• Nem Talált Eredményt

Expected Impact and Future Research Work

Chapter 7: Conclusions and Suggestion for Future Work

7.3. Expected Impact and Future Research Work

Chapter 7: Conclusions and Suggestion for Future Work ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــ

118

EMA and the applied control strategies in modern aircraft applications. Because this configuration combines the advantages of SRMs and the predictive control technique, it demonstrated its ability to drive flight control surfaces accurately, and its effect on the aircraft's electrical system was acceptable.

The related work is presented in this thesis has been published in [S4] and [S6].

119

2. Develop an accurate analytical model for SRM to achieve high-performance real-time control,

3. Improve the sensor-less control method of SRM for industrial applications,

4. Preparing a scaled-down laboratory model, implement the proposed control techniques and strategies, and validate the obtained simulation results.

References ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــ

120

References

[1] J. Chowdhury, G. Kumar, K. Kalita, K. Tammi, and S. K. Kakoty, “A review on linear switched reluctance motor,” Raken. Mek., vol. 50, no. 3, p. 261, Aug. 2017, doi:

10.23998/rm.65121.

[2] T. J. E. Miller, In Newnes Power Engineering Series, Electronic Control of Switched Reluctance Machines,. Newnes, 2001.

[3] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. N. Srinivas,

“Switched reluctance motor modeling, design, simulation, and analysis: A comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605–4617, Dec. 2008, doi: 10.1109/TMAG.2008.2003334.

[4] H. Wang, D. H. Lee, and J. W. Ahn, “Torque ripple reduction of SRM using advanced Direct Instantaneous Torque Control scheme,” Proceeding Int. Conf. Electr. Mach. Syst.

ICEMS 2007, pp. 492–496, 2007, doi: 10.1109/ICEMS.2007.4412012.

[5] S. Singh, “Comparative Study of Various Converter Topologies of Switched Reluctance Motor Drive Using P-SPICE,” THAPAR UNIVERSITY, PATIALA, 2011.

[6] Wadah Abass Aljaism, “Switched Reluctance Motor : Design , Simulation and Control,”

University of Western Sydney, 2007.

[7] S. Kurian and Nisha G. K., “State Of The Art Of Switched Reluctance Motor For Torque Ripple Minimization,” Int. J. Ind. Electron. Electr. Eng., vol. 02, no. 12, pp. 68–74, 2014.

[8] R. Krishnan, Switched reluctance motor drives: Modeling, simulation, analysis, design, and applications. Boca Raton London New York Washington, D.C.: CRC Press, 2017.

[9] M. T. Direnzo, “Switched Reluctance Motor Control – Basic Operation and Example

Using the TMS320F240,” 2000. [Online]. Available:

http://d1.amobbs.com/bbs_upload782111/files_9/ourdev_262731.pdf.

[10] B. Bilgin and J. W. J. A. Emadi, Switched reluctance motor drives : fundamentals to applications. CRC Press, 2018.

[11] X. Gao, X. Wang, Z. Li, and Y. Zhou, “A review of torque ripple control strategies of

121

switched reluctance motor,” Int. J. Control Autom., vol. 8, no. 4, pp. 103–116, 2015, doi: 10.14257/ijca.2015.8.4.13.

[12] M. T. DiRenzo, M. K. Masten, and C. P. Cole, “Switched reluctance motor control techniques,” in Proceedings of the 1997 American Control Conference (Cat.

No.97CH36041), 1997, pp. 272–277, doi: 10.1109/ACC.1997.611800.

[13] University of Technology Sydney, “48550 Electrical Energy Technology Switched Reluctance Motor,” Study Lib Website. https://studylib.net/doc/18093224/.

[14] E. S. Elwakil and M. K. Darwish, “Critical review of converter topologies for switched reluctance motor drives,” Int. Rev. Electr. Eng., vol. 2, no. 1, pp. 50–58, 2007.

[15] M. Hamouda, “Advanced Control of Switched Reluctance Motor Drives for Electric Vehicles,” Budapest University of Technology and Economics, 2020.

[16] M. R. A. Ghani, N. Farah, and M. R. Tamjis, “Vector control of switched reluctance motor using fuzzy logic and artificial neutral network controllers,” in International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016, 2016, pp. 4412–4417, doi: 10.1109/ICEEOT.2016.7755553.

[17] Y. Pahariya, R. Saxena, and B. Sarkar, “Control Strategy of SRM Converters for Power Quality Improvement,” Int. J. Electr. Robot. Electron. Commun. Eng., vol. 6, no. 9, pp.

86–100, 2012, [Online]. Available: http://waset.org/Publications?p=69.

[18] S. Kurian, “Open Loop Control of Switched Reluctance Motor Using Theta Position Sensing,” IJISET - Int. J. Innov. Sci. Eng. Technol., vol. 1, no. 10, pp. 64–68, 2014.

[19] S. M. Mahmoud, M. Z. El-Sherif, E. S. Abdel-Aliem, and M. N. F. Nashed, “Studying Different Types of Power Converters Fed Switched Reluctance Motor,” Int. J. Electron.

Electr. Eng., vol. 1, no. 4, pp. 281–290, 2013, doi: 10.12720/ijeee.1.4.281-290.

[20] E. Elwakil, “A New Converter Topology for High-Speed High-Starting-Torque Three-Phase Switched Reluctance Motor Drive System,” Brunel University, 2009.

[21] S. Mir, “Classification of SRM converter topologies for automotive applications,” SAE Tech. Pap., no. 724, Mar. 2000, doi: 10.4271/2000-01-0133.

[22] C. Li, G. Wang, Y. Li, and A. Xu, “An improved finite-state predictive torque control

References ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــ

122

for switched reluctance motor drive,” IET Electr. Power Appl., vol. 12, no. 1, pp. 144–

151, 2018, doi: 10.1049/iet-epa.2017.0268.

[23] R. Suryadevara and B. G. Fernandes, “Control techniques for torque ripple minimization in switched reluctance motor: An overview,” in 2013 IEEE 8th International Conference on Industrial and Information Systems, ICIIS 2013, 2013, pp. 24–29, doi:

10.1109/ICIInfS.2013.6731949.

[24] M. Divandari, B. Rezaie, and B. Askari-Ziarati, “Torque estimation of sensorless SRM drive using adaptive-fuzzy logic control,” in Proceedings of the 2016 IEEE North West Russia Section Young Researchers in Electrical and Electronic Engineering Conference, EIConRusNW 2016, 2016, pp. 542–546, doi:

10.1109/EIConRusNW.2016.7448241.

[25] L. Szamel, “Adaptive PF speed control of SRM drives,” in 2008 13th International Power Electronics and Motion Control Conference, EPE-PEMC 2008, Sep. 2008, pp.

1033–1039, doi: 10.1109/EPEPEMC.2008.4635403.

[26] S. Joshi, R. Arindom, T. Dikshit, B. Anish, A. G. Deep, and P. Pallav, “Conceptual paper on factors affecting the attitude of senior citizens towards purchase of smartphones,”

Indian J. Sci. Technol., vol. 8, no. 12, pp. 83–89, 2015, doi: 10.17485/ijst/2015/v8i.

[27] A. C. Sijini, E. Fantin, and L. P. Ranjit, “Switched Reluctance Motor for Hybrid Electric Vehicle,” Middle-East J. Sci. Res., vol. 24, no. 3, pp. 734–739, 2016, doi:

10.5829/idosi.mejsr.2016.24.03.23070.

[28] C. Labiod, K. Srairi, B. Mahdad, M. T. Benchouia, and M. E. H. E. H. Benbouzid,

“Speed Control of 8/6 Switched Reluctance Motor with Torque Ripple Reduction Taking into Account Magnetic Saturation Effects,” in International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES15-Energy Procedia, Aug. 2015, vol. 74, pp. 112–121, doi:

10.1016/j.egypro.2015.07.530.

[29] A. V. Rajarathnam, K. M. Rahman, and M. Ehsani, “Improvement of hysteresis control in switched reluctance motor drives,” in IEEE International Electric Machines and Drives Conference. IEMDC’99. Proceedings (Cat. No.99EX272), 1999, pp. 537–539, doi: 10.1109/IEMDC.1999.769169.

123

[30] B. Shao and A. Emadi, “A digital PWM control for switched reluctance motor drives,”

in 2010 IEEE Vehicle Power and Propulsion Conference, VPPC 2010, 2010, pp. 1–6, doi: 10.1109/VPPC.2010.5729103.

[31] X. Wang, “Modeling and implementation of controller for switched reluctance motor with ac small signal model,” Virginia Tech, 2001.

[32] C. Hui, M. Li, W. Hui, S. Q. Shen, and W. Wang, “Torque ripple minimization for switched reluctance motor with predictive current control method,” in 2017 20th International Conference on Electrical Machines and Systems, ICEMS 2017, 2017, pp.

1–4, doi: 10.1109/ICEMS.2017.8056096.

[33] L. Számel, “Adaptive Ripple Reduced Control of SRM Drives,” 2002, [Online].

Available: http://real.mtak.hu/id/eprint/20587.

[34] A. B. Nanda, S. Pati, N. Rani, and D. Panda, “A novel torque ripple minimization strategy for a 6/4 SRM drive with reduced switching frequency variation,” in IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2016, 2017, pp. 1–6, doi: 10.1109/PEDES.2016.7914459.

[35] L. Szamel, “Optimal Control of Transistor SRM Converters with Reduced Number of Switching Element,” in 2006 12th International Power Electronics and Motion Control Conference, Aug. 2006, no. 1, pp. 1105–1110, doi: 10.1109/EPEPEMC.2006.4778550.

[36] D. O. F. Philosophy, F. O. F. Information, and C. Engineering, “A Comparative Study On Artificial Intelligence Based Torque Ripple Minimization In Switched Reluctance Motor,” Anna University, 2013.

[37] R. E. Centre and G. Rural, “Analysis of Energy Efficient Current Control Methods in Switched Reluctance Motor,” Middle-East J. Sci. Res., vol. 22, no. 8, pp. 1138–1144, 2014, doi: 10.5829/idosi.mejsr.2014.22.08.21989.

[38] S. E. Schulz and K. M. Rahman, “High-Performance Digital PI Current Regulator for EV Switched Reluctance Motor Drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp.

1118–1126, 2003, doi: 10.1109/TIA.2003.814580.

[39] H. Chen, Z. Yang, and H. Cheng, “Average torque control of switched reluctance machine drives for electric vehicles,” IET Electr. Power Appl., vol. 9, no. 7, pp. 459–

References ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــ

124 468, 2015, doi: 10.1049/iet-epa.2014.0424.

[40] R. B. Inderka and R. W. A. A. De Doncker, “DITC - Direct Instantaneous Torque Control of Switched Reluctance Drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp.

1046–1051, Jul. 2003, doi: 10.1109/TIA.2003.814578.

[41] O. Ellabban and H. Abu-Rub, “Torque Control Strategies for a High Performance Switched Reluctance Motor Drive System,” in 7th IEEE GCC Conference and Exhibition, 2013, vol. 24, pp. 257–262, doi: 10.1109/IEEEGCC.2013.6705786.

[42] X. D. Xue, K. W. E. E. Cheng, and S. L. Ho, “Optimization and Evaluation of Torque-Sharing Functions for Torque Ripple Minimization in Switched Reluctance Motor Drives,” IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2076–2090, Sep. 2009, doi:

10.1109/TPEL.2009.2019581.

[43] S. Jebarani Evangeline and S. Suresh Kumar, “Torque Ripple Minimization of switched reluctance drives - A survey,” 5th IET Int. Conf. Power Electron. Mach. Drives (PEMD 2010), vol. 2010, pp. 1–6, 2010, doi: 10.1049/cp.2010.0177.

[44] M. Hamouda, L. Szamel, and L. Alquraan, “Maximum torque per ampere based indirect instantaneous torque control for switched reluctance motor,” CANDO-EPE 2019 - Proc.

IEEE 2nd Int. Conf. Work. Obuda Electr. Power Eng., pp. 47–53, 2019, doi:

10.1109/CANDO-EPE47959.2019.9110963.

[45] M. Usman and J. Waree, “Average Torque Control of a Switched Reluctance Motor Drive for Light Electric Vehicle Applications,” IFAC-PapersOnLine, 2017.

http://www.sciencedirect.com/science/article/pii/S2405896317322280.

[46] R. B. Inderka and R. W. A. A. R. W. A. A. A. A. R. W. A. A. R. W. A. A. R. W. A. A.

De Doncker, “High-Dynamic Direct Average Torque Control for Switched Reluctance Drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1040–1045, Jul. 2003, doi:

10.1109/TIA.2003.814579.

[47] M. Hamouda and L. Szamel, “Reduced torque ripple based on a simplified structure average torque control of switched reluctance motor for electric vehicles,” CANDO-EPE 2018 - Proc. IEEE Int. Conf. Work. Obuda Electr. Power Eng., pp. 109–113, 2019, doi:

10.1109/CANDO-EPE.2018.8601133.

125

[48] R. B. Inderka and R. W. De Doncker, “High dynamic direct average torque control for switched reluctance drives,” in Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2001, vol. 3, pp. 2111–2115, doi: 10.1109/ias.2001.955917.

[49] P. Chancharoensook, “Direct instantaneous torque control of a four-phase switched reluctance motor,” in Proceedings of the International Conference on Power Electronics and Drive Systems, 2009, pp. 770–777, doi: 10.1109/PEDS.2009.5385650.

[50] D. a Shahakar and V. M. Jape, “Direct Instantaneous Torque Control of Switched Reluctance Motors,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 2, no. 1, pp.

574–579, 2013, [Online]. Available: http://www.ijareeie.com/upload/january/1_Direct Instantaneous.pdf.

[51] D.-H. H. Lee, S. Y. Ahn, and J. W. Ahn, “Advanced Torque Control Scheme for the High Speed Switched Reluctance Motor,” Adv. Mot. Torque Control, 2011, doi:

10.5772/20701.

[52] H. J. Brauer, M. D. Hennen, and R. W. De Doncker, “Multiphase torque-sharing concepts of predictive PWM-DITC for SRM,” in Proceedings of the International Conference on Power Electronics and Drive Systems, Nov. 2007, pp. 511–516, doi:

10.1109/PEDS.2007.4487748.

[53] C. R. Neuhaus, N. H. Fuengwarodsakul, and R. W. De Doncker, “Predictive PWM-based direct instantaneous torque control of switched reluctance drives,” in PESC Record - IEEE Annual Power Electronics Specialists Conference, 2006, pp. 1–7, doi:

10.1109/PESC.2006.1712264.

[54] M. Ilic-Spong, T. J. E. Miller, S. E. MacMinn, and J. S. Thorp, “Instantaneous Torque Control of Electric Motor Drives,” in PESC Record - IEEE Annual Power Electronics Specialists Conference, Jun. 1985, pp. 42–48, doi: 10.1109/pesc.1985.7070928.

[55] W. Ye, Q. Ma, and P. Zhang, “Improvement of the torque-speed performance and drive efficiency in an SRM using an optimal torque sharing function,” Appl. Sci., vol. 8, no.

5, 2018, doi: 10.3390/app8050720.

[56] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388–399, 2012, doi:

10.1109/TPEL.2011.2158447.

References ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــ

126

[57] L. Számel, “Ripple Reduced Control of Switched Reluctance Motor Drives,” Electr.

Drives Power Electron. Int. Conf., pp. 48–53, 2001.

[58] I. Husain, “Minimization of torque ripple in SRM drives,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 28–39, 2002, doi: 10.1109/41.982245.

[59] M. Hamouda, Q. S. Ullah, and L. Szamel, “Compensation of Switched Reluctance Motor Torque Ripple based on TSF Strategy for Electric Vehicle Applications,” in 4th International Conference on Power Generation Systems and Renewable Energy Technologies, PGSRET 2018, 2018, pp. 1–6, doi: 10.1109/PGSRET.2018.8686003.

[60] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, Jun. 1965, doi:

10.1016/S0019-9958(65)90241-X.

[61] J. Y. M. Cheung and A. S. Kamal, “Fuzzy logic control of refrigerant flow,” in UKACC International Conference on CONTROL ‘96, 1996, no. 427 /1, pp. 125–130, doi:

10.1049/cp:19960538.

[62] D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy Control.

Springer Berlin Heidelberg, 1993.

[63] C. C. Lee, “Fuzzy logic control systems: fuzzy logic controller-part II,” IEEE Trans.

Syst. Man. Cybern., vol. 20, no. 2, pp. 419–435, 1990, doi: 10.1109/21.52552.

[64] K. M. Passino and S. Yurkovich, Fuzzy control, 1st ed., vol. 517. USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

[65] Y. Bai and D. Wang, “Fundamentals of Fuzzy Logic Control – Fuzzy Sets, Fuzzy Rules and Defuzzifications,” in Advances in Industrial Control, London: Springer London, 2006.

[66] M. Godoy Sirnoes, “Fuzzy optimisation based control of a solar array system,” IEE Proc. Electr. Power Appl., vol. 146, no. 5, pp. 552–558, 1999, doi: 10. 1049/ip-epa:19990341.

[67] K. Lakshmanan, S. Perumal, and W. I. Mariasiluvairaj, “Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives,” Acta Sci.

Technol., vol. 36, no. 1, 2013, doi: 10.4025/actascitechnol.v36i1.18097.

127

[68] B. Singh, V. K. Shaniia, S. S. S. Murthy, V. K. Sharma, and S. S. S. Murthy,

“Performance Analysis of Adaptive Fuzzy Logic Controller for Switched Reluctance Motor Drive System,” in Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), 1998, vol. 2, no.

2, pp. 82–87, doi: 10.1109/IAS.1998.732376.

[69] B. W. B. W. Williams, D. S. Reay, M. Mirkazemi-Moud, T. C. Green, and B. W. B. W.

Williams, “Switched Reluctance Motor Control Via Fuzzy Adaptive Systems,” IEEE Control Syst. Mag., vol. 15, no. 3, pp. 8–15, Jun. 1995, doi: 10.1109/37.387611.

[70] J. G. G. O’Donovan, P. J. J. Roche, R. C. C. Kavanagh, M. G. G. Egan, and J. M. D. M.

D. Murphy, “Neural network based torque ripple minimisation in a switched reluctance motor,” in Proceedings of IECON’94 - 20th Annual Conference of IEEE Industrial Electronics, 1994, pp. 1226–1231, doi: 10.1109/IECON.1994.397968.

[71] E. Gouda, M. Hamouda, and A. R. A. Amin, “Artificial Intelligence based Torque Ripple Minimization of Switched Reluctance Motor Drives,” in 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), 2016, pp. 943–948, doi: 10.1109/MEPCON.2016.7837010.

[72] C. L. Xia and J. Xiu, “RBF ANN nonlinear prediction model based adaptive PID control of switched reluctance motor Drive,” 2006, doi: 10.1007/11893295_69.

[73] D. S. S. Reay, T. C. C. Green, and B. W. W. Williams, “Neural networks used for torque ripple minimisation from a switched reluctance motor,” 1993, Accessed: Nov. 19, 2017.

[Online]. Available: https://researchportal.hw.ac.uk/en/publications/neural-networks-used-for-torque-ripple-minimization-from-a-switch.

[74] Z. Hongtaols, L. Feng, L. Liangen, J. Jingping, and X. Dehong, “Torque ripple minimization in switched reluctance motors using fuzzy-neural network inverse learning control,” in The Fifth International Conference on Power Electronics and Drive Systems. PEDS, 2003, pp. 1203–1207, doi: 10.1109/PEDS.2003.1283148.

[75] L. O. P. Henriques, L. G. B. Rolim, W. I. Suemitsu, P. J. C. Branco, and J. A. Dente,

“Torque ripple minimization in a switched reluctance drive by neuro-fuzzy compensation,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3592–3594, 2000, doi:

10.1109/intmag.2000.872341.

References ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــ

128

[76] H. Peyrl, G. Papafotiou, and M. Morari, “Model predictive torque control of a switched reluctance motor,” in Proceedings of the IEEE International Conference on Industrial Technology, 2009, pp. 1–6, doi: 10.1109/ICIT.2009.4939734.

[77] X. Li and P. Shamsi, “Inductance surface learning for model predictive current control of switched reluctance motors,” IEEE Trans. Transp. Electrif., vol. 1, no. 3, pp. 287–

297, 2015, doi: 10.1109/TTE.2015.2468178.

[78] M. Ilic’-Spong, R. Marino, S. Peresada, and D. Taylor, “Feedback linearizing control of switched reluctance motors,” IEEE Trans. Automat. Contr., vol. 32, no. 5, pp. 371–379, May 1987, doi: 10.1109/TAC.1987.1104616.

[79] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearisation approach,” IEE Proc. - Electr. Power Appl., vol. 143, no. 5, p. 371, 1996, doi: 10.1049/ip-epa:19960482.

[80] C. Bian, Y. Man, C. Song, and S. Ren, “Variable structure control of switched reluctance motor and its application,” in Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 2006, pp. 2490–2493, doi: 10.1109/WCICA.2006.1712809.

[81] R. Zhang et al., “An adaptive sliding mode current control for switched reluctance motor,” in IEEE Transportation Electrification Conference and Expo, ITEC Asia-Pacific 2014 - Conference Proceedings, Aug. 2014, pp. 1–6, doi: 10.1109/ITEC-AP.2014.6940895.

[82] N. C. Sahoo, J. X. Xu, and S. K. Panda, “Application of iterative learning for constant torque control of switched reluctance motors,” IFAC Proc. Vol., vol. 32, no. 2, pp. 2175–

2180, 1999, doi: 10.1016/S1474-6670(17)56369-7.

[83] N. C. Sahoo, J. X. Xu, and S. K. Panda, “Low torque ripple control of switched reluctance motors using iterative learning,” IEEE Trans. Energy Convers., vol. 16, no.

4, pp. 318–326, 2001, doi: 10.1109/60.969470.

[84] G. Baoming et al., “Nonlinear internal-model control for switched reluctance drives,”

IEEE Trans. Power Electron., vol. 17, no. 3, pp. 379–388, May 2002, doi:

10.1109/TPEL.2002.1004245.

[85] R. C. Kavanagh, J. M. D. J. M. D. Murphy, and M. G. M. G. Egan, “Torque ripple

129

minimization in switched reluctance drives using self-learning techniques,” Proceedings IECON ’91: 1991 International Conference on Industrial Electronics, Control and Instrumentation. IEEE, pp. 289–294, 1991, doi: 10.1109/iecon.1991.239292.

[86] “Development of smooth torque in switched reluctance motors using self-learning techniques - IET Conference Publication,” in 1993 Fifth European Conference on Power Electronics and Applications, 1993, pp. 14–19, Accessed: Nov. 19, 2017.

[Online]. Available: http://ieeexplore.ieee.org/document/264967/.

[87] J. Liang, D.-H. Lee, and J.-W. Ahn, “Direct instantaneous torque control of switched reluctance machines using 4-level converters,” IET Electr. Power Appl., vol. 3, no. 4, p.

313, 2009, doi: 10.1049/iet-epa.2008.0002.

[88] J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives, 2nd ed. Chichester, UK: John Wiley & Sons, Ltd, 2012.

[89] A. I. Al-Odienat and A. A. Al-Lawama, “The advantages of PID fuzzy controllers over the conventional types,” Am. J. Appl. Sci., vol. 5, no. 6, pp. 653–658, Jun. 2008, doi:

10.3844/ajassp.2008.653.658.

[90] P. Karuppanan and K. Mahapatra, “PI, PID and fuzzy logic controlled cascaded voltage source inverter based active filter for power line conditioners,” WSEAS Trans. Power Syst., vol. 6, no. 4, pp. 100–109, 2011.

[91] E. Natsheh and K. A. Buragga, “Comparison between Conventional and Fuzzy Logic PID Controllers for Controlling DC Motors,” IJCSI Int. J. Comput. Sci. Issues, vol. 7, no. 5, pp. 1694–814, 2010, [Online]. Available: www.IJCSI.org.

[92] H. M. CheshmehBeigia and A. M. Amidib, “Torque Ripple Minimization in SRM Based on Advanced Torque Sharing Function Modified by Genetic Algorithm Combined with Fuzzy PSO,” Int. J. Ind. Electron. Control Optim., vol. 1, no. 1, pp. 71–80, 2018,

[Online]. Available:

http://ieco.usb.ac.ir/article_3909_c78d61a13373f65a8ec6ee2e8d1aafe0.pdf.

[93] R. Abdel-Fadil, A. Eid, and M. Abdel-Salam, “Fuzzy Logic Control of Modern Aircraft Actuators,” in 3rd International Conference on Energy Systems and Technologies, 2015, pp. 149–158.

References ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــ

130

[94] Y. Bai and H. Zhuang, “Advanced Fuzzy Logic Technologies in Industrial Applications,” in Advances in Industrial Control, vol. 49, no. 4, and D. Wang, Ed.

Springer London, 2007, pp. 494–495.

[95] D. F. H. Ali and M. M. F. Algreer, “Position Control Using Fuzzy Logic,” AL-Rafdain Eng. J., vol. 16, no. 1, pp. 1–14, 2008, doi: 10.33899/rengj.2008.43935.

[96] “PSIM | Software for Power Electronics Simulation.” [Online]. Available:

https://powersimtech.com/products/psim/.

[97] J. Ahn, “Torque Control Strategy for High Performance SR Drive,” J. Electr. Eng.

Technol., vol. 3, no. 4, pp. 538–545, 2008, [Online]. Available:

http://www.dbpia.co.kr/Journal/ArticleDetail/1145905.

[98] E. Majchrzak and J. Mendakiewicz, “Optimum location of sensors used for mould parameters estimation,” Arch. FOUNDRY Eng., vol. 10, no. 1, pp. 97–100, 2010.

[99] A. Linder, R. Kanchan, R. Kennel, and P. Stolze, Model-Based Predictive Control of Electric Drives. Cuvillier Verlag Göttingen, 2010.

[100] R. Haber, R. Bars, and U. Schmitz, Predictive Control in Process Engineering.

Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011.

[101] V. Jambulingam, “Mathematical modeling and simulation of a thermal system,” Int. J.

Res. Appl. Sci. Eng. Technol., vol. 4, no. Iv, pp. 441–446, 2016.

[102] M. Hamouda and L. Szamel, “A new technique for optimum excitation of switched reluctance motor drives over a wide speed range,” Turkish J. Electr. Eng. Comput. Sci., vol. 26, no. 5, pp. 2753–2767, 2018, doi: 10.3906/elk-1712-153.

[103] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448–457, 2003, doi: 10.1109/TEC.2003.815854.

[104] M. Hamouda and L. Számel, “Optimum control parameters of switched reluctance motor for torque production improvement over the entire speed range,” Acta Polytech.

Hungarica, vol. 16, no. 3, pp. 79–99, 2019, doi: 10.12700/APH.16.3.2019.3.5.

[105] H. Le-Huy and P. Brunelle, “A versatile nonlinear switched reluctance motor model in

131

Simulink using realistic and analytical magnetization characteristics,” in 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005., 2005, vol.

2005, no. c, p. 6 pp., doi: 10.1109/IECON.2005.1569136.

[106] A. Emadi and M. Ehsani, “Aircraft power systems: technology, state of the art, and future trends,” IEEE Aerosp. Electron. Syst. Mag., vol. 15, no. 1, pp. 28–32, 2000, doi:

10.1109/62.821660.

[107] X. Xia, “Dynamic Power Distribution Management for All Electric Aircraft,” Cranfield University, 2009.

[108] K. J. Karimi, “Future Aircraft Power Systems- Integration Challenges,” 2007. [Online].

Available: https://research.ece.cmu.edu/electriconf/2008/PDFs/Karimi.pdf.

[109] C. R. Avery, S. G. Burrow, and P. H. Mellor, “Electrical generation and distribution for the more electric aircraft,” in 2007 42nd International Universities Power Engineering Conference, Sep. 2007, pp. 1007–1012, doi: 10.1109/UPEC.2007.4469088.

[110] A. Eid, H. El-Kishky, M. Abdel-Salam, and M. T. El-Mohandes, “On Power Quality of Variable-Speed Constant-Frequency Aircraft Electric Power Systems,” IEEE Trans.

Power Deliv., vol. 25, no. 1, pp. 55–65, Jan. 2010, doi: 10.1109/TPWRD.2009.2031672.

[111] R. Abdel-Fadil, A. Eid, and M. Abdel-Salam, “Electrical distribution power systems of modern civil aircrafts,” in 2nd International Conference on Energy Systems and Technologies, 2013, pp. 201–210, [Online]. Available:

http://www.afaqscientific.com/icest2013/22-Eid76.pdf.

[112] J. I. Corcau and L. Dinca, “On using PEMFC for Electrical Power Generation on More Electric Aircraft,” World Acad. Sci. Eng. Technol., vol. 6, no. 2, pp. 228–231, 2012, [Online]. Available: https://doi.org/10.5281/zenodo.1086273.

[113] I. Moir and A. Seabridge, Aircraft Systems Mechanical, electrical, and avionics subsystems integration, Second. London and Bury St Edmunds, UK: Professional Engineering Publishing Limited, 2001.

[114] A. Eid, H. El-Kishky, M. Abdel-Salam, and T. El-Mohandes, “Constant frequency aircraft electric power systems with harmonic reduction,” IECON Proc. (Industrial Electron. Conf., pp. 623–628, 2008, doi: 10.1109/IECON.2008.4758026.

References ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــ

132

[115] M. Sinnett, “787 No-Bleed Systems: Saving Fuel and Enhancing Operational

Efficiencies,” 2007. [Online]. Available:

http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_07/AERO_Q407_arti cle2.pdf.

[116] A. Barzkar and M. Ghassemi, “Electric Power Systems in More and All Electric Aircraft: A Review,” IEEE Access, vol. 8, pp. 169314–169332, 2020, doi:

10.1109/ACCESS.2020.3024168.

[117] Y. Zhang, Y. Yu, R. Su, and J. Chen, “Power scheduling in more electric aircraft based on an optimal adaptive control strategy,” IEEE Trans. Ind. Electron., vol. 67, no. 12, pp.

10911–10921, 2020, doi: 10.1109/TIE.2019.2960718.

[118] J. Brombach, A. Lucken, B. Nya, M. Johannsen, and D. Schulz, “Comparison of different electrical HVDC-architectures for aircraft application,” in 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, Oct. 2012, pp. 1–6, doi:

10.1109/ESARS.2012.6387380.

[119] J. Chen, C. Wang, and J. Chen, “Investigation on the selection of electric power system architecture for future more electric aircraft,” IEEE Trans. Transp. Electrif., vol. 4, no.

2, pp. 563–576, 2018, doi: 10.1109/TTE.2018.2792332.

[120] A. Eid, M. Abdel-Salam, H. El-Kishky, and T. El-Mohandes, “Active power filters for harmonic cancellation in conventional and advanced aircraft electric power systems,”

Electr. Power Syst. Res., vol. 79, no. 1, pp. 80–88, 2009, doi:

10.1016/j.epsr.2008.05.005.

[121] A. Eid, M. Abdel-Salam, H. El-Kishky, and T. El-Mohandes, “Simulation and transient analysis of conventional and advanced aircraft electric power systems with harmonics mitigation,” Electr. Power Syst. Res., vol. 79, no. 4, pp. 660–668, Apr. 2009, doi:

10.1016/j.epsr.2008.10.001.

[122] J. Chang and A. Wang, “New VF-power system architecture and evaluation for future aircraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 2, pp. 527–539, 2006, doi:

10.1109/TAES.2006.1642569.

[123] M. J. Cronin, “All-electric vs conventional aircraft - The production/operational aspects,” J. Aircr., vol. 20, no. 6, pp. 481–486, Jun. 1983, doi: 10.2514/3.44897.

133

[124] Sriram Chandrasekaran, “Subsystem Design in Aircraft Power Distribution Systems using Optimization,” Virginia Tech, 2002.

[125] P. Jänker et al., “New Actuators for Aircraft , Space and Military Applications,” in ACTUATOR 2010, 12th International Conference on New Actuators, 2008, pp. 346–

354.

[126] G. A. Whyatt and L. A. Chick, “Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells,” Richland, WA (United States), Apr. 2012. doi:

10.2172/1056768.

[127] J. W. Pratt, L. E. Klebanoff, K. Munoz-Ramos, A. A. Akhil, D. B. Curgus, and B. L.

Schenkman, “Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes,” Appl. Energy, vol. 101, pp. 776–796, Jan. 2013, doi:

10.1016/j.apenergy.2012.08.003.

[128] R. Navarro, “Performance of an electro-hydrostatic actuator on the F-18 systems research aircraft,” NASA Tech. Memo., no. 206224, 1997, [Online]. Available:

https://ntrs.nasa.gov/citations/19970034702.

[129] K. P. Louganski, “Modeling and Analysis of a DC Power Distribution System in 21st Century Airlifters,” Virginia Polytechnic Institute and State University in, 1999.

[130] K. Rajashekara, “Parallel between More Electric Aircraft and Electric\/Hybrid Vehicle Power Conversion Technologies,” IEEE Electrif. Mag., vol. 2, no. 2, pp. 50–60, Jun.

2014, doi: 10.1109/MELE.2014.2312460.

[131] A. Eid, “Facts Devices for Energy Storage and Power Quality Improvement of Aircraft Electric Power System,” South Valley University, 2010.

[132] A. Eid, R. Abdel-Fadil, and M. Abdel-Salam, “Performance and Power Quality Improvements of MEA Power Distribution Systems using Model Predictive Control,”

Int. Rev. Aerosp. Eng., vol. 10, no. 1, p. 31, Feb. 2017, doi:

10.15866/irease.v10i1.10998.

[133] D. E. Quevedo, R. P. Aguilera, M. A. Pérez, P. Cortes, and R. Lizana, “Model predictive control of an AFE rectifier with dynamic references,” IEEE Trans. Power Electron., vol.

27, no. 7, pp. 3128–3136, 2012, doi: 10.1109/TPEL.2011.2179672.