• Nem Talált Eredményt

124

125

[25] P. C. J. Payne, “Relationship between the Mechanical Properties of Soil and the Performance of Simple Cultivating Implements,” J Agric Eng Res, no. 1, pp. 23–50, 1956.

[26] P. C. J. Payne, “A Field Method of Measuring Soil-Metal Friction.,” J Soil Sci., vol. 7., no. 2., pp. 235–241., 1956.

[27] D. R. P. Hettiaratchi és A. R. Reece, “Symmetrical three-dimensional soil failure,” J.

Terramechanics, vol. Vol.4, no. 3, pp. 45–67, 1967.

[28] J. R. Godwin és G. Spoor, “Soil failure with narrow tines.,” J. Agric. Eng. Res., no. 22, pp. 213–

228, 1977.

[29] J. V. Stafford, “The Performance of a Rigid Tine in Relation to Soil Properties and Speed,” J Agric Eng Res, vol. 24, pp. 41–56, 1979.

[30] J. V. Stafford, “Force Prediction Models for Brittle and Flow Failure of Soil by Draught Tillage Tools,” J Agric Eng Res, vol. 29, pp. 51–60, 1984.

[31] D. Zeng és Y. Yao, “A dynamic model for soil cutting by blade and tine,” J. Terramechanics, vol. 29, no. 3, pp. 317–327, 1992.

[32] R. N. Yong és A. W. Hanna, “Finite element Analysis of Plane Soil Cutting,” J. Terramechanics, vol. Vol. 14, no. No.3., pp. 103–125, 1977.

[33] D. Glee-Clough, J. Wang, és W. Kanok-Nukulchai, “Deformation and Failure in Wet Clay Soil:

Part 3, Finite Element Analysis of Cutting of Wet Clay by Tines,” J Agric Eng Res, vol. 58, pp.

121–131, 1994.

[34] K. Tamás és J. I. Jóri, “FEM Analysis of The Soil-Tool (Sweep) Interaction,” J. Agric. Mach.

Sci., vol. 5, no. 4, pp. 435–444, 2009.

[35] K. Tamás, J. Rádics, és J. I. Jóri, “FEM analysis of soil-tool interaction using the VCCT method,” Synerg. Dev. Int Conf Agr Eng 9 P Gödöllő Mo. 20090830-20090903 Gödöllő N Pp 1-9 Vol IV Comput. Aided Eng. Farming ISBN 1-978-1-963-261-9-112-4, 2001-9.

[36] K. Tamás és J. I. Jóri, “FEM analysis of soil-tool interaction using the VCCT method,” Synerg.

Dev. Int Conf Agr Eng 9 P Gödöllő Mo. 20090830-20090903 Gödöllő, vol. ISBN: 978–963–

269–112–4, no. IV., pp. 1–9, 2009.

[37] Liu Yan és Hou Zhi-Min, “Three Dimensional Nonlinear Finite element Analysis of Soil Cutting by Narrow Blades,” Soil Dyn. Relat. Tillage Mach. Syst., vol. Conference on Soil Dynamics, Auburn, Alabama, no. Proceedings Vol.2., pp. 322–337, 1985.

[38] Xie Xiao-Mi és Zhang De-Jun, “An Approch to 3D Nonlinear FE Simulative Method for Investigation os Soil-Tool Dynamic System,” Soil Dyn. Relat. Tillage Mach. Syst., vol.

International Conference on Soil Dynamics, Proceedings, no. Vol.2. Auburn, Alabama, June, 1995.

[39] L. Chi és R. L. Kushwaha, “Three-Dimensional, Finite Element Interaction between Soil and Simple Tillage Tool,” Trans ASAE, vol. Vol. 34 (2), no. March-April, pp. 361–366, 1991.

[40] M. Abo-Elnor, R. Hamilton, és J. Boyle, “3D Dynamic analysis of soil–tool interaction using the finite element method,” J. Terramechanics, vol. 40, no. 1, pp. 51–62, Jan. 2003.

[41] S. Karmakar és R. L. Kushwaha, “Dynamic modeling of soil–tool interaction: An overview from a fluid flow perspective,” J. Terramechanics, vol. 43, no. 4, pp. 411–425, Oct. 2006.

[42] S. K. Upadhyaya, U. A. Rosa, és D. Wulfsohn, “Application of the finite element method in agricultural soil mechanics,” Adv. Soil Dyn. ASAE St Joseph M, vol. 2, pp. 117–153, 2002.

[43] C. Plouffe, C. Lague, S. Tessier, M. J. Richard, és N. B. McLaughlin, “Moldboard plow performance in a clay soil: simultaneous and experiment,” Trans ASAE, vol. 42, no. 6, pp. 1531–

1539, 1999.

[44] R. L. Kushwaha és Z. X. Zhang, “Evaluation of factors and current approaches related to computerized design of tillage tools: a review.,” J. Terramechanics, vol. 35, pp. 69–86., 1998.

[45] A. M. Mouazen és M. Neményi, “A review of the finite element modelling techniques of soil

tillage,” Math. Comput. Simul., vol. 48, no. 1, pp. 23–32, 1998.

126

[46] L. K. Karafiath és E. A. Nowatzki, “Soil Mechanics for Off-Road Vehicle Engineering,” Trans Tech Publ. Clausthal Ger., 1978.

[47] M. Urbán, K. Kotrocz, és Gy. Kerényi, “Investigation of the soil-tool interaction by SPH (Smooth Particle Hydrodynamics) based simulation,” Int. Conf. Agric. Enginering CIGR-AgEng2012 Valencia, p. P–1437, 2012.

[48] T. Major és V. Csanády, “Application of Numerical Analysis for the Design of Rotating Tools,”

Hung. Agric. Eng., vol. 26, pp. 16–19, 2014.

[49] P. A. Cundall, “A computer model for simulation progressive large scale movement in blocky rock system,” Proc Symp Int Soc Rock Mech, vol. Nancy 2, no. No. 8., 1971.

[50] P. A. Cundall és O. D. I. Strack, “A discrete numerical model for granular assemblies.,”

Geotechnique, vol. 29, pp. 47–65., 1979.

[51] C. G. I. Itasca, “PFC3D (Particle Flow Code in 3 Dimensions), Version 4.0. Minneapolis: ICG,”

2008.

[52] D. O. Potyondy, P. A. Cundall, és C. Lee, “Modeling Rock Using Bonded Assemblies of Circular Particles,” Proc. Second North Am. Rock Mech. Symp. – NARMS’96 Montr. Can. June 1996, pp. 1937–1944, 1996.

[53] P. W. Cleary, “The filling of dragline buckets.,” Math.Eng.Ind., vol. 7, no. 1, pp. 1–24, 1998.

[54] D. R. J. Owen, Y. T. Feng, E. A. De Souza Neto, M. Cottrell, F. Wong, F. M. Andrade Pires, és J. Yu, “The modeling of multi-fracture solids and particulate media,” Proc. Fifth World Congr.

Comput. Mech. WCCN V Vienna Austria, 2002.

[55] H. Tanaka, K. Inooku, Y. Nagasak, M. Miyzaki, O. Sumikawa, és A. Oida, “Simulation of loosening at subsurface tillage using a vibrating type subsoiler by means of the distinct element method,” Proc. Eighth Eur. ISTVS Conf. Umea, pp. 32–37, 2000.

[56] H. Tanaka, M. Momozo, A. Oida, és M. Yamazaki, “Simulation of soil deformation and resistance at bar penetration by distinct element method,” J Terramech, vol. 37, pp. 41–56, 2000.

[57] D. A. Horner, J. F. Peters, és A. Carrillo, “Large scale discrete element modeling of vehicle–soil interaction.,” J EngMech, vol. 127, no. 10, pp. 1027–1032, 2001.

[58] K. Hofstetter, “Analytic method to predict the dynamic interaction of dozer blade with earthen material.,” Proc. 14th Int. Conf. ISTVS Vicksbg. MS USA, 2002.

[59] Y. Franco, “Determination of discrete element model parameters for soil–bulldozer blade interaction.,” Master’s Thesis Agric. Eng. Tech.-Isr. Inst. Technol., 2005.

[60] R. Zhang és J. Li, “Simulation on mechanical behavior of cohesive soil by Distinct Element Method,” J. Terramechanics, vol. 43, no. 3, pp. 303–316, Jul. 2006.

[61] L. Wu és F. Qu, “Discrete element simulation of mechanical characteristic of conditioned sands in earth pressure balance shield tunneling,” J. Cent. South Univ. Technol., vol. 16, no. 6, pp.

1028–1033, Dec. 2009.

[62] P. A. Cundall és O. D. I. Stack, “Modeling of microscopic mechanics in granular material.,”

Jenkins JT Satake M Eds Mech. Granul. Mater. New Models Const. Relat. Elsevier Amst., pp.

113–149, 1982.

[63] L. E. Taylor és D. S. Preece, “Simulation of blasting induced rock motion using spherical element model,” J.Eng.Comput., vol. 9, pp. 243–252, 1992.

[64] K. Walton, “The effective elastic moduli of random packing of spheres,” J.Mech.Phys.Solids, vol. 35, no. 3, pp. 213–226, 1987.

[65] C. S. Chang, “Micromechanical modeling of constitutive relations for granular materials.,”

Jenkins JT Satake M Eds Micromechanics Granul. Elsevier Amst., pp. 271–278, 1988.

[66] L. Rothenburg és J. R. Bathurst, “Analytical study of anisotropy in idealized granular materials,”

Geotechnique, vol. 39, no. 4, pp. 601–614, 1989.

[67] C. S. Chang és J. Gao, “Second-gradient constitutive theory for granular materials with random

packing structure.,” Int J Solids Struct, vol. 32, no. 16, pp. 2279–2293, 1995.

127

[68] C. S. Chang, C. L. Liao, és Q. Shi, “Elastic granular materials modeled as first order strain gradient continua.,” Int J Solids Struct, vol. 40, pp. 5565–5582., 2003.

[69] C. L. Liao és C. S. Chang, C.S., 1997. "Stress strain relationship for granular materials based on the hypothesis of best fit." Int. J. Solids Struct. 34 (31), 4087–4100., pp. 4087–4100, 1997.

[70] A. Oida, H. Schwanghart, és S. Ohakubo, “Effect of tire lug cross section on tire performance simulated by distinct element method,” Proc. 13th Int. Conf. ISTVS Munich, vol. 345–352, 1999.

[71] Z. Asaf, D. Rubinstein, és I. Shmulevich, “Evaluation of linktrack performances using DEM.,” J.

Terramechanics, no. 43, pp. 141–161, 2006.

[72] D. Rubinstein, S. K. Upadhyaya, és M. Sima, “A response surface methodology for determination of engineering properties of soil in-situ,” Int J Agrophys, no. 8, pp. 113–130, 1994.

[73] D. Rubinstein és S. K. Upadhyaya, “In-situ determination of engineering properties of soil,” J Agric Eng Res, vol. 78, no. 2, pp. 199–207, 2001.

[74] A. Bagherzadeh-Khalkhali és A. A. Mirghasemi, “Numerical and experimental direct shear tests for coarse-grained soils,” Particuology, vol. 7, no. 1, pp. 83–91, Feb. 2009.

[75] M. R. Kuhn és K. Bagi, “Specimen Size Effect in Discrete Element Simulations of Granular Assemblies,” J. Eng. Mech., vol. 135, no. 6, June 1, pp. 485–492, 2009.

[76] M. P. J. Schöpfer, S. Abe, C. Childs, és J. J. Walsh, “The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling,” Int. J. Rock Mech. Min. Sci., vol. 46, no. 2, pp. 250–261, Feb. 2009.

[77] M. Obermayr, K. Dressler, C. Vrettos, és P. Eberhard, “Prediction of draft forces in cohesionless soil with the Discrete Element Method,” J. Terramechanics, vol. 48, no. 5, pp. 347–358, Oct.

2011.

[78] M. Obermayr, K. Dressler, C. Vrettos, és P. Eberhard, “A bonded-particle model for cemented sand,” Comput. Geotech., vol. 49, pp. 299–313, Apr. 2013.

[79] C. J. Coetzee és D. N. J. Els, “Calibration of granular material parameters for DEM modelling and numerical verification by blade–granular material interaction,” J. Terramechanics, vol. 46, no. 1, pp. 15–26, Feb. 2009.

[80] E. L. Bravo, E. Tijskens, M. H. Suárez, O. Gonzalez Cueto, és H. Ramon, “Prediction model for non-inversion soil tillage implemented on discrete element method,” Comput. Electron. Agric., vol. 106, pp. 120–127, Aug. 2014.

[81] Y. Chen, L. J. Munkholm, és T. Nyord, “A discrete element model for soil–sweep interaction in three different soils,” Soil Tillage Res., vol. 126, pp. 34–41, Jan. 2013.

[82] M. A. Sadek, Y. Chen, és J. Liu, “Simulating shear behavior of a sandy soil under different soil conditions,” J. Terramechanics, vol. 48, no. 6, pp. 451–458, Dec. 2011.

[83] I. Ono, H. Nakashima, H. Shimizu, J. Miyasaka, és K. Ohdoi, “Investigation of elemental shape for 3D DEM modeling of interaction between soil and a narrow cutting tool,” J. Terramechanics, vol. 50, no. 4, pp. 265–276, Aug. 2013.

[84] M. Obermayr, C. Vrettos, P. Eberhard, és T. Däuwel, “A discrete element model and its experimental validation for the prediction of draft forces in cohesive soil,” J. Terramechanics, vol. 53, pp. 93–104, Jun. 2014.

[85] M. Ucgul, J. M. Fielke, és C. Saunders, “3D DEM tillage simulation. Part 2: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil,” Soil Tillage Res., Dec. 2013.

[86] J. M. Fielke, “The Influence of the Geometry of Chisel Plough Share Wings on Tillage Forces in Sandy Loam Soil,” Dep. Civ. Agric. Eng. Univ. Melb. Master Eng., 1988.

[87] M. Ucgul, J. M. Fielke, és C. Saunders, “Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil,”

Biosyst. Eng., vol. 121, pp. 105–117, May 2014.

128

[88] Z. Asaf, D. Rubinstein, és I. Shmulevich, “Comparison of the shear stress–displacement relationships of semi-empirical and discrete-element models.,” Proc. Ninth Eur. ISTVS Conf.

New PortUnited Kingd., 2003.

[89] Z. Asaf, I. Shmulevich, és D. Rubinstein, “Predicting soil-vehicle performances using distinct element methods.,” 2004 ASAECSAE Annu. Int. Meet. Ott., 2004.

[90] Z. Asaf, D. Rubinstein, és I. Shmulevich, “Evaluation of link-track performances using DEM,” J.

Terramechanics, vol. 43, no. 2, pp. 141–161, Apr. 2006.

[91] K. Tamás és J. I. Jóri, “Analysis of the soil-tool (sweep) interaction,” Sustain. Biosyst. Eng.

CIGR XVIIth World Congr. Quebec City Kan. 20100613-20100617 Quebec City pp. 1-11 Pap.

101375 ISBN 978- 2-9811062-1-6, 2010.

[92] L. Fenyvesi és I. J. Jóri, “Newest experiments with active soil tillage tools,” CIGR Beijing Proc.

Sess. IV 2004 CIGR Int. Conf., no. China Agricultural Science and Technology Press, pp. 102–

106, 2004.

[93] R. Zhang, J. Q. Li, és Y. W. Li, “Development of simulation on mechanical dynamic behavior of soil by distinct element method,” Trans. Chin. Soc. Agric. Eng., vol. 19, no. 1, pp. 9–16, 2003.

[94] J. Mak, Y. Chen, és M. A. Sadek, “Determining parameters of a discrete element model for soil–

tool interaction,” Soil Tillage Res., vol. 118, pp. 117–122, Jan. 2012.

[95] I. Schmulevich, Z. Asaf, és R. Catav, “Discrete Element Modeling of Cohesive Grain Materials,”

2012.

[96] D. O. Potyondy és P. A. Cundall, “A bonded-particle model for rock,” Int. J. Rock Mech. Min.

Sci., vol. 41, pp. 1329–1364, 2004.

[97] K. Bagi, A DISZKRÉT ELEMEK MÓDSZERE. Budapest, 2007.

[98] P. Primusz, “Szemcserendszerek diszkrételemes modellezése a PFC szoftverrel,” Útügyi Lapok, no. 4., 2014.

[99] M. Ucgul, J. M. Fielke, és C. Saunders, “Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion,” Biosyst. Eng., vol. 129, pp. 298–306, Jan.

2015.

[100] B. Li, Y. Chen, és J. Chen, “Modeling of soil–claw interaction using the discrete element method (DEM),” Soil Tillage Res., vol. 158, pp. 177–185, 2016.

[101] J. Mak és Y. Chen, “Simulation of Draft Forces of a Sweep in a Loamy Sand Soil Using the Discrete Element Method.,” Can. Biosyst. Eng., vol. 56, 2014.

[102] M. A. Sadek és Y. Chen, “Feasibility of Using PFC3D to Simulate Soil Flow Resulting from a Simple Soil-Engaging Tool,” Trans. ASABE, vol. 58, no. 4, pp. 987–996, 2015.

[103] M. A. Sadek és Y. Chen, “Microproperties calibration of discrete element models for soil-tool interaction,” in 2014 Montreal, Quebec Canada July 13–July 16, 2014, 2014, p. 1.

[104] Itasca, “PFC2D theory and background manual.,” 1999.

[105] A. M. Mouazen, “Mechanical behaviour of the upper layers of a sandy loam soil under shear loading,” J. Terramechanics, vol. 39, no. 3, pp. 115–126, 2002.

[106] J. van der Linde, “Discrete element modelling of a vibratory subsoiler,” MSc Thesis Univ.

Stellenbosch Matieland South Afr., 2007.

[107] L. Fenyvesi és Z. Hudoba, “Vibrating Tillage Tools,” Springer, 2010.

[108] L. Fenyvesi, “Interaction Between Vibrating Soil Tillage Tool and Draught Force,” Mech. Eng.

Lett., pp. 188–199, 2009.

[109] K. Tamás és J. I. Jóri, “Measuring Cart Development for Soil Bin Test,” Soil Tillage – New Perspect. – Book Abstr. ISTRO – Branch – Czech Repub. 5th Int. Conf. Brno 41, pp. 223–229, 2008.

[110] J. Mak és C. Ying, “Simulation of Draft Forces of a Sweep in a Loamy Sand Soil Using the Discrete Element Method,” Can. Biosyst. Eng., no. Vol. 56, pp. 2.1–2.7, 2014.

[111] K. Tamás, I. J. Jóri, és A. M. Mouazen, “Modelling soil–sweep interaction with discrete element

method,” Soil Tillage Res., vol. 134, no. 11, pp. 223–231, 2013.

129

[112] A. M. Mouazen, M. Neményi, H. Schwanghart, és M. Rempfer, “Tillage tool design by the finite element method: Part 2. experimental validation of the finite element results with soil bin test,”

J. Agric. Eng. Res., vol. 72, pp. 53–58, 1999.

[113] N. P. Kruyt és L. Rothenburg, “Statistics of the elastic behavior of granular materials,” Int. J.

Solids Struct., no. 38, pp. 4879–4899, 2001.

[114] N. P. Kruyt és L. Rothenburg, “Micromechanical bounds for the effective elastic moduli of granular materials,” Int. J. Solids Struct., vol. 39, pp. 311–324, 2002.

[115] A. M. Mouazen és H. Ramon, “A numerical-statistical hybrid modelling scheme for evaluation of draught requirements of a subsoiler cutting a sandy loam soil, as affected by moisture content, bulk density and depth,” Soil Tillage Res., vol. 63, pp. 155–165, 2002.

[116] A. M. Mouazen és M. Nemenyi, “Finite element analysis of subsoiler cutting in non-homogeneous sandy loam soil,” Soil Tillage Res., vol. 51, pp. 1–15, 1999.

[117] G. Spoor, “Alleviation of soil compaction: requirements, equipment and techniques,” Soil Use Manag., vol. 22, pp. 113–122, 2006.

[118] C. Saunders, J. R. Godwin, és M. J. O’Dogherty, “Prediction of soil forces acting on mouldboard ploughs,” Fourth Int. Conf. Soil Dyn. Adel. Aust., 2000.

[119] B. Telischi, H. F. McColly, és E. Erickson, “Draft measurement for tillage tools,” Agric. Eng., vol. 37, no. 9, pp. 605–608, 617, 1956.

[120] R. J. Rowe és K. K. Barnes, “Influence of speed on elements of draft of a tillage tool,” Trans.

Am. Soc. Agric. Eng., vol. 4, no. 1, pp. 55–57, 1961.

[121] Xin Li és J. Michael Moshell, “Modeling Soil: Realtime Dynamic Models for Soil Slippage and Manipulation,” Inst. Simul. Train. Univ. Cent. Fla., 1993.

[122] J. Arvidsson és T. Keller, “Comparing penetrometer and shear vane measurements with

measured and predicted mouldboard plough draught in a range of Swedish soils.,” Soil Tillage

Res., vol. 111, pp. 219–223., 2011.

130