• Nem Talált Eredményt

Equilibrium solutions

In document B daeUiveiyfTe h (Pldal 56-60)

2.3 User-inuened priing for Internet aess providers

2.3.3 Equilibrium solutions

and

I 2 =

( 1

if

s 2 = F 0

if

s 2 = U

Thepayoof light users (Player 3) is:

Π 3 (s 1 , s 2 , s 3 ) = (w 3 − t 3 )R(1 − I 1 ) − s 3 (1 − I 2 )

(2.14)

Note thatindiator variables areomplementeddue to opposingonditions.

Player2's payois the following:

Π 2 (s 1 , s 2 , s 3 ) =

( s 1

if

s 2 = F s 3

if

s 2 = U

(2.15)

Now we formulate the harateristi funtion usingthestandard approah,keeping in mind

that ertain oalitions of players are not reasonable beause of quarreling. Those oalitions

reeive zeroutility,formally:

ν (H) = 0 | C / ∈ {{ 1 } , { 3 } , { 12 } , { 23 }}

and

H ∈ 2 N .

(2.16)

For the reasonableoalitionsthe orrespondingutilities are:

ν( { 1 } ) = max

s 1

min s 2 ,s 3

Π 1 (s 1 , s 2 , s 3 )

ν( { 3 } ) = max

s 3

min s 1 ,s 2

Π 3 (s 1 , s 2 , s 3 )

ν( { 12 } ) = max

s 1 ,s 2

min s 3

1 (s 1 , s 2 , s 3 ) + Π 2 (s 1 , s 2 , s 3 )]

ν( { 23 } ) = max

s 2 ,s 3

min s 1

2 (s 1 , s 2 , s 3 ) + Π 3 (s 1 , s 2 , s 3 )]

(2.17)

UsingEquations2.16and2.17weompiletheharateristifuntionspresentedinTable2.3.

Dierent olumns represent dierent user distributions in thepopulation. If heavy users area

majority(

w 1 > 1/2

) theywilldominatevoting(heavyuserregime). Iflight usersareamajority

(

w 3 > 1/2

)theywill be thedominant player(lightuser regime). Ifneitheroftheabove aretrue

(

w 1 < 1/2, w 3 < 1/2

, but due to onstraints of

w i

,

w 1 + w 2 > 1/2, w 2 + w 3 > 1/2

), theplayers

enter a balaned regime, where the outome of the priinggame will be deided by theoered

side-payments.

Table2.3: Charateristifuntionfortheuser-inuenedpriinggame(

w 1

and

t 1

arethe

popula-tionratioandtraratioofheavyusers,while

w 3

and

t 3

arethoseofthelightusers,respetively) Charateristi funtion Heavyuser regime Balanedregime Light user regime

(

w 1 > 1/2

) (

w 1 < 1/2, w 3 < 1/2

) (

w 3 > 1/2

)

ν( { 1 } ) (t 1 − w 1 )R 0 0

ν( { 3 } ) 0 0 (w 3 − t 3 )R

ν ( { 12 } ) (t 1 − w 1 )R (t 1 − w 1 )R 0

ν ( { 23 } ) 0 (w 3 − t 3 )R (w 3 − t 3 )R

ν(H) 0 0 0

for all other

H ∈ 2 N

{{ 1 } , { 2 } , { 3 }} , {{ 12 } , { 3 }} , {{ 1 } ,

{ 23 }} , {{ 123 }}

. Thenwedenethesetofallowable oalitionalstrutures (

ψ(P )

)thatsatisfythe

onstraintsimposedby quarreling. For

G

ψ(P) = ψ = { ( { 12 } , { 3 } ), ( { 1 } , { 23 } ) } .

(2.18)

For agiven

P ∈ ψ

,let

X(P )

betheset ofimputations asfollows:

X(P ) = { (x 1 , x 2 , x 3 ) ∈ R 3 | X

i ∈ H

x i = ν(H)

for all

H ∈ P

and

x i ≥ ν( { i } )

for

i = 1, 2, 3 }

(2.19)

Intuitively an imputation is a distribution of the maximum side-payment suh that eah

playerreeivesat leastthesame amountofmoney thattheyangetiftheyhooseto stayalone

(individual rationality), and eah oalition in the struture

P

reeives the total side-payment they an ahieve (group rationality).

Now, werestritthesetofimputationsto theore

C(P )

. Theoreisdenedto bethesetof

undominated imputations. To put it dierently, theore is theset of imputations under whih

no oalition hasavaluegreater than thesum of itsmembers' payos. Formally:

C(P ) = (

(x 1 , x 2 , x 3 ) ∈ X(P ) | X

i∈H

x i ≥ ν(H)

for all

H ∈ [

{ J ∈ P | P ∈ ψ } )

(2.20)

Considering our game

G

, Equation 2.20 is equivalent to the standard ore (sine

ν(H) = 0

for unreasonable oalitions),so

C(P ) = (

(x 1 , x 2 , x 3 ) ∈ X(P) | X

i ∈ H

x i ≥ ν(H)

for all

H ∈ 2 N )

(2.21)

As it an be notied the ore is dependent on a ertain oalitional struture

P

. For us to

determine whih struture willemergewhen playing thegame, we dene a

ψ

-stablepair

[x, P ]

:

[x, P ] | x ∈ C(P), P ∈ ψ

(2.22)

Now applying this solution to the harateristi funtion

ν(H)

in Table 2.3, we have three

dierent asesdepending onuser regimes.

Heavy user regime

In this ase heavy users are dominant in the population, thus

w 1 > 1/2

. The only possible

imputation is

x = ((t 1 − w 1 )R, 0, 0)

henethere aretwo

ψ

-stablepairs:

[((t 1 − w 1 )R, 0, 0), {{ 12 } , { 3 }} ]

and

[((t 1 − w 1 )R, 0, 0), {{ 1 } , { 23 }} ]

Note that both oalitional strutures are possible, sine it does not matter whih side medium

users take.

Inwords, this meansheavy users dominatethe voting, no side-payment istransferred.

Con-sidering the individual user's point of view, let

c i

denote the ost of a single user i. Flat-rate

priingisimplementedbythe ISP,Internet aessostsaresharedperapita,henetheostfor

a singleuser isindependent of histra and equal for every useris

c i = R

n

for all

i ∈ N

(2.23)

Light user regime

Here light users have the absolute majority aross the population

(w 3 > 1/2)

. Following the

same line ofthought asinthe heavy userregime, we derive the

ψ

-stable pairs for thisase:

[(0, 0, (w 3 − t 3 )R), {{ 1 } , { 23 }} ]

and

[(0, 0, (w 3 − t 3 )R), {{ 12 } , { 3 }} ]

Asexpetedlightusersdominatethevoting,noside-paymentismadetomediumusers. From

a singleuser's perspetive, let

τ i

denote the tra volume of user

i

. Sine usage-based priing is implemented by the ISP, Internet aess osts are shared proportionally to tra volume.

Therefore theaessost for user

i

is

c i = τ i

T R

for all

i ∈ N.

(2.24)

Table 2.4:

ψ

-stable pairs inthebalaned regime

Side-payment parameters Core solution Coalitional struture

0 < s

max

3 < s

max

1 (s

max

1 − s 1 , s 1 , 0) ( { 12 } , { 3 } )

0 < s

max

3 = s

max

1 (0, s

max

1 , 0) ( { 12 } , { 3 } )

or

( { 1 } , { 23 } ) 0 < s

max

1 < s

max

3 (0, s 3 , s

max

3 − s 3 ) ( { 1 } , { 23 } )

Balaned regime

Inthisaseooperationisexpliitlyneededtoformawinningoalition,sine

w 1 < 1/2, w 3 < 1/2

,

and

w 1 + w 2 > 1/2, w 3 + w 2 > 1/2

. Side-payments determine theoutome of thevoting game.

For easier analysis let

s

max

1 = (t 1 − w 1 )R

and

s

max

3 = (w 3 − t 3 )R

be the maximum reasonable

side-payment possibly oered byPlayer 1 and Player 3, respetively. The imputations and the

ore forany

s

max

1 , s

max

3

are:

X( { 1 } , { 23 } ) = { (x 1 , x 2 , x 3 ) ∈ R 3 | x 1 = 0, x 2 ≥ 0, x 3 ≥ 0, x 2 + x 3 = s

max

3 } C( { 1 } , { 23 } ) =

( ∅ ,

if

s

max

1 > s

max

3

(0, s

max

1 + ǫ, s

max

3 − s

max

1 − ǫ),

if

s

max

3 ≥ s

max

1

where

0 ≤ ǫ ≤ s

max

3 − s

max

1

. Furthermore:

X( { 12 } , { 3 } ) = { (x 1 , x 2 , x 3 ) ∈ R 3 | x 1 ≥ 0, x 2 ≥ 0, x 3 = 0, x 1 + x 2 = s

max

1 }

C( { 12 } , { 3 } ) =

( ∅ ,

if

s

max

1 < s

max

3

(s

max

1 − s

max

3 − ǫ, s

max

3 + ǫ, 0),

if

s

max

1 ≥ s

max

3

where

0 ≤ ǫ ≤ s

max

1 − s

max

3

.

Let us rst study theoalitional struture

( { 1 } , { 23 } )

. The ore is empty if the maximum

side-payment of Player 3 is smaller than that of Player 1. This is due to the fat that Player

2 wants to form a oalition with Player 1 and get more money than

s

max

3

, but the onstraint

on imputations prevents this. Onthe other hand, if themaximum side-payment of Player 3 is

greaterthan Player1's,than the oreisnon-emptywithPlayer 3(thelightusers)winning, and

thegame

G

isbalaned. Player3pays

s

max

1 + ǫ

toPlayer2andretains

s

max

3 − s

max

1 − ǫ

. A similar

(butopposing) explanation appliesfor the oalitional struture

{{ 12 } , { 3 }}

.

The solution of the user-inuened priing game is given as

ψ

-stable pairs in Table 2.4.

Note that the

ψ

-stable onept does not restrit the possibilities. In the rst row of the table heavy userswin (at-ratepriingis hosen), buta side-payment of at least

s

max

3

hastobepaid.

Aording to the third row, light users win by paying at least

s

max

1

to medium users. If the

maximumside-payments areequal,theoutome is indeterminate.

Now, letustakealookat howindividualusersan sharetheburdenofside-paymentsinthe

balaned regime. Let

H, M, L ⊂ N

be the setof heavy,medium andlight users.

Flat-rate priing. Suppose that

s

max

3 < s

max

1

,hene heavy and medium users team up to

implement at-rate priing. A suitable division of side-payments among heavy users would be

to sharetheadditionalost equally,resultinginapayment of

s 1

|H|

foreahheavy user

i

. Alsoby

hoosing theat-rate approah, medium users share the prot fromthe side-payments equally,

eah mediumuser getting

s 1

| M |

.

Now we an give the monthly ost ofa singleuser:

c i =

 

 

 

 

R

N + |H| s 1

if

i ∈ H

R

N − |M| s 1

if

i ∈ M

R

N

if

i ∈ L

(2.25)

Usage-based priing. Suppose that

s

max

1 < s

max

3

, therefore light and medium users join

fores to ahieve usage-based priing. A suitable division of side-payments among light users

would be to sharethe the additionalost proportional totra volume,resulting ina payment

of

s 3 τ i

t 3 T

for eahlight user

i

. Alsobyhoosingtheusage-basedapproah,mediumusersan agree to benetfrom theside-payments proportionally to their tra volume, so eahmedium user j

user gets

s 3 τ j

t 2 T

.

Now we an give the monthly ost ofa singleuser:

c i =

 

 

 

 

Rτ i

T

if

i ∈ H

Rτ i

T − s t 2 3 τ T i

if

i ∈ M

Rτ i

T + s t 3 τ i

3 T

if

i ∈ M

(2.26)

In document B daeUiveiyfTe h (Pldal 56-60)