• Nem Talált Eredményt

Irodalomjegyzék

[1] P. Kebarle, SPECIAL FEATURE : COMMENTARY A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry, 817 (2000) 804–

817.

[2] J. V. Iribarne, B.A. Thomson, On the evaporation of small ions from charged droplets, J. Chem. Phys. 64 (1976) 2287. doi:10.1063/1.432536.

[3] B.A. Thomson, J. V. Iribarne, Field induced ion evaporation from liquid surfaces at atmospheric pressure, J. Chem. Phys. 71 (1979) 4451–4463. doi:10.1063/1.438198.

[4] G. Schmelzeisen-Redeker, L. Bütfering, F.W. Röllgen, Desolvation of ions and molecules in thermospray mass spectrometry, Int. J. Mass Spectrom. Ion Process. 90 (1989) 139–150. doi:10.1016/0168-1176(89)85004-9.

[5] H. Nehring, S. Thiebes, L. Bütfering, F.W. Röllgen, Cluster ion formation in thermospray mass spectrometry of ammonium salts, Int. J. Mass Spectrom. Ion Process.

128 (1993) 123–132. doi:10.1016/0168-1176(93)87060-6.

[6] D.I. Carroll, I. Dzidic, R.N. Stillwell, K.D. Haegele, E.C. Horning, Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system, Anal. Chem. 47 (1975) 2369–2373. doi:10.1021/ac60364a031.

[7] W.M.A. Niessen, A.P. Tinke, Liquid chromatography-mass spectrometry Third Edition, 1995. doi:10.1016/0021-9673(94)01198-N.

[8] S. Fekete, E. Oláh, J. Fekete, Fast liquid chromatography: The domination of core–shell and very fine particles, J. Chromatogr. A. 1228 (2012) 57–71.

doi:10.1016/J.CHROMA.2011.09.050.

[9] R. Hayes, A. Ahmed, T. Edge, H. Zhang, Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography, J. Chromatogr. A. 1357 (2014) 36–52. doi:10.1016/J.CHROMA.2014.05.010.

[10] A.E. Steuer, M. Poetzsch, M. Koenig, E. Tingelhoff, S.N. Staeheli, A.T. Roemmelt, T.

Kraemer, Comparison of conventional liquid chromatography-tandem mass spectrometry versus microflow liquid chromatography-tandem mass spectrometry within the framework of full method validation for simultaneous quantification of 40 antidepressants and neuroleptics, J. Chromatogr. A. 1381 (2015) 87–100.

doi:10.1016/j.chroma.2014.12.084.

[11] C.C. Christianson, C.J.L. Johnson, S.R. Needham, The advantages of microflow LC-MS/MS compared with conventional HPLC-LC-MS/MS for the analysis of methotrexate from human plasma., Bioanalysis. 5 (2013) 1387–96. doi:10.4155/bio.13.73.

[12] H. Wang, P. Bennett, Performance assessment of microflow LC combined with high-resolution MS in bioanalysis., Bioanalysis. 5 (2013) 1249–67. doi:10.4155/bio.13.93.

[13] N.W. Smith, C. Legido-quigley, N.D. Marlin, V. Melin, Capillary Liquid Chromatography Capillary and Micro ‐ High Performance Liquid Chromatography, Encicl. Elsevier. (2004) 1–22.

[14] W. Gao, T. Stalder, P. Foley, M. Rauh, H. Deng, C. Kirschbaum, Quantitative analysis of steroid hormones in human hair using a column-switching LC–APCI–MS/MS assay, J. Chromatogr. B. 928 (2013) 1–8. doi:10.1016/j.jchromb.2013.03.008.

Persichilli, Simultaneous quantification of 17-hydroxyprogesterone, androstenedione, testosterone and cortisol in human serum by LC-MS/MS using TurboFlow online sample

extraction, Clin. Biochem. 49 (2016) 998–1003.

doi:10.1016/j.clinbiochem.2016.05.012.

[16] M. Rauh, M. Gröschl, W. Rascher, H.G. Dörr, Automated, fast and sensitive quantification of 17??-hydroxy-progesterone, androstenedione and testosterone by tandem mass spectrometry with on-line extraction, Steroids. 71 (2006) 450–458.

doi:10.1016/j.steroids.2006.01.015.

[17] M.M. Kushnir, T. Blamires, A.L. Rockwood, W.L. Roberts, B. Yue, E. Erdogan, A.M.

Bunker, A.W. Meikle, Liquid chromatography-tandem mass spectrometry assay for androstenedione, dehydroepiandrosterone, and testosterone with pediatric and adult reference intervals, Clin. Chem. 56 (2010). doi:10.1373/clinchem.2010.143222.

[18] I.A. Blair, Analysis of estrogens in serum and plasma from postmenopausal women: Past present, and future, Steroids. 75 (2010) 297–306. doi:10.1016/j.steroids.2010.01.012.

[19] G.G. Ying, R.S. Kookana, Y.J. Ru, Occurrence and fate of hormone steroids in the environment, Environ. Int. 28 (2002) 545–551. doi:10.1016/S0160-4120(02)00075-2.

[20] M.M. Kushnir, A.L. Rockwood, W.L. Roberts, B. Yue, J. Bergquist, A.W. Meikle, Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical

laboratories, Clin. Biochem. 44 (2011) 77–88.

doi:10.1016/J.CLINBIOCHEM.2010.07.008.

[21] L.J. Ney, A. Matthews, R. Bruno, K.L. Felmingham, Modulation of the endocannabinoid system by sex hormones: Implications for Posttraumatic Stress Disorder, Neurosci.

Biobehav. Rev. (2018). doi:10.1016/J.NEUBIOREV.2018.07.006.

[22] R. Holmdahl, L. Jansson, Estrogen-induced suppression of collagen arthritis: III. Adult thymectomy does not affect the course of arthritis or the estrogen-mediated suppression of T-cell immunity, Brain. Behav. Immun. 2 (1988) 123–132. doi:10.1016/0889-1591(88)90013-X.

[23] M.E. Mendelsohn, Protective effects of estrogen on the cardiovascular system, Am. J.

Cardiol. 89 (2002) 12–17. doi:10.1016/S0002-9149(02)02405-0.

[24] S. Khosla, B.L. Riggs, Estrogen Effects on Bone in the Male Skeleton, Princ. Bone Biol.

(2002) 1467–1476. doi:10.1016/B978-012098652-1.50187-6.

[25] A. Alvergne, M. Jokela, C. Faurie, V. Lummaa, Personality and testosterone in men from a high-fertility population, Pers. Individ. Dif. 49 (2010) 840–844.

doi:10.1016/J.PAID.2010.07.006.

[26] M.D. Reynolds, R. Tarter, L. Kirisci, G. Kirillova, S. Brown, D.B. Clark, J. Gavaler, Testosterone Levels and Sexual Maturation Predict Substance Use Disorders in Adolescent Boys: A Prospective Study, Biol. Psychiatry. 61 (2007) 1223–1227.

[29] A.S. Dobs, The role of accurate testosterone testing in the treatment and management of

male hypogonadism, Steroids. 73 (2008) 1305–1310.

doi:10.1016/J.STEROIDS.2008.06.007.

[30] S. Robinson, D.A. Rodin, A. Deacon, M.J. Wheeler, R.N. Clayton, Which hormone tests for the diagnosis of polycystic ovary syndrome?, Int. J. Gynecol. Obstet. 39 (1992) 361.

doi:10.1016/0020-7292(92)90286-R.

[31] J.W. Honour, E. Conway, R. Hodkinson, F. Lam, The evolution of methods for urinary steroid metabolomics in clinical investigations particularly in childhood, J. Steroid Biochem. Mol. Biol. 181 (2018) 28–51. doi:10.1016/J.JSBMB.2018.02.013.

[32] P. Gild, A.P. Cole, A. Krasnova, B.A. Dickerman, N. von Landenberg, M. Sun, L.A.

Mucci, S.R. Lipsitz, F.K.-H. Chun, P.L. Nguyen, A.S. Kibel, T.K. Choueiri, S. Basaria, Q.-D. Trinh, Liver Disease in Men Undergoing Androgen Deprivation Therapy for Prostate Cancer, J. Urol. 200 (2018) 573–581. doi:10.1016/J.JURO.2018.03.135.

[33] L.M. Demers, Testosterone and estradiol assays: Current and future trends, Steroids. 73 (2008) 1333–1338. doi:10.1016/J.STEROIDS.2008.05.002.

[34] S. By, T. Name, 2011 Interpretive Handbook, (2011).

[35] T. Koal, D. Schmiederer, H. Pham-Tuan, C. Röhring, M. Rauh, Standardized LC–

MS/MS based steroid hormone profile-analysis, J. Steroid Biochem. Mol. Biol. 129 (2012) 129–138. doi:10.1016/j.jsbmb.2011.12.001.

[36] M. Mezzullo, F. Fanelli, A. Fazzini, A. Gambineri, V. Vicennati, G. Di Dalmazi, C.

Pelusi, R. Mazza, U. Pagotto, R. Pasquali, Validation of an LC???MS/MS salivary assay for glucocorticoid status assessment: Evaluation of the diurnal fluctuation of cortisol and cortisone and of their association within and between serum and saliva, J. Steroid Biochem. Mol. Biol. 163 (2016) 103–112. doi:10.1016/j.jsbmb.2016.04.012.

[37] M. Rauh, Steroid measurement with LC-MS/MS in pediatric endocrinology, Mol. Cell.

Endocrinol. 301 (2009) 272–281. doi:10.1016/j.mce.2008.10.007.

[38] U. Knorr, M. Vinberg, L. V. Kessing, J. Wetterslev, Salivary cortisol in depressed patients versus control persons: A systematic review and meta-analysis,

Psychoneuroendocrinology. 35 (2010) 1275–1286.

doi:10.1016/j.psyneuen.2010.04.001.

[39] B. Hauser, T. Deschner, C. Boesch, Development of a liquid chromatography-tandem mass spectrometry method for the determination of 23 endogenous steroids in small quantities of primate urine, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 862 (2008) 100–112. doi:10.1016/j.jchromb.2007.11.009.

[40] G.-G. Ying, R.S. Kookana, Y.-J. Ru, Occurrence and fate of hormone steroids in the environment, Environ. Int. 28 (2002) 545–551. doi:10.1016/S0160-4120(02)00075-2.

[41] A. Gaudl, J. Kratzsch, Y.J. Bae, W. Kiess, J. Thiery, U. Ceglarek, Liquid chromatography quadrupole linear ion trap mass spectrometry for quantitative steroid hormone analysis in plasma, urine, saliva and hair, J. Chromatogr. A. 1464 (2016) 64–

71. doi:10.1016/j.chroma.2016.07.087.

[42] V. Cirimele, P. Kintz, V. Dumestre, J.P. Goullé, B. Ludes, Identification of ten corticosteroids in human hair by liquid chromatography–ionspray mass spectrometry[1]

V. Cirimele, P. Kintz, V. Dumestre, J.P. Goullé, B. Ludes, Identification of ten corticosteroids in human hair by liquid chromatography–ionspray mas, Forensic Sci. Int.

[43] F. Bévalot, Y. Gaillard, M.A. Lhermitte, G. Pépin, Analysis of corticosteroids in hair by liquid chromatography–electrospray ionization mass spectrometry, J. Chromatogr. B Biomed. Sci. Appl. 740 (2000) 227–236. doi:10.1016/S0378-4347(00)00085-2.

[44] T. Stalder, C. Kirschbaum, K. Heinze, S. Steudte, P. Foley, A. Tietze, L. Dettenborn, Use of hair cortisol analysis to detect hypercortisolism during active drinking phases in alcohol-dependent individuals, Biol. Psychol. 85 (2010) 357–360.

doi:10.1016/j.biopsycho.2010.08.005.

[45] W. Gao, C. Kirschbaum, J. Grass, T. Stalder, LC???MS based analysis of endogenous steroid hormones in human hair, J. Steroid Biochem. Mol. Biol. 162 (2016) 92–99.

doi:10.1016/j.jsbmb.2015.12.022.

[46] D. Li, A. White, M. Pudek, Liquid chromatography–tandem mass spectrometry analysis of salivary free cortisol: Validation and clinical application, Clin. Biochem. 41 (2008) 1273–1274. doi:10.1016/j.clinbiochem.2008.08.030.

[47] G. Antonelli, F. Ceccato, C. Artusi, M. Marinova, M. Plebani, Salivary cortisol and cortisone by LC–MS/MS: validation, reference intervals and diagnostic accuracy in Cushing’s syndrome, Clin. Chim. Acta. 451 (2015) 247–251.

doi:10.1016/j.cca.2015.10.004.

[48] J.F. Dorgan, T.R. Fears, R.P. McMahon, L. Aronson Friedman, B.H. Patterson, S.F.

Greenhut, Measurement of steroid sex hormones in serum: a comparison of radioimmunoassay and mass spectrometry, Steroids. 67 (2002) 151–158.

doi:10.1016/S0039-128X(01)00147-7.

[49] K. Shimada, K. Mitamura, T. Higashi, Gas chromatography and high-performance liquid chromatography of natural steroids, J. Chromatogr. A. 935 (2001) 141–172.

doi:10.1016/S0021-9673(01)00943-8.

[50] Measuring estrogens in women, men, and children: Recent advances 2012–2017, Clin.

Biochem. (2018). doi:10.1016/J.CLINBIOCHEM.2018.05.014.

[51] W. Gao, C. Kirschbaum, J. Grass, T. Stalder, LC–MS based analysis of endogenous steroid hormones in human hair, J. Steroid Biochem. Mol. Biol. 162 (2016) 92–99.

doi:10.1016/j.jsbmb.2015.12.022.

[52] T.M. Penning, S.H. Lee, Y. Jin, A. Gutierrez, I.A. Blair, Liquid chromatography-mass spectrometry (LC-MS) of steroid hormone metabolites and its applications, J. Steroid Biochem. Mol. Biol. 121 (2010) 546–555. doi:10.1016/j.jsbmb.2010.01.005.

[53] C. Meunier, D. Blondelle, P. Faure, J.-P. Baguet, C. Le Goff, O. Chabre, V. Ducros, Development and validation of a method using supported liquid extraction for aldosterone determination in human plasma by LC-MS/MS., Clin. Chim. Acta. 447 (2015) 8–15. doi:10.1016/j.cca.2015.05.007.

[54] W.A. Salameh, M.M. Redor-Goldman, N.J. Clarke, R. Mathur, R. Azziz, R.E. Reitz,

[56] V. Cirimele, P. Kintz, V. Dumestre, J.P. Goullé, B. Ludes, Identification of ten corticosteroids in human hair by liquid chromatography–ionspray mass spectrometry, Forensic Sci. Int. 107 (2000) 381–388. doi:10.1016/S0379-0738(99)00180-2.

[57] Z. Chen, J. Li, J. Zhang, X. Xing, W. Gao, Z. Lu, H. Deng, Simultaneous determination of hair cortisol, cortisone and DHEAS with liquid chromatography-electrospray ionization-tandem mass spectrometry in negative mode, J. Chromatogr. B Anal. Technol.

Biomed. Life Sci. 929 (2013) 187–194. doi:10.1016/j.jchromb.2013.04.026.

[58] Y. Shibayama, T. Higashi, K. Shimada, A. Odani, A. Mizokami, H. Konaka, E. Koh, M.

Namiki, Simultaneous determination of salivary testosterone and dehydroepiandrosterone using LC-MS/MS: Method development and evaluation of applicability for diagnosis and medication for late-onset hypogonadism, J. Chromatogr.

B Anal. Technol. Biomed. Life Sci. 877 (2009) 2615–2623.

doi:10.1016/j.jchromb.2008.10.051.

[59] M.L. Etter, J. Eichhorst, D.C. Lehotay, Clinical determination of 17-hydroxyprogesterone in serum by LC-MS/MS: Comparison to Coat-A-Count??? RIA method, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 840 (2006) 69–74.

doi:10.1016/j.jchromb.2006.04.038.

[60] P. Keski-Rahkonen, K. Huhtinen, M. Poutanen, S. Auriola, Fast and sensitive liquid chromatography–mass spectrometry assay for seven androgenic and progestagenic steroids in human serum, J. Steroid Biochem. Mol. Biol. 127 (2011) 396–404.

doi:10.1016/j.jsbmb.2011.06.006.

[61] H. Licea-Perez, S. Wang, M.E. Szapacs, E. Yang, Development of a highly sensitive and selective UPLC/MS/MS method for the simultaneous determination of testosterone and 5??-dihydrotestosterone in human serum to support testosterone replacement therapy for hypogonadism, Steroids. 73 (2008) 601–610. doi:10.1016/j.steroids.2008.01.018.

[62] K. Yamashita, M. Okuyama, R. Nakagawa, S. Honma, F. Satoh, R. Morimoto, S. Ito, M.

Takahashi, M. Numazawa, Development of sensitive derivatization method for aldosterone in liquid chromatography-electrospray ionization tandem mass spectrometry of corticosteroids, J. Chromatogr. A. 1200 (2008) 114–121.

doi:10.1016/j.chroma.2008.05.034.

[63] P. Regal, B.I. Vázquez, C.M. Franco, A. Cepeda, C. Fente, Quantitative LC–MS/MS method for the sensitive and simultaneous determination of natural hormones in bovine

serum, J. Chromatogr. B. 877 (2009) 2457–2464.

doi:10.1016/J.JCHROMB.2009.06.025.

[64] I. Athanasiadou, Y.S. Angelis, E. Lyris, C. Georgakopoulos, I. Athanasiadou, C.

Georgakopoulos, Chemical derivatization to enhance ionization of anabolic steroids in LC-MS for doping-control analysis, TrAC Trends Anal. Chem. 42 (2013) 137–156.

doi:10.1016/J.TRAC.2012.10.003.

[65] T.M. Penning, S.-H. Lee, Y. Jin, A. Gutierrez, I.A. Blair, Liquid chromatography–mass spectrometry (LC–MS) of steroid hormone metabolites and its applications, J. Steroid Biochem. Mol. Biol. 121 (2010) 546–555. doi:10.1016/j.jsbmb.2010.01.005.

[66] T. Guo, M. Chan, S.J. Soldin, Steroid profiles using liquid chromatography-tandem mass sp[1] T. Guo, M. Chan, S.J. Soldin, Steroid profiles using liquid chromatography-tandem mass spectrometry with atmospheric pressure photoionization source., Arch. Pathol.

Lab. Med. 128 (2004) 469–75, Arch. Pathol. Lab. Med. 128 (2004) 469–75.

doi:10.1043/1543-2165(2004)128<469:SPULCM>2.0.CO;2.

[67] A. Leinonen, T. Kuuranne, R. Kostiainen, Liquid chromatography/mass spectrometry in anabolic steroid analysis?optimization and comparison of three ionization techniques:

electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, J. Mass Spectrom. 37 (2002) 693–698. doi:10.1002/jms.328.

[68] Y.C. De Micalizzi, N.B. Pappano, N.B. Debattista, First and second order derivative spectrophotometric determination of benzyl alcohol and diclofenac in pharmaceutical forms, Talanta. 47 (1998) 525–530. doi:10.1016/S0039-9140(98)00080-0.

[69] L.A. Carreira, M. Rizk, Y. El-Shabrawy, N.A. Zakhari, S.S. Toubar, Europium(III) ion probe spectrofluorometric determination of diclofenac sodium, J. Pharm. Biomed. Anal.

13 (1995) 1331–1337. doi:10.1016/0731-7085(95)01567-5.

[70] X. Li, Q. He, H. Li, X. Gao, M. Hu, S. Li, Q. Zhai, Y. Jiang, X. Wang, Bioconversion of non-steroidal anti-inflammatory drugs diclofenac and naproxen by chloroperoxidase, Biochem. Eng. J. 120 (2017) 7–16. doi:10.1016/j.bej.2016.12.018.

[71] M. Caban, K. Mioduszewska, P. Łukaszewicz, N. Migowska, P. Stepnowski, M.

Kwiatkowski, J. Kumirska, A new silylating reagent - dimethyl(3,3,3-trifluoropropyl)silyldiethylamine - for the derivatisation of non-steroidal anti-inflammatory drugs prior to gas chromatography-mass spectrometry analysis, J.

Chromatogr. A. 1346 (2014) 107–116. doi:10.1016/j.chroma.2014.04.054.

[72] K. De Klerck, D. Mangelings, Y. Vander Heyden, Supercritical fluid chromatography for the enantioseparation of pharmaceuticals, J. Pharm. Biomed. Anal. 69 (2012) 77–92.

doi:10.1016/j.jpba.2012.01.021.

[73] H.S. Lee, C.K. Jeong, S.J. Choi, S.B. Kim, M.H. Lee, G. Il Ko, D.H. Sohn, Simultaneous determination of aceclofenac and diclofenac in human plasma by narrowbore HPLC using column-switching, J. Pharm. Biomed. Anal. 23 (2000) 775–781.

doi:10.1016/S0731-7085(00)00381-2.

[74] P. Paíga, A. Lolić, F. Hellebuyck, L.H.M.L.M. Santos, M. Correia, C. Delerue-Matos, Development of a SPE-UHPLC-MS/MS methodology for the determination of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawater, J. Pharm.

Biomed. Anal. 106 (2015) 61–70. doi:10.1016/j.jpba.2014.06.017.

[75] J. Kumirska, N. Migowska, M. Caban, P. Łukaszewicz, P. Stepnowski, Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples, Sci. Total Environ. 508 (2015) 498–505.

doi:10.1016/j.scitotenv.2014.12.020.

[76] T. Nemoto, X.-P. Lee, T. Kumazawa, C. Hasegawa, M. Fujishiro, A. Marumo, Y. Shouji, K. Inagaki, K. Sato, High-throughput determination of nonsteroidal anti-inflammatory drugs in human plasma by HILIC-MS/MS, J. Pharm. Biomed. Anal. 88 (2014) 71–80.

doi:10.1016/j.jpba.2013.08.023.

[77] J. Dvořák, R. Hájková, L. Matysová, L. Nováková, M.A. Koupparis, P. Solich,

[79] K.E. Pickl, C. Magnes, M. Bodenlenz, T.R. Pieber, F.M. Sinner, Rapid online-SPE-MS/MS method for ketoprofen determination in dermal interstitial fluid samples from rats obtained by microdialysis or open-flow microperfusion, J. Chromatogr. B Anal.

Technol. Biomed. Life Sci. 850 (2007) 432–439. doi:10.1016/j.jchromb.2006.12.026.

[80] S. Tanwar, M. Di Carro, E. Magi, Innovative sampling and extraction methods for the determination of nonsteroidal anti-inflammatory drugs in water, J. Pharm. Biomed. Anal.

106 (2015) 100–106. doi:10.1016/j.jpba.2014.10.027.

[81] P. Paíga, L.H.M.L.M. Santos, C. Delerue-Matos, Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS, J. Pharm.

Biomed. Anal. 135 (2017) 75–86. doi:10.1016/j.jpba.2016.12.013.

[82] A. Lolić, P. Paíga, L.H.M.L.M. Santos, S. Ramos, M. Correia, C. Delerue-Matos, Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: Occurrence and environmental risk, Sci. Total Environ.

508 (2015) 240–250. doi:10.1016/j.scitotenv.2014.11.097.

[83] S.D. Kim, J. Cho, I.S. Kim, B.J. Vanderford, S.A. Snyder, Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface , drinking , and waste waters, 41 (2007) 1013–1021. doi:10.1016/j.watres.2006.06.034.

[84] I. Bragança, A. Plácido, P. Paíga, V.F. Domingues, C. Delerue-Matos, QuEChERS: A new sample preparation approach for the determination of ibuprofen and its metabolites in soils, Sci. Total Environ. 433 (2012) 281–289. doi:10.1016/j.scitotenv.2012.06.035.

[85] T. Martinez-Sena, S. Armenta, M. de la Guardia, F.A. Esteve-Turrillas, Determination of non-steroidal anti-inflammatory drugs in water and urine using selective molecular imprinted polymer extraction and liquid chromatography, J. Pharm. Biomed. Anal. 131 (2016) 48–53. doi:10.1016/j.jpba.2016.08.006.

[86] R. López-Serna, M. Petrović, D. Barceló, Development of a fast instrumental method for the analysis of pharmaceuticals in environmental and wastewaters based on ultra high performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS), Chemosphere. 85 (2011) 1390–1399. doi:10.1016/j.chemosphere.2011.07.071.

[87] E. Gracia-Lor, J. V. Sancho, F. Hernández, Simultaneous determination of acidic, neutral and basic pharmaceuticals in urban wastewater by ultra high-pressure liquid chromatography-tandem mass spectrometry, J. Chromatogr. A. 1217 (2010) 622–632.

doi:10.1016/j.chroma.2009.11.090.

[88] E. Gracia-Lor, J. V. Sancho, F. Hernández, Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-tandem mass spectrometry, J.

Chromatogr. A. 1218 (2011) 2264–2275. doi:10.1016/j.chroma.2011.02.026.

[89] M. Gros, S. Rodríguez-Mozaz, D. Barceló, Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry, J. Chromatogr. A. 1292 (2013) 173–188.

doi:10.1016/j.chroma.2012.12.072.

[90] J.Y. Pailler, A. Krein, L. Pfister, L. Hoffmann, C. Guignard, Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg,

[91] I. Tlili, G. Caria, B. Ouddane, I. Ghorbel-Abid, R. Ternane, M. Trabelsi-Ayadi, S. Net, Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS:

Method development and application, Sci. Total Environ. 563–564 (2016) 424–433.

doi:10.1016/j.scitotenv.2016.04.101.

[92] Environmental Protection Agency (EPA), Method 1694 : Pharmaceuticals and Personal Care Products in Water , Soil , Sediment , and Biosolids by HPLC / MS / MS, EPA Method. (2007) 77.

[93] U.F.-U.S.F. and D. Administration, Guidance for Industry: Bioanalytical method validation., 2013. doi:http://www.labcompliance.de/documents/FDA/FDA-Others/Laboratory/f-507-bioanalytical-4252fnl.pdf.

[94] P. Magnisali, M.-B. Chalioti, T. Livadara, M. Mataragas, S. Paliatsiou, A. Malamitsi-Puchner, P. Moutsatsou, Simultaneous quantification of 17α-OH progesterone, 11-deoxycortisol, Δ4-androstenedione, cortisol and cortisone in newborn blood spots using liquid chromatography–tandem mass spectrometry, J. Chromatogr. B. 879 (2011) 1565–

1572. doi:10.1016/j.jchromb.2011.03.048.

[95] C.J. Broccardo, K.L. Schauer, W.M. Kohrt, R.S. Schwartz, J.P. Murphy, J.E. Prenni, Multiplexed analysis of steroid hormones in human serum using novel microflow tile technology and LC-MS/MS, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 934 (2013) 16–21. doi:10.1016/j.jchromb.2013.06.031.

[96] M. Olkowicz, I. Rybakowska, S. Chlopicki, R.T. Smolenski, Development and analytical comparison of microflow and nanoflow liquid chromatography/mass spectrometry procedures for quantification of cardiac troponin T in mouse hearts, Talanta. 131 (2015) 510–520. doi:10.1016/j.talanta.2014.08.029.

[97] M. Concheiro, D. Lee, E. Lendoiro, M.A. Huestis, Simultaneous quantification of Δ9-tetrahydrocannabinol, 11-nor-9-carboxy-tetrahydrocannabinol, cannabidiol and cannabinol in oral fluid by microflow-liquid chromatography–high resolution mass spectrometry, J. Chromatogr. A. 1297 (2013) 123–130.

doi:10.1016/j.chroma.2013.04.071.

[98] X. Duan, B. Weinstock-Guttman, H. Wang, E. Bang, J. Li, M. Ramanathan, J. Qu, Ultrasensitive quantification of serum vitamin D metabolites using selective solid-phase extraction coupled to microflow liquid chromatography and isotope-dilution mass spectrometry., Anal. Chem. 82 (2010) 2488–97. doi:10.1021/ac902869y.

[99] A. Cappiello, G. Famiglini, A. Berloni, Large volume injection of acidic pesticides by reversed-phase micro high-performance liquid chromatography, J. Chromatogr. A. 768 (1997) 215–222. doi:10.1016/S0021-9673(96)01094-1.

[100] F. Gritti, G. Guiochon, Rapid development of core-shell column technology: accurate measurements of the intrinsic column efficiency of narrow-bore columns packed with 4.6 down to 1.3 μm superficially porous particles., J. Chromatogr. A. 1333 (2014) 60–9.

[103] J. Layne, T. Farcas, I. Rustamov, F. Ahmed, Volume-load capacity in fast-gradient liquid chromatography, J. Chromatogr. A. 913 (2001) 233–242. doi:10.1016/S0021-9673(00)01199-7.

[104] D. Vukmanic, M. Chiba, Effect of organic solvents in sample solutions and injection volumes on chromatographic peak profiles of analytes in reversed-phase high-performance liquid chromatography, J. Chromatogr. A. 483 (1989) 189–196.

doi:10.1016/S0021-9673(01)93121-8.

[105] S. Keunchkarian, M. Reta, L. Romero, C. Castells, Effect of sample solvent on the chromatographic peak shape of analytes eluted under reversed-phase liquid chromatogaphic conditions., J. Chromatogr. A. 1119 (2006) 20–8.

doi:10.1016/j.chroma.2006.02.006.

[106] J. Dolan, Distorted Peaks — A Case Study, LCGC North Eur. 28 (2015) 376–383.

http://www.chromatographyonline.com/distorted-peaks-case-study-0 (accessed September 14, 2015).

[107] J.W. Dolan, How Much Can I Inject? Part I: Injecting in Mobile Phase, LCGC North Am. 32 (2014) 780–785. http://www.chromatographyonline.com/how-much-can-i-inject-part-i-injecting-mobile-phase (accessed September 14, 2015).

[108] J.W. Dolan, How Much Can I Inject? Part II: Injecting in Solvents Other than Mobile Phase, LCGC North Am. 32 (2014). http://www.chromatographyonline.com/how-much-can-i-inject-part-ii-injecting-solvents-other-mobile-phase (accessed September 14, 2015).

[109] F. Gritti, G. Guiochon, Overload behavior and apparent efficiencies in chromatography., J. Chromatogr. A. 1254 (2012) 30–42. doi:10.1016/j.chroma.2012.07.015.

[110] E. Oláh, M. Tarnai, J. Fekete, Possibility of large volume injection and band focusing in UHPLC., J. Chromatogr. Sci. 51 (2013) 839–44. doi:10.1093/chromsci/bms179.

[111] M.J. Mills, J. Maltas, W. John Lough, Assessment of injection volume limits when using on-column focusing with microbore liquid chromatography, J. Chromatogr. A. 759 (1997) 1–11. doi:10.1016/S0021-9673(96)00753-4.

[112] M.E. León-González, N. Rosales-Conrado, L. V Pérez-Arribas, L.M. Polo-Díez, Large injection volumes in capillary liquid chromatography: Study of the effect of focusing on chromatographic performance., J. Chromatogr. A. 1217 (2010) 7507–13.

doi:10.1016/j.chroma.2010.09.076.

[113] K. Buonasera, G. D’Orazio, S. Fanali, P. Dugo, L. Mondello, Separation of organophosphorus pesticides by using nano-liquid chromatography., J. Chromatogr. A.

1216 (2009) 3970–6. doi:10.1016/j.chroma.2009.03.005.

[114] J. Hernández-Borges, G. D’Orazio, Z. Aturki, S. Fanali, Nano-liquid chromatography analysis of dansylated biogenic amines in wines., J. Chromatogr. A. 1147 (2007) 192–9.

doi:10.1016/j.chroma.2007.02.072.

[115] F. Gritti, C.A. Sanchez, T. Farkas, G. Guiochon, Achieving the full performance of highly efficient columns by optimizing conventional benchmark high-performance liquid chromatography instruments., J. Chromatogr. A. 1217 (2010) 3000–12.

doi:10.1016/j.chroma.2010.02.044.

[116] A.C. Sanchez, J.A. Anspach, T. Farkas, Performance optimizing injection sequence for minimizing injection band broadening contributions in high efficiency liquid

doi:10.1016/j.chroma.2012.01.038.

[117] G. D’Orazio, S. Fanali, Combination of two different stationary phases for on-line pre-concentration and separation of basic drugs by using nano-liquid chromatography, J.

Chromatogr. A. 1285 (2013) 118–123. doi:10.1016/j.chroma.2013.02.035.

[118] F. Gritti, G. Guiochon, The ultimate band compression factor in gradient elution chromatography., J. Chromatogr. A. 1178 (2008) 79–91.

doi:10.1016/j.chroma.2007.11.044.

[119] Y. Li, Y. Sun, F. Du, K. Yuan, C. Li, Pulse gradient, large-volume injection, high-throughput ultra-performance liquid chromatographic/tandem mass spectrometry bioanalysis for measurement of plasma amrubicin and its metabolite amrubicinol., J.

Chromatogr. A. 1193 (2008) 109–16. doi:10.1016/j.chroma.2008.04.014.

[120] M. Gilar, T.S. McDonald, J.S. Johnson, J.P. Murphy, J.W. Jorgenson, Wide injection zone compression in gradient reversed-phase liquid chromatography., J. Chromatogr. A.

1390 (2015) 86–94. doi:10.1016/j.chroma.2015.02.057.

[121] M. Gilar, T.S. McDonald, G. Roman, J.S. Johnson, J.P. Murphy, J.W. Jorgenson, Repetitive injection method: a tool for investigation of injection zone formation and its compression in microfluidic liquid chromatography., J. Chromatogr. A. 1381 (2015) 110–7. doi:10.1016/j.chroma.2015.01.002.

[122] Z. Márta, B. Bobály, J. Fekete, B. Magda, T. Imre, K.V. Mészáros, P.T. Szabó, Pushing quantitation limits in micro UHPLC–MS/MS analysis of steroid hormones by sample dilution using high volume injection, J. Pharm. Biomed. Anal. 129 (2016) 135–141.

doi:10.1016/j.jpba.2016.06.024.

[123] M. Bourdat-Deschamps, S. Leang, N. Bernet, J.J. Daudin, S. Nélieu, Multi-residue analysis of pharmaceuticals in aqueous environmental samples by online solid-phase extraction-ultra-high-performance liquid chromatography-tandem mass spectrometry:

Optimisation and matrix effects reduction by quick, easy, cheap, effective, , J.

Chromatogr. A. 1349 (2014) 11–23. doi:10.1016/j.chroma.2014.05.006.

[124] T. Anumol, S.A. Snyder, Rapid analysis of trace organic compounds in water by automated online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry, Talanta. 132 (2015) 77–86. doi:10.1016/j.talanta.2014.08.011.

[125] Q. Wang, K. Rangiah, C. Mesaros, N.W. Snyder, A. Vachani, H. Song, I.A. Blair, Ultrasensitive quantification of serum estrogens in postmenopausal women and older men by liquid chromatography-tandem mass spectrometry, Steroids. 96 (2015) 140–152.

doi:10.1016/j.steroids.2015.01.014.

[126] T. Fiers, B. Casetta, B. Bernaert, E. Vandersypt, M. Debock, J.M. Kaufman, Development of a highly sensitive method for the quantification of estrone and estradiol in serum by liquid chromatography tandem mass spectrometry without derivatization, J.

Chromatogr. B Anal. Technol. Biomed. Life Sci. 893–894 (2012) 57–62.

doi:10.1016/j.jchromb.2016.07.051.

[129] Simultaneous determination of three estrogens in human saliva without derivatization or liquid-liquid extraction for routine testing via miniaturized solid phase extraction with

LC-MS/MS detection, Talanta. 178 (2018) 464–472.

doi:10.1016/J.TALANTA.2017.09.062.

[130] Simultaneous quantification of estrogens, their precursors and conjugated metabolites in human breast cancer cells by LC–HRMS without derivatization, J. Pharm. Biomed.

Anal. 138 (2017) 344–350. doi:10.1016/J.JPBA.2017.02.033.

[131] S.X.L. Goh, A. Duarah, L. Zhang, S.A. Snyder, H.K. Lee, Online solid phase extraction with liquid chromatography–tandem mass spectrometry for determination of estrogens and glucocorticoids in water, J. Chromatogr. A. 1465 (2016) 9–19.

doi:10.1016/j.chroma.2016.08.040.

[132] Online solid phase extraction with liquid chromatography–tandem mass spectrometry for determination of estrogens and glucocorticoids in water, J. Chromatogr. A. 1465 (2016) 9–19. doi:10.1016/J.CHROMA.2016.08.040.

[133] M.M. Kushnir, A.L. Rockwood, W.L. Roberts, B. Yue, J. Bergquist, A.W. Meikle, Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories, Clin. Biochem. 44 (2011) 77–88. doi:10.1016/j.clinbiochem.2010.07.008.

[134] K. Yamashita, M. Okuyama, Y. Watanabe, S. Honma, S. Kobayashi, M. Numazawa, Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry, Steroids. 72 (2007) 819–827. doi:10.1016/j.steroids.2007.07.003.

[135] T. Higashi, S. Ogawa, Chemical derivatization for enhancing sensitivity during LC/ESI–

MS/MS quantification of steroids in biological samples: a review, J. Steroid Biochem.

Mol. Biol. 162 (2016) 57–69. doi:10.1016/j.jsbmb.2015.10.003.

[136] Q. Wang, L. Bottalico, C. Mesaros, I.A. Blair, Analysis of estrogens and androgens in postmenopausal serum and plasma by liquid chromatography-mass spectrometry, Steroids. 99 (2015) 76–83. doi:10.1016/j.steroids.2014.08.012.

[137] Q. Wang, C. Mesaros, I.A. Blair, Ultra-high sensitivity analysis of estrogens for special populations in serum and plasma by liquid chromatography–mass spectrometry: Assay considerations and suggested practices, J. Steroid Biochem. Mol. Biol. 162 (2016) 70–

79. doi:10.1016/j.jsbmb.2016.01.002.

[138] Y. Ke, J. Bertin, R. Gonthier, J.N. Simard, F. Labrie, A sensitive, simple and robust LC-MS/MS method for the simultaneous quantification of seven androgen- and estrogen-related steroids in postmenopausal serum, J. Steroid Biochem. Mol. Biol. 144 (2014) 523–534. doi:10.1016/j.jsbmb.2014.08.015.

[139] A.M.M. Faqehi, D.F. Cobice, G. Naredo, T.C.S. Mak, R. Upreti, F.W. Gibb, G.J.

Beckett, B.R. Walker, N.Z.M. Homer, R. Andrew, Derivatization of estrogens enhances specificity and sensitivity of analysis of human plasma and serum by liquid chromatography tandem mass spectrometry, Talanta. 151 (2016) 148–156.

doi:10.1016/j.talanta.2015.12.062.

[140] N. Denver, S. Khan, N.Z.M. Homer, M.R. MacLean, R. Andrew, Current strategies for quantification of estrogen in clinical research, J. Steroid Biochem. Mol. Biol. 192 (2019) 105373. doi:10.1016/j.jsbmb.2019.04.022.