Magy. Term. Tud. Társ. Kiadv.

Budapest, p. 266–296.

81. Evans, J.P. (2009): 21st century climate change in the Middle East. Climate Change, 92(3), 417–432.

82. Fan, J., Chen, B., Wu, L. (2018a): Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy, 144, 903–914.

83. Fan, J., Wang, X., Wu, L. (2018b). New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: A cases tudy in South China. Energ. Convers. Manage. 156, 618–625.

84. Fan, L.J., Fu, C.B., Chen, D.L. (2007): Estimation of local temperature change scenarios in North China using statistical downscaling method. Chin. J. Atmos. Sci., 31(5), 887–897.

85. Feulner, G. (2019): The Future of Earth’s Climate After Paris. In: Palocz-Andresen M., Szalay D., Gosztom A., Sípos L., Taligás T. (eds) International Climate Protection.

Springer, Cham, p. 5–11.

86. Florentina-Iuliana, S., Neculau, G., Zaharia, L., Toroimac, G., Mihalache, S. (2016):

Study on the evaporation and evapotranspiration measured on the Căldăruşani Lake (Romania). Procedia Environ. Sci., 32, 281–289.

87. Folland, C.K., Karl, T.P., Christy, J.R., Clarke, R.A., Gruza, G.V., Jouzel, J., Mann, M.E., Oerlemans, J., Salinger, M.J., Wang, S.W. (2001): Observed climate variability and change. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaoxu, D. (Eds.), Chapter 2 of Climate Change 2001; the Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, p. 99–181.

88. Folland, C.K., Miller, C., Bader, D., Crowe, M., Jones, P., Plummer, N., Richman, M., Parker, D.E., Rogers, J., Scholefield, P., (1999): In: Proceedings of the Workshop on the indices and indicators for climate extremes, Asheville, NC, USA, 3–6 June 1997, Breakout Group C. Temperature indices. Climatic Change, 43, 31–43.

89. Friedrich, K., Grossman, R.L., Huntington, J., Blanken, P.D., Lenters, J., Holman, K.L.D., Gochis, D., Livneh, B., Prairie, J., Skeie, E., Healey, N.C., Dahm, K., Pearson, C., Finnessey, T., Hook, S.J., KowaLsKi, T. (2018): Reservoir evaporation in the Western United States. B. Am. Meteorol. Soc., 99, 167–187.

90. Fu, G.B., Charles, S.P., Yu, J.J. (2009): A critical overview of pan evaporation trends over the last 50 years. Climatic Change, 97, 193–214.

91. Fu, G.B., Liu, C., Chen, S., Hong, J. (2004): Investigating the conversion coefficients for free water surface evaporation of different evaporation pans. Hydrol. Process., 18, 2247–2262.

92. Gat, J. R. (1996): Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev.

Earth Pl. Sc., 24, 225–262.

93. Gat, J.R., Klein, B., Kushnir, Y., Roether, W., Wernli, H., Yam, R., Shemesh, A.

(2003): Isotope composition of air moisture over the Mediterranean Sea: An index of the air–sea interaction pattern, Tellus. Ser. B., 55, 953–965.

94. Ghaemi, A., Rezaie-Balf, M.,Adamowski, J., Kisi,O., Quilty, J. (2019): Onthe applicability of maximum overlap discrete wavelet transform in te grated with MARS and M5 model tree for monthly pan evaporation prediction. Agr. Forest. Meteorol., 278, 107647.

95. Ghorbani, M.A., Deo, R.C., Karimi, V., Yaseen, Z.M., Terzi, O. (2018):

Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stoch. Env. Res. Risk. A., 32(6), 1683–1697.

96. Gifford, R.M., Farquhar, G.D., Nicholls, N., Roderick, M.L. (2005): Workshop summary on pan evaporation: an example of the detection and attribution of climate change variables. In: Pan evaporation: an example of the detection and attribution of trends in climate variables. Austr. Academy of Sci., p. 4–19.

97. Golubev, V., Lawrimore, J.H., Groisman, P.Y., Speranskaya, N.A., Zhuravin, S.A., Menne, M.J., Peterson, T.C., Malone, R.W (2001): Evaporation change over the contiguous United States and the former USSR: A reassessment. Geo. Res. Let., 28(13), 2665–2668.

98. Gombos, I. (2011): Hidrológia – Hidraulika. Szent István Egyetem, Gépészmérnöki Kar, p. 24–35.

99. Grace, J. (1983): Plant–atmosphere Relationships (Outline Studies in Ecology).

Chapman and Hall, London, 92.

100. Grismer, M.E., Orang, M., Snyder, R., Matyac, R. (2002): Pan evaporation to reference evapotranspiration conversion methods. J. Irrig. Drain. Eng., 128(3), 180–184.

101. Groisman, P.Y., Karl, T.R., Easterling, D.R., Knight, R.W., Jamason, P.F., Hennessy, K.J., Suppiah, R., Page, C.M., Wibig, J., Fortuniak, K., Razuvaev, V.N., Douglas, A., Forland, E., Zhai, P. (1999): Changes in the probability of heavy precipitation:

important indicators of climatic change. Climatic Change, 42, 243–283.

102. Groisman, P.Y., Knight, R.W., Karl, T.R., Easterling, D.R., Sun, B., Lawrimore, J.

(2004): Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations. J. Hydrometeorol., 5, 64–85.

103. Gruza, G., Rankova, E., Razuvaev, V., Bulygina, O. (1999): Indicators of climate change for the Russian Federation. Climatic Change, 42, 219–242.

104. Guo, J., Ren, G.Y. (2005): Recent change of pan evaporation and possible climate factors over the Huang-Huai-Hai watershed, China. Adv. Water Sci., 16, 666–672.

105. Hamon, W.R. (1961): Estimating potential evapotranspiration., Proc. Amer. Soc. Civ.

Engrs., 87, 107-120.

106. Handley, R.J., Davy, A.J. (2005): Temperature effects on seed maturity and dormancy cycles in an aquatic annual, Najas marina, at the edge of its range. J. Ecol., 93, 1185–

1193.

107. Hanemann, M., Labandeira, X., Loureiro, M.L. (2011): Climate change, energy and social preferences on policies: exploratory evidence for Spain. Clim. Res., 48, 343–

348.

108. Hansen, J., Ruedy, R., Sato, M., Lo, K. (2010): Global surface temperature change.

Rev. Geophys., 48, RG4004.

109. Hargreaves, G.L., Hargreaves, G.H., Riley, J.P. (1985): Agricultural benefits for Senegal River basin. J. Irrig. Drain. Eng., ASCE, 111(2), 113–124.

110. Harmsen, E.W., Gonzalez-Perez, A., Winter, A. (2004): Re-evaluation of pan evaporation coefficients at seven locations in Puerto Rico. J. Agr. U. Puerto Rico, 88, 109–122.

111. Hasanean, H.M. (2004): Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int. J. Climatol., 24(8), 985–999.

112. Hess, T.M., Stephens, W., Maryah, U.M. (1995): Rainfall trends in the north east arid zone of Nigeria 1961–1990. Agr. Forest. Meteorol., 74, 87–97.

113. Hlásny, T., Mátyás, Cs, Seidl, R., Kulla, L., Mergaicová, K., Trombik, J., Dobor, L., Barcza, Z., Konopka, B. (2014): Climate change increases the drought risk in Central European forests: what aretheoptionsforadaptation? Forestry Journal, 60(1), 5–18.

114. Hobbins, M.T., Ramírez, J.A., Brown, T.C. (2004): Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL019846.

115. Holmes, R.M. (1962): Estimation of soil moisture content using evaporation data.

Proceedings of Hydrology Symposium, Toronto, 1, 184–199.

116. Holmes, R.M., Robertson, G.W. (1959): A modulated soil moisture budget. Motnhly Weather Review, 101–106.

117. Horton, B. (1995): The geographical distribution of changes in maximum and minimum temperatures. Atmos. Res., 37, 101–117.

118. Hounam, C.E. (1973): Comparison between Pan and Lake Evaporation. WMO technical note no. 126, Geneva, Svájc.

119. Huang, H.L., Gumley, L.E., Strabala, K.I., Li J., Weisz, E., Rink, T., Bagget, K.C., Davies, J.E., Smith, W.L., Dodge, J.C. (2004): International MODIS and AIRS processing package (IMAPP): A direct broadcast software package for the NASA Earth Observing System. B. Am. Meteorol. Soc., 85, 159–161.

120. Huzsvai, L., Rajkai, K., Szász, G. (2005): Az agroökológia modellezéstechnikája.

Párolgás. Debreceni Egyetem Agrártudományi Centrum, p. 29–45.

121. IPCC (Intergovernmental Panel on Climate Change) (2007): Climate change. The physical science basis. Working Group I. Contribution to the fourth assessment report of the IPCC, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. New York: Cambridge University Press.

122. IPCC (Intergovernmental Panel on Climate Change) (2012): Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Tignor, M., Midgley P.M. (eds.)].

Cambridge University Press, Cambridge, UK, and New York, NY, USA, p. 582.

123. IPCC (Intergovernmental Panel on Climate Change) (2013): Climate change 2013: the physical science basis. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1535.

124. Irmak, S., Haman, D.Z., Jones, J.W. (2002): Evaluation of Class A pan coefficients for estimating reference evapotranspiration in humid location. J. Irrig. Drain. Eng., 128(3), 153–159.

125. Istvánovics, V., Honti, M., Kovács, Á., Osztoics, A. (2008): Distribution of submerged macrophytes in relation to environmental conditions in large shallow Lake Balaton (Hungary). Aqua. Bot., 88, 317–330.

126. Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S.P., Vautard, R., Donnelly, C., Koutroulis, A.G., Grillakis,M.G., Tsanis, I.K., Damm, A., Sakalli, A., van Vliet, M.T.H. (2018): Climate impacts in Europe under +1.5 °C global warming. Earth’s Future, 6, 264–285.

127. Jakimavičius, D., Kriaučiūnienė, J., Gailiušis, B., Šarauskienė, D. (2013): Assessment of uncertainty in estimating the evaporation from the Curonian Lagoon. Baltica, 26, 177–186.

128. Janse, J.H., Scheffer, M., Lijklema, L., Van Liere, L., Sloot, J.S., Mooij, W.M. (2010):

Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: Sensitivity, calibration and uncertainty. Ecol. Model. 221(4), 654–665.

129. Jensen, M.E., Robb, D.C., Franzoy, C.E. (1970): Scheduling irrigations using climate-crop soil data. Proceedings of the American Society of Civil Engineers. J. Irr. Drain.

Div.-ASCE, 96, 25–38.

130. Jensen, M.E., Wright, J.L., Pratt, B.S. (1971): Estimation soil moisture depletion from climate, crop and soil data. Trans. Am. Soc. Agr. Eng.-ASE, 14, 954–959.

131. Jhaiharia, D., Shrivastava, S.K., Sarkar, D., Sarkar, S. (2009): Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agr. Forest.

Meteorol., 149(5), 763–770.

132. Jhajharia, D., Singh, V.P. (2011): Trends in temperature, diurnal temperature range and sunshine duration in Northeast India. Int. J. Climatol., 31, 1353–1367.

133. Ji, Y.H., Zhou, G.S. (2011): Important factors governing the incompatible trends of annual pan evaporation: Evidence from a small scale region. Climatic Change, 106(2), 303–314.

134. Jiménez-Rodríguez, C.D., Esquivel-Vargas, C., Coenders-Gerrits, M., Sasa-Marín, M.

(2019): Quantification of the Evaporation Rates from Six Types of Wetland Cover in Palo Verde National Park, Costa Rica. Water, 11(4), 674, DOI: 10.3390/w11040674.

135. Juhász, E. (1981): A Balaton hínártérképezése. Hidrológiai Közlöny, 61, 315–321.

136. Kahler, D.M., Brutsaert, W. (2006): Complementary relation between daily evaporation in the environment and pan evaporation. Water Resour. Res., 42, W05413.

137. Kelly, M., Tuxen, K.A., Stralberg, D. (2011): Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that a reconsistent a cross spatial scale and time. Ecol. Indic., 11(2), 263–273.

138. Keshtegar, B., Piri, J., Kisi, O. (2016): A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput. Electron. Agric., 127, 120–130.

139. Kisi, O. (2015): Pan evaporation modeling using leasts quare support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol., 528, 312–320.

140. Kisi, O., Genc, O., Dinc, S., Zounemat-Kermani, M. (2016):

Dailypanevaporationmodeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Comput. Electron. Agr., 122, 112–

117.

141. Kjellström, E., Nikulin, G., Strandberg, G., Christensen, O.B., Jacob, J., Keuler, K., Lenderink, L., van Meijgaard, E., Schär,C., Somot, S., Sørland, S.L., Teichmann, C.,Vautard,R. (2018): European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth Syst. Dynam., 9, 459–478.

142. Kohler, M.A. (1954): Pan evaporation: water loss investigations: Lake Hefner. US Geol. Survey, 269,127–148.

143. Kohut, M., Roznovsky, J., Knozová, G. (2014): Comparison of actual evaporation from water surface measured by GGI-3000 evaporimeter with values calculated by the Penman equation. Contr. Geoph. Geod., 44(3), 231–240.

144. Kondo, J., Saigusa, N., Sato, T. (1990): A parameterization of evaporation from baresoil surfaces. J. Appl. Meteorol., 29, 385–389.

145. Kosztantinov, K.Y (1968): Iszparenyie v prirode. Gidromet. Izd., Leningrád. p. 150–

53.

146. Kovács, Á. (2011): Tó- és területi párolgás becslésének pontosítása és magyarországi alkalmazásai. PhD értekezés, Budapesti Műszaki és Gazdaságtudományi Egyetem, Vásárhelyi Pál Építőmérnöki és Földtudományi Doktori Iskola, p. 30–35.

147. Közép-dunántúli Vízügyi Igazgatóság (2015): A Balaton és a tórészek havi

152. Kruger, A.C., Shongwe, S. (2004): Temperature trends in South Africa: 1960–2003.

Int. J. Climatol., 24, 1929–1945.

153. Kruzselyi, I., Bartholy, J., Horányi, A., Pieczka, I., Pongrácz, R., Szabó, P., Szépszó, G., Torma, Cs. (2011): The future climate characteristics of the Carpathian Basin based on a regional climate model mini-ensemble. Adv. Sci. Res., 6, 69–73.

154. Kurita, N. (2011): Origin of Arctic water vapor during the ice-growth season.

Geophys. Res. Lett.,38, L02709.

155. Kurita, N. (2013): Water isotopic variability in response to mesoscale convective system over the tropical ocean. J. Geophys. Res.-Atmos.,118, 10376–10390.

156. Kurita, N., Noone, D., Risi, C., Schmidt, G.A., Yamada, H., Yoneyama K. (2011):

Intraseasonal isotopic variation associated with the Madden-Julian Oscillation. J.

Geophys. Res.,116, D24101.

157. Lawrimore, J.H., Peterson, T.C. (2000): Pan evaporation trends in dry and humid regions of the United States. J. Hydrometeor., 1, 543–546.

158. Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E., Zittis, G. (2016):

Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Climatic Change, 137(1), 245–260.

159. Lenters, J.D., Cutrell, G.J., Istanbulluoglu, E., Scott, D.T., Herrman, K.S., Irmak, A., Eisenhauer, D.E. (2011): Seasonal energy and water balance of a Phragmites australisdominated wetland in the Republican River basin of south-central Nebraska (USA). J. Hydrol., 408(1–2), 19–34.

160. Lenters, J.D., Kratz, T.K., Bowser, C.J. (2005): Effects of climate variability on lake evaporation: results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). J. Hydrol., 308, 168–195.

161. Li, L., Yao, N., Li, Y., Liu, D.L., Wang, B., Ayantobo, O.O. (2019): Future projections of extreme temperature events in different sub-regions of China. Atmos. Res., 217, evapotranspiration products in the middle Yellow River Basin, China. Hydrol. Res., 48(2), DOI: 10.2166/nh.2016.120.

164. Li, Y., Liu, C., Liang, K. (2016b): Spatial patterns and influence factors of conversion coefficients between two typical pan evaporimeters in China. Water, 8(10), 422.

165. Lim, W.H., Roderick, M.L., Hobbins, M.T., Wong, S.C., Farquhar, G.D. (2013): The energy balance of a US Class A evaporation pan. Agr. Forest. Meteorol., 182–183, 314–331.

166. Limjirakan, S.C., Limsakul, A. (2012): Trends in Thailand pan evaporation from 1970 to 2007. Atmos. Res., 108, 122–127.

167. Linacre, E. (1992): Climate Data and Resources . Routledge, New York, p. 366.

168. Linacre, E.T. (1994): Estimating US Class A pan evaporation from few climate data.

168. Linacre, E.T. (1994): Estimating US Class A pan evaporation from few climate data.