• Nem Talált Eredményt

If the kernelKof equation (E) satisfies some additional conditions, then from Theorem3.1we can obtain many interesting results. Some of them are presented below.

Corollary 7.1. Assume x∈Sol(E)is(f,σ)-ordinary, y∈mb is f -regular,

Corollary 7.5. Assume f(n,t) =et, s∈[1,∞), exists a solution x of (E)such that

xn= ϕ(n) +o(λn).

Proof. Note that

K(n) =n n

n+1 n2

, n

q

K(n) = √n n

n n+1

n

1 e <λ, bn+1

bn = n

n+1 n

1 e <λ.

HenceK0 ∈o(λn)andb∈o(λn). Moreover,ϕis f-regular and o(λn)is an evanescentm-space.

Therefore, the assertion follows from Corollary4.11.

References

[1] C. T. H. Baker, Y. Song, Periodic solutions of non-linear discrete Volterra equations with finite memory, J. Comput. Appl. Math. 234(2010), No. 9, 2683–2698. MR2652117; https:

//doi.org/10.1016/j.cam.2010.01.019

[2] L. Berezansky, M. Migda, E. Schmeidel, Some stability conditions for scalar Volterra difference equations,Opuscula Math.36(2016), No. 4, 459–470.MR3488501;https://doi.

org/10.7494/OpMath.2016.36.4.45

[3] M. Bohner, S. Stevi ´c, Asymptotic behavior of second-order dynamic equations, Appl.

Math. Comput. 188(2007), No. 2, 1503–1512. MR1202198; https://doi.org/10.1016/j.

amc.2006.11.016

[4] M. Bohner, S. Stevi ´c, Trench’s perturbation theorem for dynamics equations, Discrete Dyn. Nat. Soc. Vol. 2007, Art. ID 75672, 11 pp. MR2375475; https://doi.org/10.1155/

2007/75672

[5] M. Bohner, N. Sultana, Subexponential solutions of linear Volterra difference equa-tions, Nonauton. Dyn. Syst. 2(2015) 63–76. MR3412180; https://doi.org/10.1515/

msds-2015-0005

[6] M. R. Crisci, V. B. Kolmanovskii, E. Russo, A. Vecchio, Boundedness of discrete Volterra equations, J. Math. Anal. Appl. 211(1997), 106–130. MR1813211; https://doi.

org/10.1080/10236190008808251

[7] M. R. Crisci, V. B. Kolmanovskii, E. Russo, A. Vecchio, Stability of difference Volterra equations: direct Liapunov method and numerical procedure,Advances in difference equa-tions, II. Comput. Math. Appl.36(1998), No. 10–12, 77–97.MR1666128; https://doi.org/

10.1016/S0898-1221(98)80011-4

[8] M. R. Crisci, V. B. Kolmanovskii, E. Russo, A. Vecchio, On the exponential stability of discrete Volterra systems,J. Differ. Equations Appl.6(2000), No. 6, 667–680.MR1813211;

https://doi.org/10.1080/10236190008808251

[9] J. Diblík, M. Ruži ˇ˚ cková, E. Schmeidel, Asymptotically periodic solutions of Volterra difference equations, Tatra Mt. Math. Publ. 43(2009), 43–61. MR3146295; https://doi.

org/10.1016/j.amc.2013.10.055

[10] J. Diblík, E. Schmeidel, M. Ruži ˇ˚ cková, Asymptotically periodic solutions of Volterra system of difference equations, Comput. Math. Appl. 59(2010), 2854–2867. MR2607992;

https://doi.org/10.1016/j.camwa.2010.01.055

[11] J. Diblík, M. Ruži ˇ˚ cková, L. E. Schmeidel, M. Zbaszyniak, Weighted asymptotically periodic solutions of linear Volterra difference equations,Abstr. Appl. Anal.2011, Art. ID 370982, 14 pp.MR2795073;https://doi.org/370982

[12] J. Diblík, E. Schmeidel, On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence,Appl. Math. Comput.218(2012), No. 18, 9310–9320.MR2923029;https://doi.org/10.1016/j.amc.2012.03.010

[13] A. Drozdowicz, J. Popenda, Asymptotic behavior of the solutions of the second order difference equations,Proc. Amer. Math. Soc.99(1987), No. 1, 135–140.MR0866443;https:

//doi.org/10.2307/2046284

[14] A. Drozdowicz, J. Popenda, Asymptotic behavior of the solutions of annth order differ-ence equations,Comment. Math. Prace Mat.29(1990), 161–168.MR1059121

[15] S. Elaydi, Stability and asymptoticity of Volterra difference equations: a progress report, J. Comput. Appl. Math.228(2009), No. 2, 504–513.MR2523167;https://doi.org/10.1016/

j.cam.2008.03.023

[16] K. Gajda, T. Gronek, E. Schmeidel, On the existence of a weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type,Discrete Con-tin. Dyn. Syst. Ser. B19(2014), No. 8, 2681–2690.MR3275021;https://doi.org/10.3934/

dcdsb.2014.19.2681

[17] T. Gronek, E. Schmeidel, Existence of bounded solution of Volterra difference equa-tions via Darbo’s fixed-point theorem,J. Difference Equ. Appl.19(2013), No. 10, 1645–1653.

MR3173509;https://doi.org/10.1080/10236198.2013.769974

[18] I. Gy ˝ori, E. Awwad, On the boundedness of the solutions in nonlinear discrete Volterra difference equations,Adv. Difference Equ.2012, 2012:2, 20 pp.MR2916343; https://doi.

org/10.1186/1687-1847-2012-2

[19] I. Gy ˝ori, F. Hartung, Asymptotic behavior of nonlinear difference equations,J. Difference Equ. Appl.18(2012), No. 9, 1485–1509.MR2974133;https://doi.org/10.1080/10236198.

2011.574619

[20] I. Gy ˝ori, L. Horváth, Asymptotic representation of the solutions of linear Volterra dif-ference equations,Adv. Difference Equ.2008, Art. ID 932831, 22 pp.MR2407437

[21] I. Gy ˝ori, D. W. Reynolds, Sharp conditions for boundedness in linear discrete Volterra equations, J. Difference Equ. Appl. 15(2009), No. 11–12, 1151–1164. MR2569138; https:

//doi.org/10.1080/10236190902932726

[22] I. Gy ˝ori, D. W. Reynolds, On asymptotically periodic solutions of linear discrete Volterra equations,Fasc. Math.44(2010), 53–67.MR2722631

[23] M. N. Islam, Y. N. Raffoul, Uniform asymptotic stability in linear Volterra difference equations,PanAmer. Math. J.11(2001), No. 1, 61–73.MR1820712

[24] T. M. Khandaker, Y. N. Raffoul, Stability properties of linear Volterra discrete systems with nonlinear perturbation,J. Difference Equ. Appl.8(2002), No. 10, 857–874.MR1918529 [25] V. Kolmanovskii, L. Shaikhet, Some conditions for boundedness of solutions of dif-ference Volterra equations, Appl. Math. Lett. 16(2003), 857–862. MR2005259; https:

//doi.org/10.1016/S0893-9659(03)90008-5

[26] R. Medina, Asymptotic behavior of Volterra difference equations, Comput. Math. Appl.

41(2001), No. 5–6, 679–687. MR1822595; https://doi.org/10.1016/S0898-1221(00) 00312-6

[27] J. Migda, Asymptotic properties of solutions of nonautonomous difference equations, Arch. Math. (Brno)46(2010), No. 1, 1–11.MR2644450

[28] J. Migda, Asymptotic properties of solutions of higher order difference equations,Math.

Bohem.135(2010), No. 1, 29–39.MR2643353

[29] J. Migda, Asymptotically polynomial solutions of difference equations, Adv. Difference Equ.2013, 2013:92, 1–16.MR3053806;https://doi.org/10.1186/1687-1847-2013-92 [30] J. Migda, Approximative solutions of difference equations,Electron. J. Qual. Theory Differ.

Equ.2014, No. 13, 1–26.MR3183611;https://doi.org/10.14232/ejqtde.2014.1.13 [31] J. Migda, Iterated remainder operator, tests for multiple convergence of series and

so-lutions of difference equations, Adv. Difference Equ. 2014, 2014:189, 1–18. MR3357342;

https://doi.org/10.1186/1687-1847-2014-189

[32] J. Migda, Regional topology and approximative solutions of difference and differential equations,Tatra Mountains Math. Publ.63(2015), 183–203.MR3411445;https://doi.org/

10.1515/tmmp-2015-0031

[33] J. Migda, Qualitative approximation of solutions to difference equations,Electron. J. Qual.

Theory Differ. Equ. 2015, No. 32, 1–26.MR3353203; https://doi.org/10.14232/ejqtde.

2015.1.32

[34] J. Migda, Approximative solutions to difference equations of neutral type, Appl. Math.

Comput.268(2015), 763–774.MR3399460;https://doi.org/10.1016/j.amc.2015.06.097 [35] J. Migda, Asymptotically polynomial solutions to difference equations of neutral type, Appl. Math. Comput. 279(2016), 16–27. MR345800; https://doi.org/10.1016/j.amc.

2016.01.001

[36] J. Migda, Mezocontinuous operators and solutions of difference equations, Electron. J.

Qual. Theory Differ. Equ. 2016, No. 11, 1–16. MR3475095; https://doi.org/10.14232/

ejqtde.2016.1.11

[37] J. Migda, M. Migda, Asymptotic behavior of solutions of discrete Volterra equations, Opuscula Math.36(2016), No. 2, 265–278.MR3437219;https://doi.org/10.7494/OpMath.

2016.36.2.265

[38] M. Migda, J. Migda, Bounded solutions of nonlinear discrete Volterra equations, Math. Slovaca 66(2016), No. 5, 1169–1178. MR3602612; https://doi.org/10.1515/

ms-2016-0212

[39] M. Migda, J. Morchało, Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations,Appl. Math. Comput.220(2013), 365–373.

MR3091861;https://doi.org/10.1016/j.amc.2013.06.032

[40] M. Migda, M. Ruži ˇ˚ cková, E. Schmeidel, Boundedness and stability of discrete Volterra equations, Adv. Difference Equ. 2015, 2015:47, 11 pp. MR3314614; https://doi.org/10.

1186/s13662-015-0361-6

[41] J. Morchało, Volterra summation equations and second order difference equations, Math. Bohem.135(2010), No. 1, 41–56.MR2643354

[42] J. Popenda, Asymptotic properties of solutions of difference equations, Proc. Indian Acad. Sci. Math. Sci. 95(1986), No. 2, 141–153. MR0913886; https://doi.org/10.1007/

BF02881078

[43] Y. N. Raffoul, Boundedness and periodicity of Volterra systems of difference equations, J. Differ. Equations Appl.4(1998), No. 4, 381–393.MR1657161;https://doi.org/10.1080/

10236199808808150

[44] D. W. Reynolds, On asymptotic constancy for linear discrete summation equations, Com-put. Math. Appl.64(2012), No. 10–12, 2335–2344.MR2966869;https://doi.org/10.1016/

j.camwa.2012.05.013

[45] S. Stevi ´c, Growth theorems for homogeneous second-order difference equations, ANZIAM J. 43(2002), No. 4, 559–566. MR1903917; https://doi.org/10.1017/

S1446181100012141

[46] S. Stevi ´c, Asymptotic behaviour of second-order difference equation, ANZIAM J.

46(2004), No. 1, 157–170.MR2075520;https://doi.org/10.1017/S1446181100013742 [47] S. Stevi ´c, Growth estimates for solutions of nonlinear second-order difference

equa-tions, ANZIAM J. 46(2005), No. 3, 439–448. MR2124934; https://doi.org/10.1017/

S1446181100008361

[48] E. Yankson, Stability of Volterra difference delay equations,Electron. J. Qual. Theory Differ.

Equ.2006, No. 20, 1–14.MR2263079;https://doi.org/10.14232/ejqtde.2006.1.20 [49] A. Zafer, Oscillatory and asymptotic behavior of higher order difference equations,

Math. Comput. Modelling21(1995), No. 4, 43–50.MR1317929; https://doi.org/10.1016/

0895-7177(95)00005-M

KAPCSOLÓDÓ DOKUMENTUMOK