• Nem Talált Eredményt

FELHASZNÁLT IRODALOM

In document PhD értekezés (Pldal 119-129)

111

112

20. Rutledge G.C., Fridrikh S.V.: Formation of fibers by electrospinning. Advanced Drug Delivery Reviews, 59, 1384-1391 (2007).

21. Vas L.M.: Idealizált statisztikus szálkötegcellák és alkalmazásuk szálas szerkezetek, kompozitok modellezésére. MTA doktori értekezés, Budapest (2007).

22. Suzuki A.: Highly oriented super microfilaments. US patent 7101504 B2 (2006).

23. Suzuki A., Tanizawa K.: Poly(ethylene terephthalate) nanofibers prepared by CO2 laser supersonic drawing. Polymer, 50, 913-921 (2009).

24. Suzuki A., Okano T.: Zone drawing and zone annealing of poly(ethylene terephthalate) microfiber prepared by CO2 laser thinning. Journal of Applied Polymer Sciences, 92, 2989–2994 (2004).

25. Suzuki A., Mizuochi D. Hasegawa T.: Superstructure and mechanical properties of poly(L-lactic acid) microfibers prepared by CO2 laser-thinning. Polymer, 46, 5550–5555 (2005).

26. Suzuki A, Kamata K.: Nylon 6 microfiber prepared by carbon dioxide laser heating. Journal of Applied Polymer Science, 92, 1454–1558 (2004).

27. Suzuki A., Narisue S.: Isotactic polypropylene microfiber prepared by continuous laser-thinning method. Journal of Applied Polymer Science, 99, 27–31 (2006).

28. Nakata K., Fujii K., Ohkoshi Y., Gotoh Y., Nagura M., Numata M., Kamiyama M.: Poly(ethylene terephtalate) nanofibers made by sea-island-type conjugated melt spinning and laser-heated flow drawing. Macromolecular Rapid Communications, 28, 792-795 (2007).

29. Li J-X., Wu J., Chan C-M.: Theromplastic nanocomposites. Polymer, 41, 6935-6937 (2000).

30. Fakirov S., Bhattacharyya D., Shields R.J.: Nanofibril reinforced composites from polymer blends.

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313-314, 2-8 (2008).

31. Ellison C.J., Phatak A., Giles D.W., Macosko C.W., Bates F.S.: Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup. Polymer, 48, 3306-3316 (2007).

32. Borkar S., Gu B, Dirmyer M., Delicado R., Sen A., Jackson B.R., Badding J.V.:

Polytetrafluoroethylene nano/microfibers by jet blowing. Polymer, 47, 8337-8343 (2006).

33. Elmarco s.r.o. honlapja: http://www.elmarco.com (2013.02.09.).

34. Esfil Techno AS honlapja: http://www.esfiltehno.ee/eng/ (2013.02.09.).

35. Zeleny J.: The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces, Physical Review, 3, 69–91 (1914).

36. Jaworek A., Sobczyk T.: Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 66, 197–219 (2008).

37. Taylor G.: Electrically Driven Jets. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 313, 453-475 (1969).

38. Li F., Zhao Y., Song Y.: Core-shell nanofibers: Nano channel and capsule by coaxial electrospinning. ‘Nanofibers’ c. könyvben (szerk.: Kumar A.) Intech, Vukovar (Horvátország), 419-438 (2010).

39. Lyons J., Li C., Ko F.: Melt-electrospinning part I: processing parameters and geometric properties.

Polymer, 45, 7597-7603 (2004).

40. Dalton P.D., Grafahrend D., Klinkhammer K., Klee D., Möller M.: Electrospinning of polymer melts: Phenomenological observations. Polymer, 48, 6823-6833 (2007).

41. Rangkupan R., Reneker D.H.: Electrospinning process of molten polypropylene in vacuum. Journal of Metals, Materials and Minerals, 12, 81-87 (2003).

42. Cross J.A.: Electrostatics: principles, problems and applications. Adam Hilger, Bristol (1987).

113

43. Reneker D.H., Yarin A.L.: Electrospinning jets and polymer nanofibers. Polymer, 49, 2387-2425 (2008).

44. Rayleigh L.: On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine, 14, 182-184 (1882).

45. Brown P.J., Stevens K.: Nanofibers and nanotechnology in textiles. Woodhead Publishing, Cambridge (2007).

46. Salata O.V.: Tools of nanotechnology: Electrospray. Current Nanoscience, 1, 25-33 (2005).

47. Cloupeau M., Prunet-Foch B.: Electrostatic spraying of liquids. Main functioning modes. Journal of Electrostatics, 25, 165–184 (1990).

48. Cloupeau M., Prunet-Foch B.: Electrohydrodynamic spraying functioning modes. A critical review.

Journal of Aerosol Sciences, 25, 1021-1036 (1994).

49. Han T., Reneker D.H., Yarin A.L.: Buckling of jets in electrospinning. Polymer, 48, 6064-6076 (2007).

50. Demir M.M., Yilgor I., Yilgor E., Erman B.: Electrospinning of polyurethane fibers. Polymer, 43, 3303-3309 (2002).

51. Munir M.M., Suryamas A.B., Iskandar F., Okuyama K.: Scaling law on particle-to-fiber formation during electrospinning. Polymer, 50, 4935–4943 (2009).

52. Uyar T., Besenbacher F.: Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer, 49, 5336–5343 (2008).

53. Zhang C., Yuan X., Wu L., Han Y., Sheng J.: Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 41, 423-432 (2005).

54. Yarin A. L., Kataphinan W., Reneker D.H.: Branching in electrospinning nanofibers. Journal of Applied Physics, 98, 064501 (2005).

55. Andrady A. L.: Science and technology of polymer nanofibers. John Wiley & Sons, Inc., New Jersey (2008).

56. Heikkilä P., Harlin A.: Parameter study of electrospinning of polyamide-6. European Polymer Journal, 44, 3067–3079 (2008).

57. Beachley V., Wen X.: Effect of Electrospinning parameters on the nanofiber diameter and length.

Materials Science and Engineering C, 29, 663-668 (2009).

58. Csernátony-Hoffer A., Horváth T.: Nagyfeszültségű technika. Tankönyvkiadó, Budapest (1968).

59. Heikkila P., Harlin A.: Electrospinning of polyacrylonitrile (PAN) solution: effect of conductive additive and filler on the process. Express Polymer Letters, 3, 437-445, (2009).

60. Han S.O., Youk J.H., Min K.D., Kang Y.O., Park W.H.: Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Materials Letters, 62, 759-762 (2008).

61. Agarwal S., Wendorff J.H., Greiner A.: Use of electrospinning technique for biomedical applications. Polymer, 49, 5603-5621 (2008).

62. Lee C.K., Kim S.I., Kim S.J.: The influence of added ionic salt on nanofiber uniformity for electrospinning of electrolyte polymer. Synthetic Metals, 154, 209-212 (2005).

63. Varesano A., Montarsolo A., Tonin C.: Crimped polymer nanofibres by air-driven electrospinning.

European Polymer Journal, 43, 2792–2798 (2007).

64. Teo W.-E., Gopal R., Ramaseshan R., Fujihara K., Ramakrishna S.: A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer, 48, 3400-3405 (2007).

114

65. Hellmann Ch, Belardi J., Dersch R., Greiner A., Wendorff J.H., Bahnmueller S.: High precision deposition electrospinning of nanofibers and nanofiber nonwovens. Polymer, 50, 1197-1205 (2009).

66. Stanger J., Tucker N., Wallace A., Larsen N., Staiger M., Reeves R.: The effect of electrode configuration and substrate material on the mass deposition rate of electrospinning. Journal of Applied Polymer Science, 112, 1729-1737 (2009).

67. Varabhas J.S., Chase G.G., Reneker D.H.: Electrospun nanofibers from a porous hollow tube.

Polymer, 49, 4226-4229 (2008).

68. Xin Y., Huang Z., Chen J., Wang C., Tong Y., Liu S.: Fabrication of well-aligned PPV/PVP nanofibers by electrospinning. Materials Letters, 62, 991-993 (2007).

69. Dalton P.D., Klee D., Moller M.: Electrospinning with dual collection rings. Polymer, 46, 611–614 (2005).

70. Jeong J.S., Moon J.S., Jeon S.Y., Park J.H., Alegaonkar P.S., Yoo J.B.: Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films, 515, 5136–5141 (2007).

71. Smit E., Bűttner U., Sanderson R.D.: Continuous yarns from electrospun fibers. Polymer, 46, 2419–2423 (2005).

72. Bazbouz M.B., Stylios G.K.: Novel mechanism for spinning continuous twisted composite nanofiber yarns. European Polymer Journal, 44, 1-12 (2008).

73. Wang X., Zhang K., Zhu M., Yu H., Zhou Z., Chen Y., Hsiao B.S.: Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer, 49, 2755-2761 (2008).

74. Theron S.A., Yarin A.L., Zussmann E., Kroll E.: Multiple jets in electrospinning: experiment and modeling. Polymer 46, 2889-2899 (2006).

75. Kim G.H., Cho Y-S., Kim W.D.: Stability analisys for multi-jets electrospinning process modified with a cylindrical electrode. European Polymer Journal, 42, 2031-2038 (2006).

76. Andrady A.L., Ensor D.S., Newsome R.J.: Electrospinning of fibers using a rotatable spray head.

US patent 7134857 B2 (2006).

77. Yarin A.L., Zussman E.: Upward needleless electrospinning of multiple nanofibers. Polymer, 45, 2977-2980 (2004).

78. Liu Y., He J-H.: Bubble electrospinning for mass production of nanofibers. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 393-396 (2007).

79. Yang R., He J., Xu L., Yu J.: Bubble-electrospinning for fabrication nanofibers. Polymer 50, 5846-5850 (2009).

80. Smit E.A., Sanderson R.D.: Process for the fabrication of fibers, US patent 0207303 (2010).

81. Reneker D.H., Chase G.G., Sunthornvarabhas J.: Bubble launched electrospinning jets. US patent 0283189 (2010).

82. O. Jirsák, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, J Chaloupek: A method of nanofibers production from a polymer solution using electrostatic spinning and a device for carrying out the method. US patent W02005024101 (2005).

83. Chang H.-J., Lee J.H.: Electrostatic spinning apparatus. US patent 7600990 (2009).

84. Kelly A.J.: Method and Apparatus for high throughput generation of fibers by charge injection. US patent 6656394 (2003).

85. Huang Z.M., Zhang Y.Z., Kotaki M., Ramakrishna S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63, 2223–2253 (2003).

115

86. Barhate R.S., Loong C.K., Ramakrishna S.: Preparation and characterization of nanofibrous filtering media. Journal of Membrane Science, 283, 209–218 (2006).

87. Aziz H.A., Yusoff M.S., Adlan M.N., Adnan N.H., Alias S.: Physicochemical removal of iron from semi-aerobic landfill leachate by limestone filter. Journal of Integrated Waste Management, Science and Technology, 24, 353–358 (2004).

88. Carroll T., Bokker N.A., Meier-Haack J.: Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water. Journal of Membrane Sciences, 203, 3–

13 (2002).

89. Sang Y., Gu Q., Sun T., Li F., Liang C.: Filtration by a novel nanofiber membrane and alumina adsorption to remove copper(II) from groundwater. Journal of Hazardous Materials, 153, 860–866 (2008).

90. Haider S., Park S-Y.: Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. Journal of Membrane Science, 328, 90-96 (2009).

91. Rodney K.: Four commercial applications for electroadsorptive filter media in water filtration.

Nanofibers For the 3rd Millenium – Nano for Life™ Conference Proceedings, 168-171 (2009).

92. Jaromir M., Milan B.J., Luděk J.: Cation and anion exchangers from nanofibrous polystyrene for fast water treatment, Nanofibers For the 3rd Millennium – Nano for Life™ Conference Proceedings, 177-182 (2009).

93. Schek M.R., Wilke N.E., Hollister J.S., Krebsbach H.P.: Combined use of designed scaffolds and adenoviral gene therapy for skeletal tissue engineering. Biomaterials, 27, 1160–1166 (2006).

94. Khanam N., Mikoryak C., Draper R.K., Balkus K.J.: Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomaterialia, 3, 1050-1059 (2007).

95. Bini T.B., Gao S, Tan T.C., Wang S., Lim A., Hai L.B., Ramakrishna S.: Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration.

Nanotechnology, 15, 1459-1464 (2004).

96. Czvikovszky T., Nagy P.: Polimerek az Orvostechnikában, Műegyetemi Kiadó, Budapest (2003).

97. Czvikovszky T., Nagy P., Gaál J.: A polimertechnika alapjai. Műegyetemi Kiadó, Budapest (2003).

98. Morgan P.: Carbon fibers and their composites. Taylor & Francis, Boca Raton (2005).

99. Gu S-Y., Wu Q-L., Ren J., Vancso J.: Mechanical properties of a single electrospun fiber and its structures. Macromolecular Rapid Communications 26:716-720 (2005).

100. Kim C., Cho Y.J., Yun W.Y., Ngoc B.T.N., Yang K.S., Chang D.R., Lee J.W., Kojima M., Kimd Y.A., Endo M.: Fabrications and structural characterization of ultra-fine carbon fibres by electrospinning of polymer blends. Solid State Communications, 142, 20–23 (2007).

101. Kostakova E, Meszaros L, Gregr J.: Composite nanofibers produced by modified needleless electrospinning. Materials Letters, 63, 2419-2422 (2009).

102. Hou X., Yang X., Zhang L., Waclawik E., Wu S.: Stretching-induced crystallinity and orientation to improve the mechanical properties of electrospun PAN nanocomposites. Materials & Design, 31, 1726-1730 (2010).

103. Baji A., Mai Y-W., Wong S-C., Abtahi M., Du X.: Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers. Composites Science and Technology 70, 1401-1409 (2010).

104. Schiffman J.D., Blackford A.C., Wegst U.G.K., Schauer C.L.: Carbon black immobilized in electrospun chitosan membranes. Carbohydrate Polymers, 84, 1252-1257 (2011).

116

105. Fong H., Liu W., Wang C-S., Vaia R.A.: Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer 43, 775-780 (2002).

106. Li L., Bellan L.M., Craighead H.G. Frey M.W.: Formation and properties of 6 and nylon-6/montmorillonite composite nanofibers. Polymer 47, 6208-6217 (2006).

107. Saquing C.D., Manasco J.L., Khan S.A.: Electrospun nanoparticle–nanofiber composites via a one-step synthesis. Small 5, 944-951 (2009).

108. Ji L., Zhang X.: Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Materials Letters 62,2161-2164 (2008).

109. Hou H.Q., Reneker D.H.: Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Advanced Materials, 16, 69-73 (2004).

110. Chen S. F., Jang B. Z.: Fracture behaviour of interleaved fiber-resin composites, Composites Science and Technology, 41, 77-97 (1991).

111. Aksoy A., Carlsson L.A.: Interlaminar shear fracture of interleaved graphite/epoxy composites, Composites Science and Technology, 43, 55-69 (1992).

112. Todo M., Jar P-Y. B., Takahashi K.: Initiation of a mode-II interlaminar crack from an insert film in the end-notched flexure composite specimen, Composites Science and Technology, 60, 263-272 (2000).

113. Kishi H., Kuwata M., Matsuda S., Asami T., Murakami A.: Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites, Composites Science and Technology, 64, 2517-2523 (2004).

114. Godara L., Gorbatikh G., Kalinka A., Warrier O., Rochez L., Mezzo F., Luizi A.W., van Vuure S.V., Lomov I., Verpoest I.: Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Composites Science and Technology, 70, 1346-1352 (2010).

115. Deng F., Lu W., Zhao H., Zhu Y., Kim B-S., Chou T-W.: The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon, 49, 1752-1757 (2011).

116. Tan K.T., Watanabe N., Yoshimura A., Iwahori Y.: Validation of delamination reduction trend for stitched composites using quasi-static indentation test. ECCM 15, 15th European Conference on Composite Materials, Venice, Italy, 24-28 June 2012. CD Proceeding, Paper ID: 282, pp 1-7.

117. Kelkar A.D., Mohan R., Bolick R., Shendokar S.: Effect of nanoparticles and nanofibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites. Materials Science and Engineering B., 168, 85-89 (2010).

118. Liu L., Huang Z.M., He C.L., Han X.J.: Mechanical performance of laminated composites incorporated with nanofibrous membranes. Materials Science and Engineering: A, 435-436, 309-317 (2006).

119. Zhang J., Lin T., Wang X.: Electrospun nanofibre toughened carbon/epoxy composites: Effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness. Composites Science and Technology 70, 1660-1666 (2010).

120. Czigany T.: Trends in fiber reinforcements - the future belongs to basalt fiber. Express Polymer Letters, 1, 59 (2007).

121. Kim H.W., Kim H.E., Knowles J.C.: Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Advanced Functional Materials, 16, 1529-1535 (2006).

122. Yao L., Lee C., Kim J.: Fabrication of electrospun meta-aramid nanofibers in different solvent systems. Fibers and Polymers, 11, 1032-1040 (2010).

117

123. Bai L., Chen G-Q.: The Microstructure and Mechanical Property of Meta-Aramid Nanofiber Web for High Temperature Filter Media. Advanced Materials Research 175-176, 318-322 (2011).

124. Srinivasan G. Reneker D.H.: Structure and morphology of small diameter electrospun aramid fibers. Polymer International, 36, 195–201 (1995).

125. Chen C.C., Yang J.C., Ji D.Y., Lu Y.: Method of fabricating nano-fibers by electrospinning. Patent Appl. 20100003519 (2010).

126. Chun I., Reneker D.H., Fong H., Fang X., Deitzel J., Beck-Tan N., Kearns K.: Carbon nanofibers from polyacrylonitrile and metaphase pitch. Journal of Advanced Materials, 31, 36-41 (1999).

127. Park S.H., Kim C., Yang K.S.: Preparation of carbonized fiber web from electrospinning of isotropic pitch, Synthetic Metals, 143, 175-179 (2004).

128. Shindo A.: Report of the Government Industrial Research Institute. 317, Osaka (1964).

129. Rusznák I.: Textilkémia. Tankönyvkiadó, Budapest (1988).

130. Johnson J.W., Potter W., Rose P.G., Scott G.: Stabilisation of polyacrylonitrile by oxidative transformation. British Polymer Journal, 4, 527-540 (1972).

131. Meiszel L.: Oxidált poliakrilnitril szál, mint speciális kompozit vázanyag. Műanyag és Gumi, 46, 321-324 (2009).

132. Kurban Z., Lovell A., Jenkins D., Bennington S., Loader I., Schober A., Skipper N.: Turbostratic graphite nanofibres from electrospun solutions of PAN in dimethylsulphoxide. European Polymer Journal, 46, 1194-1202 (2010).

133. Liu J., Zhou P., Zhang L., Ma Z., Liang J., Fong H.: Thermo-chemical reactions occurring during the oxidative stabilization of electrospun polyacrylonitrile precursor nanofibers and the resulting structural conversions. Carbon, 47, 1087-1095 (2009).

134. Gu S.Y., Ren J., Wu Q.L.: Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers. Synthetic Metals, 155, 157-161 (2005).

135. Dhakate S.R., Gupta A., Chaudhari A., Tawale J., Mathur R.B.: Morphology and thermal properties of PAN copolymer based electrospun nanofibers. Synthetic Metals, 161, 411-419 (2011).

136. Moon S. C., Farris R. J.: Strong electrospun nanometer-diameter polyacrylonitrile carbon fiber yarns. Carbon, 47, 2829-2839 (2009).

137. Zussman E., Chen X., Ding W., Calabri L., Dikin D.A., Quintana J.P., Ruoff R.S.: Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon, 43, 2175-2185 (2005).

138. Zhou Z., Liu K., Lai C., Zhang L., Li J., Hou H., Reneker D.H., Fong H.: Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer, 51, 2360-2367 (2010).

139. Kurban Z., Lovell A., Jenkins D., Bennington S., Loader I., Schober A., Skipper N.: Turbostratic graphite nanofibres from electrospun solutions of PAN in dimethylsulphoxide. European Polymer Journal, 46, 1194-1202 (2010).

140. Liao C-C., Wang C-C., Chen C-Y., Lai W-J.: Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties.

Polymer, 52, 2263-2275 (2011).

141. Zhou Z., Lai C., Zhang L., Qian Y., Hou H., Reneker D.H., Fong H.: Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofibers bundles and characterization of their microstructural, electrical and mechanical properties. Polymer, 50, 2999-3006 (2009).

118

142. Zhou Z., Liu K., Lai C., Zhang L., Li J., Hou H., Reneker D.H., Fong H.: Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer 51, 2360-2367 (2010).

143. He J.-H., Wu Y., Zuo W.-W.: Critical length of straight jet in electrospinning. Polymer, 46, 12637-12640 (2005).

144. Li N., Qin X., Yang E., Wang S.: Effect of instability section of PVA electrospinning nanofibers by adding LiCl. Materials Letters, 62, 1345-1348 (2008).

145. Prékopa A.: Valószínűségelmélet. Műszaki könyvkiadó, Budapest (1974).

146. Tan E.P.S., Lim C.T.: Mechanical characterization of nanofibers – a review. Composites Science and Technology, 66, 1102-1111 (2006).

147. Ding Y., Zhang Y., Jiang Y., Xu F., Yin J., Zuo Y.: Mechanical properties of nylon-6/SiO2

nanofibers prepared by electrospinning. Materials Letters, 63, 34-36 (2009).

148. Lee S.H., Tekmen C., Sigmund W.M.: Three-point bending of electrospun TiO2 nanofibers.

Materials Science and Engineering A, 398, 77-81 (2005).

149. Yang L., Fitié C.F.C., Werf K.O., Bennink M.L., Dijkstra P.J., Feijen J.: Mechanical properties of single electrospun collagen type I fibers. Biomaterials, 29, 955-962 (2008).

150. Inai R., Kotaki M., Ramakrishna S.: Structure and properties of electrospun PLLA single nanofibres. Nanotechnology, 16, 208–213 (2005).

151. Wong S.C., Baji A., Leng S.: Effect of fiber diameter properties of electrospun poly(ε-caprolactone). Polymer, 49, 4713-4722 (2009).

152. Ayutsede J., Gandhi M., Sukigara S., Micklus M., Chen H-E., Ko F.: Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat. Polymer, 46, 1625-1634 (2005).

153. Huang Z-M., Zhang Y-Z., Kotaki M., Ramakrishna S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63, 2223-2253 (2003).

154. Suplicz A., Kovács J.G.: Development of thermally conductive polymer materials and their investigation. Materials Science Forum, 729, 80-84 (2013).

155. Vas L.M., Rácz Zs.: Modelling and testing the fracture process of impregnated carbon-fiber roving specimens during bending: Part I – Fibre bundle model. Journal of Composite Materials, 38, 1757-1785 (2004).

156. Vas L.M.: Statisztikus szálkötegszilárdság és alkalmazása a szál-, illetve fonalvizsgálatokban.

Magyar Textiltechnika, 40, 165-185 (1990).

157. Vas L.M., Halász G..: Modelling the breaking process of twisted fibre bundles and yarns. Periodica Polytechnica, 38, 325-350 (1994).

158. Wu X-F., Dzenis Y.A.: Collapse analysis of nanofibres. Nanotechnology, 18, 285702-285707 (2007).

159. Ali A.A., Rutledge G.C.: Hot-pressed electrospun PAN nano fibers: an idea for flexible carbon mat. Journal of Materials Processing Technology, 209, 4617–4620 (2009).

160. Vas L. M., Tamás P.: Modeling Method Based on Idealized Fiber Bundles. 3rd Chine - Europe Symposium on Processing and Properties of Reinforced Polymers, Budapest (2007).

161. Vas L. M., Tamás P.: Modelling failure and size effect of oriented polymers by fiber bundle based FIBERSPACE. Proceedings of 9th World Textile Conference AUTEX, Izmir, Törökország, pp.

1289-1297 (2009).

119

162. Vas L.M. Tamás P.: Modelling size effects of fibrous materials using fibre-bundle-cells. In:

ECCM-14 14th European Conference on Composite Materials. Budapest, Magyarország. Paper ID-705, pp. 1-11. (2012).

163. Rényi A.: Valószínűségszámítás, Tankönyvkiadó, Budapest (1966).

164. Guojun Z., Haihong Y., Shulan J., Zhongzhou L.: Self-assembly of polyelectrolyte multilayer pervaporation membranes by a dynamic layer-by-layer technique on a hydrolyzed polyacrylonitrile ultrafiltration membrane. Journal of Membrane Science, 292, 1-8 (2007).

165. Hodkiewitz J.: Characterizing carbon materials with Raman spectroscopy. Thermo Fisher Scientific (www.thermo.com), Appication note: 51901 p.5. (2010).

166. Bodor G.: A polimerek szerkezete. Műszaki Könyvkiadó, Budapest, 1982.

167. K.Y. Hwang, S.D. Kim, Y.W. Kim, W.R. Yu: Mechanical characterization of nanofibers using a nanomanipulator and atomic force microscope cantilever in a scanning electron microscope, Polymer Testing, 29, 375-380 (2010).

Saját publikációk listája:

MK1. Molnár K., Vas L.M.: Chapter 10 - Electrospun Composite Nanofibers and Polymer Composites. Bhattacharyya D., Fakirov S. (szerk.) Synthetic polymer-polymer composites.

Hanser, München, 301-350 (2012).

MK2. Molnár K., Provost M., Vas L M.: Electrospinning and characterization of polyamide nanofibrous mats. Proceedings of 3rd Achen-Dresden International Textile Conference. Aachen, Németország, p.8. (2009).

MK3. Molnár K., Mészáros L., Vas L.M.: Processing of Oriented Nanofibers by Electrospinning Method. 6. Országos Gépészeti Konferencia - Gépészet 2008: Proceedings of Sixth Conference on Mechanical Engineering. Budapest, Magyarország, pp. 1-7. Paper G-2008-J-17. (2008).

MK4. Molnár K., Nagy Zs.K., Marosi Gy. Mészáros L.: Elektrosztatikus szálképző fej és módosított eljárás nanoszálak termelékeny előállítására. Szellemi Tulajdon Nemzeti Hivatala, ügyszám:

P1200677 (2012).

MK5. Molnár K., Gombos Z.,Vas L.M.: Testing and Modeling the Tensile Strength Behavior of Glass Fibers, Fiber Bundles and Fiber Mat, Materials Science Forum vol. 589. 227-232 (2008).

MK6. Molnár K., Gombos Z., Vas L.M.: Testing and Modeling of Glass Fiber Bundles and Glass Fiber Mats, Proceedings of Sixth Conference on Mechanical Engineering, ISBN 978-963-420-947-8 (2008).

MK7. Quero López V., Sequeiros Murciano F., Cano Pérez F., Molnár K.: Research activities on nano-materials and electromagnetic protection of composite aeronautical structures. ECCM 15, 15th European Conference on Composite Materials, Velence, Olaszország. CD Proceeding, Paper ID: 709, pp 1-9 (2012).

MK8. Nagy Zs.K., Wágner I., Suhajda Á, Tobak T., Harasztos A.H., Pataki H., Molnár K., Marosi Gy.: Nanofibrous solid dosage form of living bacteria prepared by electrospinning, benyújtva az Express Polymer Letters folyóiratba.

MK9. Nagy Zs K., Balogh A., Wagner I., Sóti P., Pataki H., Molnár K., Marosi Gy.: Nanofibrous drug delivery systems for enhanced dissolution prepared by electrospinning. European Journal of Pharmaceutical Sciences, 44, különszám, 152-153 (2011).

MK10. Molnár K., Nagy Zs.K., Vas L.M., Czigány T., Karger-Kocsis J., Marosi Gy.: Elektrosztatikus eljárás és berendezés részecskék nano- és mikroszerkezetű funkcionális bevonatának előállítására. Szellemi Tulajdon Nemzeti Hivatala, ügyszám: P1200119 (2012).

MK11. Molnár K., Košt’áková E., Vas L.M.: Preparation of Composites Reinforced with ‘In Situ’

Electrospun Fibres. 14th European Conference on Composite Materials (ECCM-14). Budapest, p7 (2010).

120

MK12. Molnár K., Košt’áková E., Mészaros L.: The effect of needleless electrospun nanofibrous interleaves on mechanical properties of CF/EP laminates. Express Polymer Letters 8: (várható megjelenés 2014), Megjelenés alatt.

MK13. Molnár K., Vas L. M.: Az elektrosztatikus szálképzés és lehetséges kompozitipari alkalmazásai. Erősített Műanyagok 2010 Nemzetközi Balaton Konferencia, Keszthely, Magyarország, pp. 1-8. (2010).

MK14. Fejős M., Molnár L., Karger-Kocsis J.: Epoxy/polycaprolactone systems with triple-shape memory effect: electrospun nanoweb with and without graphene versus co-continuous morphology. Materials, 6, 4489-4504 (2013).

MK15. Nagy Zs.K., Nyúl K., Wagner I., Molnár K., Marosi Gy.: Electrospun water soluble polymer mat for ultrafast release of Donepezil HCl. Express Polymer Letters, 4, 763-772 (2010).

MK16. Molnár K.: Development of carbon nanofiber reinforced hybrid composites for aerospace applications. Szóbeli előadás, PRECARB-12 - Surface Chemistry and Performance of Carbon Materials konferencia, Budapest (2012).

MK17. Molnár K., Szolnoki B., Toldy A., Vas L.M.: Thermochemical stabilization study of continuously electrospun carbon nanotube-loaded polyacrylonitrile nanofibers for high performance carbon nanofiber mass production. benyújtva a Journal of Thermal Analysis and Calorimetry folyóiratba.

MK18. Molnár K., Szebényi G., Szolnoki B., Marosi Gy., Vas L.M., Toldy A.: Effect of carbon nanotubes and carbonized electrospun nanofibers on the mechanical and conductive performance of epoxy resin composites. benyújtva a Polymers for Advanced Technologies folyóiratba.

MK19. Molnár K., Szolnoki B., Szebényi G., Nagy Zs.K., Toldy A., Marosi Gy.: Cleansky 032.

D 5.5.: Industrialization report (ipari jelentés), Resin, laminate and industrial nanoparticles concept and application. Industrialization. pp. 1-18. (2012).

MK20. Molnár K., Košt'áková E., Mészáros L.: Electrospinning of PVA/carbon nanotube composite nanofibers: the effect of processing parameters. Materials Science Forum, 589, 221-226 (2008).

MK21. Molnár K., Mészáros L., Vas L.M..: The Effect of Electron Beam Irradiation on PA6/Epoxy Nanofibrous Laminates. In: Nanofibers for the 3rd Millenium. Prága, Csehország, pp. 82-87 (2009).

MK22. Molnár K.: Elektro-szálképzéssel előállított nanoszálak kompozitipari alkalmazásai. Magyar Textiltechnika, 61, 2-7 (2011).

MK23. Molnár K., Vas L.M.: Development of continuous electrospun precursors for carbon fiber manufacturing. ECCM 15, 15th European Conference on Composite Materials, Velence, Olaszország. CD Proceeding, Paper ID: 568, pp 1-8 (2012).

MK24. Mészáros L., Molnár K., Vas L.M.: The effect of the orientation on the mechanical properties of electrospun nanofibers. In: AUTEX 2009 World Textile Conference. Cesme-Izmir, Törökország, pp. 1458-1463 (2009).

MK25. Molnár K., Vas L.M., Czigany T.: Testing and modeling the tensile process of electrospun nanofibrous structures. In: Fu S. (szerkesztő): Proceedings of The 2nd International Conference on Nanomechanics and Nanocomposites. Peking, Kína, 87-90 (2010).

MK26. Molnár K., Vas LM., Czigány T.: Determination of tensile strength of electrospun single nanofibers through modeling tensile behavior of the nanofibrous mat. Composites part B:

Engineering, 43, 15-21 (2012).

MK27. Marianna H., Vas L.M., Péter T., Kovács A.Cs., Huszár Zs.A., Al-Gaadi B., Molnár K., Cherkaoui O., Dalal M.: Fiber bundle cells based modelling of woven reinforcements. In: 13th AUTEX World Textile Conference 2013. Drezda, Németország, Paper ID:322, pp. 1-9 (2013).

MK28. Halász M., Vas L.M., Tamás P., Kovács A.Cs., Huszár Zs.A., Al-Gaadi B., Molnár K., Cherkaoui O., Dalal M.: Analyzing the tensile behaviour of fabrics based on fibre bundle models. Proceedings of the 4th ITMC Lille Metropole Conference, Lille-Roubaix, Franciaország, pp. 123-128 (2013).

121

Mellékletek

In document PhD értekezés (Pldal 119-129)