• Nem Talált Eredményt

Fold bifurcation

A.4 Continuation techniques

A.4.2 Fold bifurcation

At a quadratic fold the eigenvalue of the Jacobian changes sign. The eigenvalue equation near the fold point is

Dxf(x(s), λ(s))q(s) =κ(s)q(s),

where κ is the eigenvalue and q is the eigenvector. Dierentiating the eigenvalue equation and evaluating at s0 = 0, where the fold bifurcation takes place, yields

Dx2f(x(0), λ(0))q(0)q(0) +Dxf(x(0), λ(0))q0(0) =κ0(0)q(0).

Also, multiply the above equation by the left eigenvector ξ to nd κ0(0) = ξD2xf(x(0), λ(0))q(0)q(0)

ξq(0) .

As it can be seen from formulae of the κ0(0) andλ00(0)the stability changes if and only if the fold is quadratic.

Fold bifurcation can be continued in a similar fashion as a xed point, the only dierence is in the dening equation. The zero eigenvalue of the Jacobian Dxf(x, λ, ν) can be exploited to dene bifurcation points as

f(x, λ, ν) = 0,

Dxf(x, λ, ν)q= 0, (A.15)

q0q1 = 0.

A.4 Continuation techniques 90 Here q0, a previously computed eigenvector is used to determine the length of the actual eigenvector. Because we have 2n+ 1 equations we introduced the second parameter ν, what can be used in continuation.

The Jacobian of (A.15) is



Dxf(x0, λ0, ν0) 0 Dλf(x0, λ0, ν0) D2xf(x0, λ0, ν0)q0 Dxf(x0, λ0, ν0)DλDxf(x0, λ0, ν0)

0 q0 0

,

which is non-singular at a simple quadratic fold. This can be proved in a similar way as the bordering lemma (see [24]).

References

1. E. Abele and U. Fiedler, Creating stability lobe diagrams during milling, CIRP Annals Manufacturing Technology, 53 (2004), pp. 309312.

2. V. Arnold, A dierenciálegyenletek elméletének geometriai fejezetei, M¶szaki Könyvkiadó, Budapest, 1988.

3. B. Balachandran, Non-linear dynamics of milling process, Transactions of the Royal Society, 359 (2001), pp. 793820.

4. J. Bali, Forgácsolás, Tankönyvkiadó, 1988.

5. P. V. Bayly, J. E. Halley, B. Mann, and M. A. Davies, Stability of interrupted cutting by temporal nite element analysis, ASME Journal of Manufacturing Science and Engineering, 125 (2003), pp. 220225.

6. W. J. Beyn, A. Champneys, E. J. Doedel, W. Govaerts, B. Sandstede, and Y. A. Kuznetsov, Numerical continuation and computation of normal forms, in Handbook of Dynamical Systems, B. Fiedler, ed., Elsevier, 2002, pp. 149219.

7. T. J. Burns and M. A. Davies, On repeated adiabatic shear band formation during high-speed machining, Plasticity, 18 (2002), pp. 487506.

8. J. Carr, Applications of centre manifold theory, Springer-Verlag, New York, 1981.

9. C. Chicone, Ordinary Dierential Equations with Applications, Springer-Verlag, New York, 1999.

10. C. Chicone and Y. Latushkin, Center manifold for innite dimensional nonau-tonomous dierential equations, J. Dierential Equations, 141 (1997), pp. 356399.

11. P. Clement, O. Diekmann, M. Gyllenberg, H. J. A. M. Heimans, and H. R.

Thieme, Perturbation Theory for Dual Semigroups I. The sun-reexive case, Math.

Ann., 277 (1987), pp. 709725.

12. , Perturbation Theory for Dual Semigroups II. Time-dependent perturbations in the sun-reexive case, Proc. Roy. Soc. Edinburgh Sect. A, 109A (1988), pp. 145172.

13. W. J. Corpus and W. J. Endres, Added stability lobes in machining processes that exhibit periodic time variation, part 1: An analytical solution, Journal of Manufactur-ing Science and EngineerManufactur-ing, 126 (2004), pp. 467474.

14. W. T. Corpus and T. W. J. Endres, A high order analytical solution for the added stability lobes in intermittent machining, in Proceedings of Symp. on Machining

References 92 Processes, vol. MED-11, September 2000, pp. 871878. Paper number DETC97/VIB-4021.

15. W. T. Corpus and W. J. Endres, An analytical model to predict chatter in multi-dimensional periodically time-varying machining processes, in Proceedings of IMECE2003 ASME International Mechanical Engineering Congress and R&D Expo, 2003, pp. 17. Paper number IMECE2003-42488 (CD-ROM).

16. M. A. Davies and B. Balachandran, Impact dynamics in milling of thin-walled structures, Nonlinear Dynamics, 22 (2000), pp. 375392.

17. M. A. Davies and T. J. Burns, Thermomechanical oscillations in material ow during high-speed machining, Phil. Trans. R. Soc. Lond. A, 359 (2001), pp. 821846.

18. M. A. Davies, J. R. Pratt, B. Dutterer, and T. J. Burns, Stability prediction for low radial immersion milling, Jornal of Manufacturing Science and Engineering, 125 (2002), pp. 217225.

19. T. A. Davies, UMFPACK Version 4.1 User Guide, tech. rep., Department of Com-puter and Information Science and Engineering, University of Florida, Gainesville, FL, USA, 2003. http://www.cise.ufl.edu/research/sparse/umfpack/.

20. C. de Boor and B. Swartz, Collocation at gaussian points, SIAM J. Numer. Anal., 10 (1973), pp. 582606.

21. O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, and H. O. Walther, Delay Equations, Springer-Verlag, New-York, 1995.

22. E. Doedel, W. Govaerts, and Y. Kuznetsov, Computation of periodic solution bifurcations in odes using bordered system, SIAM J. Numer. Anal., 41 (2003), pp. 401 435.

23. E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sand-stede, and X.-J. Wang, AUTO97: Continuation and bifurcation software for ordi-nary dierential equations, tech. rep., Department of Computer Science, Concordia University, Montreal, Canada, 1997. (Available by FTP from ftp.cs.concordia.ca in directory pub/doedel/auto).

24. E. J. Doedel, H. B. Keller, J. P. Kernévez, Numerical Analysis and Control Of Bifurcation Problems, Part I : Bifurcation in Finite Dimensions, Int. J. Bifurcation and Chaos, 1 (1991), pp. 493520.

25. K. Engelborghs and E. J. Doedel, Stability of piecewise polynomial collocation for computing periodic solutions of delay dierential equations, Numer. Math., 91 (2002), pp. 627648.

26. K. Engelborghs, T. Luzyanina, K. J. in 't Hout, and D. Roose, Collocation methods for the computation of periodic solutions of delay dierential equations, SIAM J. Sci. Comput., 22 (2000), pp. 15931609.

27. K. Engelborghs, T. Luzyanina, and D. Roose, Numerical bifurcation analysis of delay dierential equations using dde-biftool, ACM Trans. Math. Software, 28 (2002), pp. 121.

28. J. P. England, B. Krauskopf, and H. M. Osinga, Computing one-dimensional stable manifolds of planar maps without the inverse, SIAM Journal on Applied Dy-namical Sytems, 3 (2003), pp. 161190.

References 93 29. R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling, and H. Nijmei-jer, Prediction of regenerative chatter by modelling and analysis of high-speed milling, International Journal of Machine Tools & Manufacture, 43 (2003), pp. 14371446.

30. M. Farkas, Periodic Motions, Springer-Verlag, New-York, 1994.

31. W. Govaerts, Bordered augmented linear systems in numerical continuation and bifurcation, Numer. Math., 58 (1990), pp. 353368.

32. , Solution of bordered singular systems in numerical continuation and bifurcation, J. Comput. Appl. Math., 50 (1994), pp. 339347.

33. W. Govaerts and J. D. Pryce, Mixed block elimination for linear systems with wider borders, IMA J. of Numer. Anal., 13 (1993), pp. 161180.

34. K. Green, B. Krauskopf, and K. Engelborghs, Bistability and torus break-up in a semiconductor laser with phase-conjugate feedback, Physica D, 173 (2002), pp. 114 129.

35. P. Guckenheimer and J. Holmes, Nonlinear oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New-York, 1983.

36. B. Haegeman, K. Engelborghs, D. Roose, D. Pieroux, and T. Erneux, Sta-bility and rupture of bifurcation bridges in semiconductor lasers subject to optical feed-back, Phys. Rev. E, 66 (2002), pp. 046216 111.

37. J. K. Hale, Theory of Functional Dierential Equations, Springer-Verlag, New-York, 1977.

38. J. K. Hale and W. Z. Huang, On perturbations of delay-dierential equations with periodic orbits, Zeitschrift Für Angewandte Mathematik und Physik, 47 (1996), pp. 5788.

39. J. K. Hale and N. Sternberg, Onset of chaos in dierential delay eqautions, Jour-nal of ComputatioJour-nal Physics, 77 (1988), pp. 221239.

40. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Dierential Equations, Springer-Verlag, New-York, 1993.

41. E. Hille and R. S. Phillips, Functional Analysis and Semigroups, American Math-ematical Society, 190 Hope Street, Providence, R.I., 1957.

42. T. Insperger, J. Gradi²ek, M. Kalveram, G. Stépán, K. Weinert, and E. Govekar, Machine tool chatter and surface quality in milling processes, in Pro-ceedings of IMECE2004 ASME International Mechanical Engineering Congress and R&D Expo, 2004, pp. 113. Paper number IMECE2004-59692 (CD-ROM).

43. T. Insperger, B. P. Mann, G. Stépán, and P. V. Bayly, Stability of up-milling and down-milling, part 1: alternative analytical methods, International Journal of Ma-chine Tool & Manufacture, 43 (2003), pp. 2534.

44. , Stability of up-milling and down-milling, part 1: alternative analytical methods, International Journal of Machine Tool & Manufacture, 43 (2003), pp. 2534.

45. T. Insperger and G. Stépán, Stability of high-speed milling, in Proceedings of Symp on Nonlinear Dynamics and Stochastic Mechanics, Orlando, vol. 241 of AMD, ASME, September 2000, pp. 119123.

46. T. Insperger, G. Stépán, P. V. Bayly, and B. P. Mann, Multiple chatter fre-quencies in milling processes, Journal of Sound and Vibration, 262 (2003), pp. 333345.

References 94 47. M. A. Kaashoek and S. M. V. Lunel, Characteristic matrices and spectral

prop-erties of evolutionary systems, Trans. Amer. Math. Soc., 334 (1992), pp. 479517.

48. M. Lind and B. Marcus, An introduction to Symbolic Dynamics and Coding, Cam-bridge University Press, CamCam-bridge, 1995.

49. X. H. Long and B. Balachandran, Milling model with variable time delay, in Proceedings of IMECE2004 ASME International Mechanical Engineering Congress and R&D Expo, 2004, pp. 18. Paper number IMECE2004-59207 (CD-ROM).

50. S. M. V. Lunel, Small solutions and completeness for linear functional dieren-tial equations, in Oscillations and Dynamics in Delay Equations, vol. Contemporary Mathematics 129, Amer. Math. Soc., 1992, pp. 127152.

51. M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, 77 (1977), pp. 287289.

52. J. Mallet-Paret and R. D. Nussbaum, A dierential delay equation arising in optics an physiology, SIAM Journal on Mathematical Analysis, 20 (1989), pp. 249 292.

53. B. P. Mann, P. V. Bayly, M. A. Davies, and J. E. Halley, Limit cycles, bifurcations, and accuracy of the milling process, Journal of Sound and Vibration, 277 (2004), pp. 3148.

54. B. P. Mann, T.Insperger, P. V. Bayly, and G. Stépán, Stability of up-milling and down-milling, part 2: experimental verication, International Journal of Machine Tool & Manufacture, 43 (2003), pp. 3540.

55. I. Minis and R. Yanushewsky, A new theoretical approach for the prediction of machine tool chatter in milling, ASME Journal of Engineering for Industry, 115 (1993), pp. 18.

56. J. Moser, Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, 1973.

57. H. Paris, G. Peigne, and R. Mayer, Surface shape prediction in high speed milling, International Journal of Machine Tools & Manufacture, 44 (2004), pp. 15671576.

58. A. Pazy, Semigroups of linear operators and applications to Partial dierential equa-tions, Springer-Verlag, New York, 1983.

59. G. Peigne, H. Paris, D. Brissau, and A. Gouskov, Impact of the cutting dy-namics of small radial immersion milling operations on machined surface roughness, International Journal of Machine Tools & Manufacture, 44 (2004), pp. 11331142.

60. F. Riesz and B. Sz®kefalvi-Nagy, Funkcionálanalízis, Tankönyvkiadó, Budapest, 1988.

61. M. C. Shaw, Metal Cutting Principles, Oxford University Press, Oxford, 2005.

62. H. M. Shi and S. A. Tobias, Theory of nite amplitude machine tool instability, Int. J. Machine Tool Design and Research, 24 (1984), pp. 4569.

63. G. Stépán, Retarded dynamical systems: stability and characteristic functions, Long-man, London, 1989.

64. , Modelling non-linear regenerative eects in metal cutting, Philosophical Trans-actions of the Royal Society, 359 (2001), pp. 739757.

References 95 65. G. Stépán, T. Insperger, and R. Szalai, Delay, parametric excitation, and the nonlinear dynamics of cutting processes, International Journal of Bifurcation and Chaos, (2005). (accepted).

66. G. Stépán and T. Kalmár-Nagy, Nonlinear regenerative machine tool vibrations, in Proceedings of the 1997 ASME Design Engineering Technical Conferences, Sacra-mento, California, September 1997. Paper number DETC97/VIB-4021.

67. G. Stépán and R. Szalai, Nonlinear vibrations of highly interrupted machining, in Proceedings of the 2nd Workshop on Dynamics and Control of Mechanical Processing Organized by WG2 COST Action, Budapest, 2001, pp. 5964.

68. , Unstable period doubling vibrations in highly interrupted cutting processes, in Proceedings of the 5th International Conference on Vibration Engineering, Nanjing, China, 2002, pp. 375380.

69. G. Stépán, R. Szalai, and S. Hogan, The chaotic oscillations of high-speed milling, in Chaotic Dynamics and Control of Systems and Processes in Mechanics, G. Rega and F. Vestroni, eds., Springer, 2005, pp. 147158.

70. G. Stépán, R. Szalai, and T. Insperger, Stability of high-speed milling, in Non-linear Dynamics of Production Systems, Günther Radons, ed., Wiley VCH, 2003, pp. 111128.

71. , Stability of high-speed milling, in Nonlinear Dynamics of Production Systems, G. Radons, ed., Wiley VCH, 2003, pp. 111128.

72. G. Stépán, R. Szalai, B. P. Mann, P. V. Bayly, T. Insperger, J. Gradisek, and E. Govekar, Global attractors of high-speed milling analyses, numerics and experiments, in Proceedings of DETC2003 ASME Design Engineering Technical Con-ferences, Chicago, Illinois, 2003, pp. 19.

73. , Dynamics and stability of high-speed milling, in Proceedings of the 37th CIRP International seminar on Manufacturing Systems, Budapest, L. Monostory, ed., CIRP, 2004, pp. 119125.

74. , Nonlinear dynamics of high-speed milling analysis, numerics and experiments, ASME Journal of Vibrations and Acoustics, 127 (2005), pp. 197203.

75. G. Stépán, R. Szalai, B. P. Mann, P. V. Bayly, T. Insperger, J. Gradisek, and E. Govekar, Nonlinear dynamics of high-speed milling analysis, numerics and experiments, ASME Journal of Vibrations and Acoustics, ((in press)).

76. R. Szalai and G. Stépán, Nagysebesség¶ marás nemlineáris rezgései, in Tavaszi Szél Konferencia, Sopron, 2003, pp. 173176.

77. , Stability boundaries of high-speed milling corresponding to period doubling are essentially closed curves, in Proceedings of IMECE2003 ASME International Mechan-ical Engineering Congress and R&D Expo, 2003, pp. 16. Paper number IMECE2003-42122 (CD-ROM).

78. , Lobes and lenses in the stability chart of high-speed milling, ASME Journal of Computational and Nonlinear Dynamics, (2005). (submitted).

79. R. Szalai, G. Stépán, and S. J. Hogan, Global dynamics of low immersion high-speed milling, Chaos, 14 (2004), pp. 10691077.

KAPCSOLÓDÓ DOKUMENTUMOK