• Nem Talált Eredményt

Hivatkozások

In document Nanofizika tudásbázis 2. (Pldal 66-74)

• [1] Cleland, A.N., 2003. Foundations of Nanomechanics, Springer.

• [2] O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C, Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M. and Cleland, A.N. 2010. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464:697-703.

• [3] Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W. and Simmonds, R.W. 2011. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475:359–363.

• [4] Schliesser, A., Rivière R., Anetsberger, G., Arcizet, O. and Kippenberg, T.J. 2008. Resolved-sideband cooling of a micromechanical oscillator. Nature Physics 4:415 - 419.

• [5] Braginsky, V.B. and Khalili, F., 1992. Quantum Measurement, Cambridge, England: Cambrbridge University Press.

• [6] Hertzberg, J.B., Rocheleau, T., Ndukum, T., Savva, M., Clerk, A.A. and Schwab, K.C. 2010. Nature Physics 6:213-217.

• [7] Naik, A., Buu, O., Armour, A.D., Clerk, A.A., Blencowe, M.P. and Schwab, K.C. 2006. Nature 443: 193-196.

• [8] Metzger, C.H. and Karrai, K. 2004. Cavity cooling of a microlever. Nature 432: 1002-1005.

• [9] Wilson-Rae, I. 2008. Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Phys.

Rev. B 77:245418.

• [10] Diósi, L. 2008. Laser linewidth hazard in optomechanical cooling. Phys. Rev. A 78:021801(R).

• [11] Pályi, A., Struck, P.R., Rudner, M., Flensberg, K. and Burkard, G. 2012. Spin-Orbit-Induced Strong Coupling of a Single Spin to a Nanomechanical Resonator. Phys. Rev. Lett. 108:206811

• [12] Marshall, W., Simon, C., Penrose, R. and Bouwmeester, D. 2003. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91:130401.

• [16] Chan, J., Mayer Alegre, T.P., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M.

and Painter, O. 2011. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478:89–92.

• [17] Palomaki, T.A., Harlow, J.W., Teufel, J.D., Simmonds, R.W. and Lehnert, K.W. 2013. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495:210-214.

• [18] Arcizet, O., Jacques,V., Siria, A., Poncharal, P., Vincent, P. and Seidelin, S. 2011. A single NV defect coupled to a nanomechanical oscillator. Nature Physics 7:879-883.

• [19] Meystre, P. 2013. A short walk through quantum optomechanics. Annalen der Physik 525:215-232.

• [20] Li, T., Kheifets, S. and Raizen, M.G. 2011. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Physics 7:527–530.

• [21] Brennecke, F., Ritter, S., Donner, T. and Esslinger, T. 2008. Cavity Optomechanics with a Bose-Einstein Condensate. Science 322:235-238.

• [22] Schleier-Smith, M.H., Leroux, I.D., Zhang, H., Van Camp, M.A. and Vuletić, V. 2011. Optomechanical Cavity Cooling of an Atomic Ensemble. Phys. Rev. Lett. 107:143005.

• [23] Schwab, K. and Roukes, M.L. 2005. Putting mechanics into quantum mechanics. Physics Today July

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

• [31] Y. Zhang, J. P. Small, M. E. S. Amori, and P. Kim, Phys. Rev. Lett. 94, 176803 (2005); Y. Zhang, Y.-W.

Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).

• [32] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

• [33] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, England, 1995).

• [34] Dobrik Gergely, Grafén vizsgálata és nanométeres pontosságú módosítása pásztázó alagútmikroszkóp segítségével, ELTE szakdolgozat, 2008 (témavezetők: Dr. Biró László Péter és Dr. Tapasztó Levente).

• [35] X. Du, I. Skachko, A. Barker, and E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008).

• [36] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Sol. State Commun. 146, 351 (2008).

• [37] Sólyom Jenő, A modern szilárdtestfizika alapjai II. kötet, Elektronok a szilárd testekben, (ELTE Eötvös Kiadó, Budapest, 2003).

• [38] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone, Science 321, 358 (2008).

• [39]

http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/

• [40] Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, Nano Lett. 8, 902 (2008).

• [41] Mir Mohammad Sadeghi, Michael Thompson Pettes, Li Shi, Solid State Communications 152, 1321 (2012).

• [42] Koichi Saito, Jun Nakamura, and Akiko Natori, Phys. Rev. B 76, 115409 (2007).

• [43] Z. Osvath, Al. Darabont, P. Nemes-Incze, E. Horvath, Z. E. Horvath, and L. P. Biro, Carbon 45, 3022 (2007).

• [44] L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Nature Nanotechnology, 3, 397 (2008).

• [45] L. P. Biró, P. Nemes-Incze and P. Lambin, Nanoscale 4, 1824 (2012).

• [46] P. R. Wallace, Phys. Rev. 71, 622 (1947).

• [47] J. W. McClure, Phys. Rev. 108, 612 (1957).

• [48] J. C. Slonczewski, and P. R. Weiss, Phys. Rev. 109, 272 (1958).

• [49] S. Reich, J. Maultzsch, and C. Thomsen, Phys. Rev. B 66, 035412 (2002).

• [50] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, PA, 1976).

• [51] Fritz Haake, Quantum Signatures of Chaos, (Springer-Verlag Berlin Heidelberg 2010, 2000, 1991, third revised and enlarged edition, Chapter 2 Time Reversal and Unitary Symmetries).

• [52] D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 29, 1685 (1984).

• [53] J. W. McClure, Phys. Rev. 104, 666 (1956).

• [54] T. Ando, T. Nakanishi and R. Saito, J. Phys. Soc. Japan, 67, 2857 (1998).

• [55] Gordon W. Semenoff, Phys. Rev. Lett., 53, 2449 (1984).

• [56] W. W. Toy, M. S. Dresselhaus and G. Dresselhaus, Phys. Rev. 109, 272 (1958).

• [57] A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Nature Physics 3, 36 (2007) (lásd még: szakdolgozat, BME Fizika Intézet, Fizika Tanszék, 2011 (témavezető: Csonka Szabolcs).

• [61] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988); Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002); V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005); N. M. R. Peres F. Guinea and A. H. Castro Neto, Phys. Rev. B 73, 125411 (2006); L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).

• [62] M. Ezawa, J. Phys. Soc. Jpn. 76, 094701 (2007) (lásd még: arXiv:0707.0353).

• [63] The Quantum Hall Effect, edited by R.E.Prange and S.M.Girvin, (Springer-Verlag, New York, 1987).

Fazekas Patrik, Lecture Notes on Electron Correlation and Magnetism (Singapore: World Scientific Publisher, 1999, Series in Modern Condensed Matter Physics; 5.)

• [64] Fazekas Patrik, Lecture Notes on Electron Correlation and Magnetism (Singapore: World Scientific Publisher, 1999, Series in Modern Condensed Matter Physics; 5.)

• [65] O. Klein, Z. Phys., 53, 157 (1929).

• [66] F. Constantinescu és E. Magyari, Kvantummechanika, Feladatok, (Tankönyvkiadó, Budapest, 1972).

• [67] M. I. Katsnelson, K. S. Novoselov, A. K. Geim, Nature Phys. 2, 620 (2006).

• [68] V. V. Cheianov, V. I. Falko, and B. L. Altshuler, Science 315, 1252 (2007).

• [69] V. V. Cheianov and V. I. Falko, Phys. Rev. B. 74, 041403(R) (2006).

• [70] Cserti József: Kétdimenziós kvantumrendszerek nanoszerkezetekben, MTA doktori dolgozat (2009).

• [71] J. Cserti and A. Pályi and Cs. Péterfalvi, Phys. Rev. Lett., 99, 246801 (2007).

• [72] Cs. Péterfalvi and A. Pályi and J. Cserti, Phys. Rev. B 80, 075416 (2009).

• [73] Cs. Péterfalvi and A. Pályi and Á. Rusznyák and J. Koltai and J. Cserti, Phys. Status Solidi B 247, 2949 (2010).

• [74] Cs. G Péterfalvi and L. Oroszlány and C. J Lambert and J. Cserti, New Journal of Physics, 14, 063028 (2012).

• [75] E. Fradkin, Phys. Rev. Rev. B 63, 3263 (1986); P. A. Lee, Phys. Rev. Lett. 71, 1887 (1993); E. V.

Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. B 66, 045108 (2002).

• [76] K. Ziegler, Phys. Rev. Lett. 97, 266802 (2006).

• [77] L. A. Falkovsky and A. A. Varlamov, cond-mat/0606800.

• [78] K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007).

• [79] V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005).

• [86] F. Miao, S. Wijeratne, Y. Zhang, U.C. Coskun, W. Bao, and C.N. Lau, Science 317, 1530 (2007).

• [87] R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmilehto, A. F. Morpurgo, and P. J.

Hakonen, Phys. Rev. Lett. 100, 196802 (2008) (for extended version see arXiv:0807.0157).

• [88] R. Landauer, Philos. Mag. 21, 863 (1970).

• [89] S. Datta, Electronic Transport in Mesoscopic Systems, (Cambridge University Press, Cambridge, 1995).

• [90] A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B 77, 085423 (2008).

• [91] Visontai Dávid, Transzportfolyamatok grafénban, ELTE szakdolgozat, 2008 (témavezető: Cserti József).

• [92] Koltai János, Hibrid rendszerek transzport tulajdonságai, ELTE PhD dolgozat, 2004 (témavezető: Cserti József).

• [93] Lájer Márton, Szén vékonyrétegek optikai tulajdonságainak elméleti és kísérleti vizsgálata, ELTE, TDK dolgozat, 2012 (témavezetők: Cserti József, Pergerné Klupp Gyöngyi és Kamarás Katalin).

• [94] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K.

Geim, Science 320, 1308 (2008).

• [95] T. Stauber, N. M. R. Peres, and A. K. Geim, Phys. Rev. B 78, 085432 (2008).

• [96] E. G. Mishchenko, Europhys. Lett. 83, 17005 (2008).

• [97] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, Phys. Rev. Lett. 100, 117401 (2008).

• [98] P. Nemes-Incze, Z. Osváth, K. Kamarás, L. P. Biró, Carbon 46, 1435 (2008).

• [99] M. I. Katsnelson, Materials Today 10, 20 (2007).

• [100] M. I. Katsnelson and K. S. Novoselov, Solid State Commun. 143, 3 (2007).

• [101] A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007).

• [102] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 81, 109–

162 (2009).

• [103] N. M. R. Peres, Rev. Mod. Phys. 82, 2673 (2010).

• [104] Special issue of Solid State Commun. 143, 1 (2007).

• [105] Daniel R. Cooper, Benjamin D’Anjou, Nageswara Ghattamaneni, Benjamin Harack, Michael Hilke, Alexandre Horth, Norberto Majlis, Mathieu Massicotte, Leron Vandsburger, Eric Whiteway, and Victor Yu, ISRN Condensed Matter Physics, 2012, doi:10.5402/2012/501686

• [106] Mikhail I. Katsnelson and Annalisa Fasolino, Accounts of Chemical Research 46, 97 (2013). DOI:

10.1021/ar300117m

• [107] Levente Tapasztó, Traian Dumitrica, Sung Jin Kim, Péter Nemes-Incze, Chanyong Hwang and László P. Biró, Nature Physics 8, 739 (2012).

• [108] K. V. Zakharchenko, J. H. Los, M. I. Katsnelson, and A. Fasolino, Phys. Rev. B 81, 235439 (2010)

• [109] U. Bangert, M. H. Gass, A. L. Bleloch, R. R. Nair, and A. K. Geim, Phys. Status Solidi A 206, 1117 (2009). DOI 10.1002/pssa.200824453

• [110] L. L. Bonilla and A. Carpio, Phys. Rev. B 86, 195402 (2012).

• [111] F. Guinea, A. K. Geim, M. I. Katsnelson, and K. S. Novoselov, Phys. Rev. B 81, 035408 (2010).

• [112] Rafael Roldán, Annalisa Fasolino, Kostyantyn V. Zakharchenko, and Mikhail I. Katsnelson, Phys. Rev.

B 83, 174104 (2011).

• [113] S. Das Sarma, Shaffique Adam, E. H. Hwang, and Enrico Rossi, Rev. Mod. Phys. 83, 407 (2011).

• [114] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, M. Mauri, S. Piscanec, Da Jiang, K.S.

Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006); A.C. Ferrari, Solid State Commun. 143, 47 (2007).

• [115] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Physics Reports 473, 51 (2009).

• [116] Hongki Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, Leonard Kleinman, and A. H. MacDonald, Phys.

Rev. B 74, 165310 (2006).

• [117] Daniel Huertas-Hernando, F. Guinea, and Arne Brataas, Phys. Rev. B 74, 155426 (2006).

• [118] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F.

Schedin, and A. K. Geim, Nature Phys. 2, 177 (2006).

• [119] E. McCann, V.I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).

• [120] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Phys. 2, 620 (2006).

• [121] J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Phys. Rev. Lett. 97, 266801 (2006).

• [122] M. I. Katsnelson, Eur. Phys. J. B 52, 151 (2006).

• [123] I. Snyman and C. W. J. Beenakker, Phys. Rev. B 75, 045322 (2007).

• [124] J. M. Pereira, P. Vasilopoulos, and F. M. Peeters, Nano Lett. 7, 946 (2007).

• [125] E. McCann, D. S. L. Abergel, and V. I. Falko, Sol. State Commun. 143, 110 (2007).

• [126] L. M. Zhang, Z. Q. Li, D. N. Basov, and M. M. Fogler, Z. Hao and M. C. Martin, Phys. Rev. B 78, 235408 (2008).

• [127] Fan Zhang, Bhagawan Sahu, Hongki Min, and A. H. MacDonald, Phys. Rev. B 82, 035409 (2010).

• [128] Fan Zhang, Jeil Jung, Gregory A. Fiete, Qian Niu1, and Allan H. MacDonald, Phys. Rev. Lett. 106, 156801 (2011).

• [129] Yafis Barlas, R. Côté, and Maxime Rondeau, Phys. Rev. Lett. 109, 126804 (2012).

• [130] Chun Hung Lui, Zhiqiang Li, Kin Fai Mak, Emmanuele Cappelluti and Tony F. Heinz, Nature Physics 7, 944 (2011).

• [131] C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337–1354 (2008).

• [132] M. Titov and C. W. J. Beenakker, Phys. Rev. B 74, 041401(R) (2006).

• [133] I. Hagymási, A. Kormányos, J. Cserti, Phys. Rev. B 82, 134516 (2010).

• [134] F. Schedin, A. K. Geim, S. V. Morozov, E. M. Hill, P. Blake, M. I. Katsnelson and K. Novoselov, Nat.

Crommie, Y. Ron Shen and Feng Wang, Nature 459, 820 (2009).

• [138] Xuan Wang, Linjie Zhi and Klaus Mülen, Nano Lett. 8, 323 (2008); Goki Eda, Giovanni Fanchini and Manish Chhowalla, Nature Nanotechnology 3, 270 (2008).

• [139] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Pinen, S. T. Nguyen and R. S. Ruoff, Nature, 442, 282 (2006); D. A. Dikin, S. Stankovich, E. J. Zimney, R. D.

Piner, G. H. B. Dommett, G. Evmenenko, T. Nguyen and R. S. Ruoff, Nature, 448, 457 (2006).

• [140] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).

• [141] T. Takamura, K. Endo, L. Fu, Y. P. Wu, K. J. Lee and T. Matsumoto, Electrochim. Acta, 53, 1055 (2007). http://dx.doi.org/10.1016/j.electacta.2007.03.052

• [142] W. Hu, C. Peng, W. Luo, X. Li, D. Li, Q. Huang and C. Fan, ACS Nano, 4, 4317 (2010).

• [143] M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund: Science of Fullerenes and Carbon Nanotubes

• [146] A. Jorio, G. Dresselhaus and M. S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin and Heidelberg, 2008).

• [147] K.D. Sattler (Ed.): Handbook of Nanophysics: 7-Volume Set, 1st ed. (CRC Press, 2010).

• [148] H.W. Kroto, J.R. Heath, S.C. OBrien, R.F. Curl and R.E. Smalley, Nature 318, 162 (1985).

• [149] C. Kirby, H.W. Kroto, D.R.M. Walton, J. Mol. Spectr. 83, 261 (1983)

• [150] R.F. Curl and R.E. Smalley, Fullerenes, Scientific American, 265, 3241, (October 1991).

• [151] H. Aldersey-Williams: The most beautiful molecule (Aurum Press, London, 1991).

• [152] Prinzbach, et. al, Nature 407, 60-63 (2000).

• [153] P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes (Clarendon Press, 1995).

• [154] W. Krätschmer, L.D. Lamb, K.Fostiropoulos and D.R. Huffman, Nature 347, 354 (1990).

• [155] R. D. Johnson, D. S. Bethune, and C. S. Yannoni, Accounts of Chemical Research 25, 169-175 (1992).

• [156] L. Shengzhong, Y-J. Lu, M. M. Kappes, and J. A. Ibers, Science 254(5030), 408–-410 (1991).

• [157] K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, and M. D. Vries, Science, 254(5030), 410–-412 (1991).

• [158] J. Cioslowski, Electronic Structure Calculations on Fullerenes and Their Derivatives, First Edition (Oxford University Press, USA, 1995).

• [159] C. van Wüllen, Chemical Physics Letters 219, 8 (1994).

• [160] W. Andreoni, Annual Review of Physical Chemistry 49, 405 (1998).

• [161] M. Häser, J. Almlöf, and G. E. Scuseria, Chemical Physics Letters 181, 497 (1991).

• [162] W. I. F. David, R. M. Ibberson, T. J. S. Dennis, J. P. Hare, and K. Prassides, EPL 18, 219 (1992).

• [163] J. Cami, J. Bernard-Salas, E. Peeters, and S. E. Malek, Science 329(5996), 1180-1182, (2010).

• [164] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Application to the Physics of Condensed Matter (Springer, 2008).

• [165] G. Burns: Introduction to Group Theory with Applications (Academic Press, New York, 1977).

• [166] I. László and L. Udvardi, Chem. Phys. Letters 136, 418-422 (1987).

• [167] S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, Acc.

Chem. Res. 35, 1105 (2002).

• [168] Surján Péter, A fullerének elektronszerkezete; in: A kémiai legújabb eredményei 81, (Akadémiai Kiadó, 1996).

• [169] J. H. Weaver, J. L. Martins, T. Komeda, Y. Chen, T. R. Ohno, G. H. Kroll, N. Troullier, R. E. Haufler, and R. E. Smalley, Phys. Rev. Lett. 66, 1741 (1991).

• [170] S. Iijima, Nature 354, 56 (1991).

• [171] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363, 605 (1993); S. Iijima and T. Ichihashi, Nature 363, 603 (1993).

• [172] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996).

• [173] M. JoséYacamán, M. MikiYoshida, L. Rendón, and J. G. Santiesteban, Applied Physics Letters 62, 657 (1993).

• [174] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Science 306, 1362 (2004).

• [175] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297, 787 (2002).

• [176] Z. L. Tolt, C. Mckenzie, R. Espinosa, S. Snyder, and M. Munson, J. Vac. Sci. Technol. B 26, 706 (2008).

• [177] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, Applied Physics Letters 75, 873 (1999).

• [178] N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi,

• [182] M. Mohl, Z. Kónya, Á. Kukovecz, and I. Kiricsi, in Functionalized Nanoscale Materials, Devices and Systems, edited by A. Vaseashta and I. N. Mihailescu (Springer Netherlands, 2008), pp. 365–368.

• [183] E. Horváth, A. Koós, K. Kertész, Z. Vértesy, G. Molnár, M. Ádám, C. Dücső, J. Gyulai, and P. Biró, Nanopages 1, 209 (2006).

• [184] L. Kalaugher, Nanotube bike enters Tour de France, nanotechweb.org, http://nanotechweb.org/cws/article/tech/22597 (2005).

• [185] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, Science 305, 1273 (2004).

• [186] Biró László Péter, Nano + technológia = nanotechnológia?, Természet Világa, 134(10), (2003).

• [191] V Zólyomi, J Koltai, J Kürti, H Kuzmany, "Phonons of single walled carbon nanotubes", Chapter in DFT calculations on fullerenes and carbon nanotubes (V Basiuk, S Irle, eds.), Signpost Publisher, (2008).

• [192] Á. Pekker, Á. Botos, Á. Rusznyák, J. Koltai, J. Kürti, and K. Kamarás, J. Phys. Chem. Lett. 2, 2079 (2011).

• [193] J. Kürti, V. Zólyomi, M. Kertesz, and G. Sun, New J. Phys. 5, 125 (2003).

• [194] V. Zólyomi, J. Koltai, and J. Kürti, Physica Status Solidi (b) 248, 2435 (2011).

In document Nanofizika tudásbázis 2. (Pldal 66-74)