• Nem Talált Eredményt

Discussion of the L-mode and H-mode blob and hole analysis

Conditional averaging was utilized in order to find the blobs and the holes in the plasma edge of an L-mode and an H-mode KSTAR plasma. By analyzing the measurement data, it was possible to determine the average poloidal and radial size of the events. The analysis also showed that the structures are propagating both in the radial and the poloidal direction.

The velocities of the propagation were also calculated. Table 6.1 contains these information for both the L-mode and the H-mode shot.

TABLE6.1: Summary of the blob and hole analysis results for the L-mode and the H-mode shots.

Parameter L-mode blobs

L-mode holes

H-mode blobs

H-mode holes Poloidal size 20 mm 20 mm 20 mm 30 mm Radial size 20-40 mm 20 mm 20-40 mm 20 mm Poloidal velocity 225m/s

ion diam.

1000 m/s ediam.

150m/s ion diam.

166 m/s ediam Radial velocity 300m/s -400m/s 200m/s -175m/s Generation rate 576s−1 796s−1 318s−1 530s−1

6.4. Discussion of the L-mode and H-mode blob and hole analysis 81 The L-mode and H-mode results cannot be directly compared in detail, since the shots were completely different plasma regimes. However, the same tendency is seen, as it was found on other machines. There is no significant difference in the radial and poloidal sizes of intermittent events between L-mode and H-mode shots. The poloidal velocities of blobs and holes have the same magnitude as on other machines and their direction also coincides with earlier findings. The magnitudes of the radial velocities do not match earlier research, because there, holes tend to have higher absolute radial velocity than blobs in all regimes.

However, that is not the case for the H-mode shot in the DBES measurement. Their direction matches results on other machines: blobs are propagating radially outwards, while holes show inwards movement. The event generation rates show the same tendency as on other machines: the generation rate is generally higher for holes, than blobs. The comparison was based on results from [74,80,109].

83

Chapter 7

Summary and discussion

After an extensive feasibility study including beam modeling and trial measurements, a combined Hydrogen and Lithium beam emission spectroscopy system was successfully put in operation on KSTAR. For the heating beam BES, the first plasma measurements showed the peak noise ratio of the system to be approximately 80, while the signal-to-background ratio was 20. For the diagnostic Lithium BES, the peak SNR was found to be 20, while the highest SBR ratio was around 10. The calculated SBR suggest, that the Lithium filter design was also appropriate, and its lower value is a result of the non-optimal focusing of the Li-beam.

The turbulence detection limit was investigated for the heating Hydrogen beam and the diagnostic Lithium beam BES measurements, as well. An avalanche photo-diode detector (4x16 channels) based camera provided fast (2MHz sampling) fluctuation measurements of the beam line emission with 1cm radial and vertical optical resolution. For the HBES, the highest relative fluctuation amplitude was 4% at the plasma edge (r/a = 1.0), which was two times higher, than the noise level. This shows, that turbulence can be directly detected at the plasma edge with spectral analysis. Towards the plasma core, the value of the relative fluctuation amplitude decreased to 1%, which is the same level as the noise amplitude. This result shows, that turbulence can only be detected towards the core with cross-correlation methods. For the LiBES, the relative noise amplitude exceeds the relative fluctuation am-plitude for all radial positions, but at the plasma edge, in the range ofr/a = [0.95,0.1], the fluctuation amplitude is only 2-3 times lower than the noise amplitude, which allows turbu-lence measurements, but only with cross-correlation methods. Turbuturbu-lence detection is only possible at the plasma edge due to the low penetration depth of the Lithium beam. Poloidal propagation velocity of edge turbulence could also be detected in both LiBES and HBES measurements. Lithium beam measurements can also provide measurement of the absolute radial electron density profile.

Scrape-off layer and edge turbulence measurements were performed on KSTAR with Deuterium beam emission spectroscopy in different plasma scenarios. The light signal fluc-tuations are considered as a proxy to plasma electron density modulations. During initial data analysis spurious oscillations were found in the BES signals originating from the NBI high voltage power source. An oscillation subtraction method was developed in order to remove these disadvantageous effects.

An L-mode and an H-mode shot were chosen for the aim of demonstrating the scrape-off layer turbulence measurement capabilities of the KSTAR Deuterium BES system. The main parameters of the measurements were determined such as the turbulence spectrum, the poloidal time lag profiles (inverse poloidal velocity profiles) and the relative fluctuation and noise amplitudes. Furthermore, the skewness and the kurtosis profiles of the shots were also investigated. It was found that the skewness profile exhibits similar behavior as it was found in other machines. The analysis showed that the birth zone of blobs and holes is 1-2cm inside the separatrix.

In order to analyze the average behavior of blobs and holes, conditional averaging was applied. By utilizing this method, blobs and holes were found in L-mode and H-mode plasmas, as well. While blobs can be detected everywhere in the scrape-off layer, holes can only be seen at the birth location of the blobs and 1-2cm radially inwards. The poloidal and radial propagation direction of both the blobs and holes match the findings on other plasma devices: the average blob is propagating radially outward and poloidally in the ion diamagnetic drift direction, while holes are propagating radially inward and poloidally in the electron diamagnetic drift direction. The two-dimensional BES measurement suggest that the blobs change their shape as they propagate radially outward, but the contribution of beam effects is at present unclear and needs further analysis. The analysis of conditional averaging showed the generation rate of blobs and holes, as well. The hole generation rate was found to be 50% higher than the blob generation rate in both L-mode and H-mode cases Probe measurements were analyzed for the same L-mode shot in order to compare SOL probe measurements to BES measurements. Probe measurements show higher relative fluc-tuation amplitude and higher cutoff frequency than the BES measurement. This is consid-ered to be at effect of the limited effective spatial resolution of the BES diagnostic. It causes the smaller blobs to be averaged out and thus lowering the fluctuation amplitude and the cutoff frequency. This effect can be addressed quantitatively by investigating synthetic diag-nostic signals which will be a subject of a work in the future. Although density fluctuation measurements of probes are superior to BES in respect to spatial resolution and dynamic range, they lack full 2D resolution and they are limited in radial measurement range, dis-charge conditions and operation time. Furthermore, probes perturb the plasma, as well, which makes interpretation of the data difficult.

Based on the results, one can draw the conclusion that the Deuterium beam emission spectroscopy diagnostic on KSTAR can provide two-dimensional scrape-off layer and edge turbulence measurements in L-mode and H-mode plasmas for the entire plasma shot. Blob and hole dynamics can be observed and the results compare well to the same aspects of the dynamics on other machines [74,80,109]. This continuous two-dimensional measurement capability provides an excellent possibility for detailed intermittent event dynamics studies.

However, the downside of the diagnostic is the limited spatial resolution which prevents detection of small blob events (< 1−2cm) and impedes determining accurate blob size scaling, which is an important aspect of blob theory. The effective resolution of the system would improve if the effects of spatial smearing were minimized in the measurement. In order to achieve that a deconvolution method is being developed, which could, to some extent, correct for the effects of the smearing and extend the diagnostic capabilities towards smaller blob events.

7.1 Outlook

This thesis showed various measurement capabilities of the KSTAR BES system. There are numerous possibilities which are not discussed here in detail, for example the possibility of local electron density fluctuation reconstruction in beam emission spectroscopy measure-ments. A method is being developed to subtract the effect of spatial smearing from the BES measurement data. This numerical tool could help characterizing the blobs and holes in more detail and it could remove the spurious spatial smearing from the measurement. Fur-thermore, a higher resolution APDCAM is planned to be installed on KSTAR which could double the poloidal measurement range of the system. This could help the characterization of the larger blobs and it could provide data for an interesting research in the future.

85

Bibliography

[1] M. Lampert, G. Anda, A. Czopf, G. Erdei, D. Guszejnov, Á. Kovácsik, G. I. Pokol, D. Réfy, Y. U. Nam, and S. Zoletnik. Combined hydrogen and lithium beam emis-sion spectroscopy observation system for korea superconducting tokamak advanced research. Review of Scientific Instruments, 86(7):073501, 2015.

[2] Y. U. Nam, S. Zoletnik, M. Lampert, and Á. Kovácsik. Analysis of edge density fluctua-tion measured by trial KSTAR beam emission spectroscopy system. Review of Scientific Instruments, 83(10):10D531, 2012.

[3] W.W. Xiao, P.H. Diamond, W.C. Kim, L.H. Yao, S.W. Yoon, X.T. Ding, S.H. Hahn, J. Kim, M. Xu, C.Y. Chen, B.B. Feng, J. Cheng, W.L. Zhong, Z.B. Shi, M. Jiang, X.Y.

Han, Y.U. Nam, W.H. Ko, S.G. Lee, J.G. Bak, J.W. Ahn, H.K. Kim, H.T. Kim, K.P. Kim, X.L. Zou, S.D. Song, J.I. Song, Y.W. Yu, T. Rhee, J.M. Kwon, X.L. Huang, D.L. Yu, K.D.

Lee, S.I. Park, M. Jung, S. Zoletnik, M. Lampert, G.R. Tynan, Y.S. Bae, J.G. Kwak, L.W.

Yan, X.R. Duan, Y.K. Oh, J.Q. Dong, the KSTAR Team, and the HL-2A Team. Elm mit-igation by supersonic molecular beam injection: KSTAR and HL-2A experiments and theory. Nuclear Fusion, 54(2):023003, 2014.

[4] M. Lampert, S. Zoletnik, J. G. Bak, Y. U. Nam, and the KSTAR Team. 2D scrape-off layer turbulence measurement using Deuterium beam emission spectroscopy on KSTAR. Physics of Plasmas, 25(4):042507, 2018.

[5] Leon Clarke, Jae Edmonds, Volker Krey, Richard Richels, Steven Rose, and Massimo Tavoni. International climate policy architectures: Overview of the EMF 22 interna-tional scenarios. Energy Economics, 31(Supplement 2):S64 – S81, 2009. International, U.S. and E.U. Climate Change Control Scenarios: Results from EMF 22.

[6] INTERNATIONAL ATOMIC ENERGY AGENCY. Nuclear Power Reactors in the World.

Number 2 in Reference Data Series. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2015.

[7] Environmental impact of nuclear power plants. Pergamon, 1976.

[8] Zbigniew Jaworowski. Observations on the chernobyl disaster and lnt.Dose-Response, 8(2):dose–response.09–029.Jaworowski, 2010.

[9] Majia Holmer Nadesan. Fukushima and the Privatization of Risk. Palgrave Macmillan UK, London, 2013.

[10] Hans-Werner Sinn. Buffering volatility: A study on the limits of germany’s energy revolution. Working Paper 22467, National Bureau of Economic Research, July 2016.

[11] ROBERT J. GOLDSTON. Climate change, nuclear power, and nuclear proliferation:

Magnitude matters. Science & Global Security, 19(2):130–165, 2011.

[12] ITER Physics Basis Editors, ITER Physics Expert Group Chairs, Co-Chairs, ITER Joint Central Team, and Physics Integration Unit. Chapter 1: Overview and summary.

Nuclear Fusion, 39(12):2137, 1999.

[13] R Aymar, P Barabaschi, and Y Shimomura. The ITER design. Plasma Physics and Controlled Fusion, 44(5):519, 2002.

[14] M. Shimada, D.J. Campbell, V. Mukhovatov, M. Fujiwara, N. Kirneva, K. Lackner, M. Nagami, V.D. Pustovitov, N. Uckan, J. Wesley, N. Asakura, A.E. Costley, A.J.H.

Donné, E.J. Doyle, A. Fasoli, C. Gormezano, Y. Gribov, O. Gruber, T.C. Hender, W. Houlberg, S. Ide, Y. Kamada, A. Leonard, B. Lipschultz, A. Loarte, K. Miyamoto, V. Mukhovatov, T.H. Osborne, A. Polevoi, and A.C.C. Sips. Chapter 1: Overview and summary.Nuclear Fusion, 47(6):S1, 2007.

[15] F. Romanelli, P. Barabaschi, D. Borba, G. Federici, L. Horton, R. Neu, D. Stork, and H. Zohm. A roadmap to the realisation of fusion energy.Eurofusion Website, 2012.

[16] F Todd Baker. Nuclear physics. InAtoms and Photons and Quanta, Oh My!, 2053-2571, pages 4–1 to 4–26. Morgan & Claypool Publishers, 2015.

[17] G. Gamow and E. Teller. The rate of selective thermonuclear reactions. Phys. Rev., 53:608–609, Apr 1938.

[18] J Wesson and D J Campbell. Tokamaks. Clarendon Press, 1997.

[19] Dan O’Leary. The deeds to deuterium. Nat Chem, 4(3):236–236, Mar 2012.

[20] S. Tosti and N. Ghirelli. Tritium in Fusion: Production, Uses and Environmental Impact.

Chemistry Research and Applications Environmental Health - Physical, Chemical and Biological Factors Series. Nova Science Publishers, 2013.

[21] Iter fuel cycle. https://www.iter.org/mach/fuelcycle. Accessed: 2017-11-08.

[22] Francis F Chen. Introduction to Plasma Physics and Controlled Fusion: Volume 1: Plasma Physics. Springer, 2006.

[23] J D Lawson. Some criteria for a power producing thermonuclear reactor. Proceedings of the Physical Society. Section B, 70(1):6, 1957.

[24] INTERNATIONAL ATOMIC ENERGY AGENCY.Fusion Physics. IAEA, Vienna, 2012.

[25] Alexis Briesemeister. Single particle motion. http://suli.pppl.gov/2015/

course/SingleParticleMotion.pdf. Accessed: 2017-11-08.

[26] C M Braams and P E Stott. Nuclear Fusion: Half a Century of Magnetic Confinement Fusion Research. CRC Press, 2002.

[27] Masahiro Wakatani. Stellarator and Heliotron Devices. Oxford University Press, 1998.

[28] Tokamak schematic view. https://www.euro-fusion.org/2011/09/

tokamak-principle-2/. Accessed: 2017-11-08.

[29] Stellarator schematic view. http://www.sciencemag.org/news/2015/10/

bizarre-reactor-might-save-nuclear-fusion. Accessed: 2018-04-28.

[30] C M Braams and P E Stott.Nuclear Fusion: half a century of magnetic confinement research, volume 44. 2002.

[31] P C Stangeby. Plasma Physics and Fusion Energy. Cambridge University Press, 2007.

BIBLIOGRAPHY 87 [32] William Denis D’haeseleer, William Nicholas Guy Hitchonand James D Callen, and J Leon Shohet. Flux Coordinates and Magnetic Field Structure. Springer-Verlag Berlin Heidelberg, 1991.

[33] Roscoe B White.The Theory of Toroidally Confined Plasmas. Imperial College Press, 2014.

[34] Limiter and divertor configuration. https://www.euro-fusion.org/wpcms/

wp-content/uploads/2011/07/fig04.jpg. Accessed: 2017-11-08.

[35] P C Stangeby. The Plasma Boundary of Magnetic Fusion Devices. Taylor & Francis, 2000.

[36] Didier Mazon, Christel Fenzi, and Roland Sabot. As hot as it gets. Nature Physics, 12(1):14–17, Jan 2016. Commentary.

[37] R S Hemsworth, D Boilson, P Blatchford, M Dalla Palma, G Chitarin, H P L de Esch, F Geli, M Dremel, J Graceffa, D Marcuzzi, G Serianni, D Shah, M Singh, M Urbani, and P Zaccaria. Overview of the design of the ITER heating neutral beam injectors.

New Journal of Physics, 19(2):025005, 2017.

[38] H.D Falter, M Proschek, S Menhart, F Aumayr, H.P Winter, D Ciric, A Dines, D God-den, and T.T.C Jones. Helium doped hydrogen or deuterium beam as cost effec-tive and simple tool for plasma spectroscopy. Fusion Engineering and Design, 56-57(Supplement C):941 – 946, 2001.

[39] JET Team. Fusion energy production from a deuterium-tritium plasma in the JET tokamak. Nuclear Fusion, 32(2):187, 1992.

[40] K.H. Berkner, R.V Pyle, and J.W Stearns. Intense, mixed-energy hydrogen beams for CTR injection. Nuclear Fusion, 15(2):249, 1975.

[41] P Helander and D J Sigmar. Collisional transport in magnetized plasmas. Cambridge University Press, 2002.

[42] Harold R. Kaufman. Explanation of bohm diffusion. Journal of Vacuum Science &

Technology B: Microelectronics Processing and Phenomena, 8(1):107–108, 1990.

[43] O Grulke and T Klinger. Large-scale fluctuation structures in plasma turbulence.New Journal of Physics, 4(1):67, 2002.

[44] A. N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Proceedings: Mathematical and Physical Sciences, 434(1890):9–13, 1991.

[45] F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W. Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G. v. Gierke, G. Haas, M. Huang, F. Karger, M. Keilhacker, O. Klüber, M. Kornherr, K. Lackner, G. Lisitano, G. G. Lister, H. M.

Mayer, D. Meisel, E. R. Müller, H. Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, H. Röhr, F. Schneider, G. Siller, E. Speth, A. Stäbler, K. H. Steuer, G. Venus, O. Vollmer, and Z. Yü. Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak. Phys. Rev. Lett., 49:1408–

1412, Nov 1982.

[46] V V Parail. Energy and particle transport in plasmas with transport barriers. Plasma Physics and Controlled Fusion, 44(5A):A63, 2002.

[47] I H Hutchinson. Principles of Plasma Diagnostics. Cambridge University Press, 2002.

[48] W. Lee, J. Leem, J.A. Lee, Y.B. Nam, M. Kim, G.S. Yun, H.K. Park, Y.G. Kim, H. Park, K.W. Kim, C.W. Domier, Luhmann N.C. Jr, K.D. Lee, Y.U. Nam, W.H. Ko, J.H. Jeong, Y.S. Bae, and the KSTAR Team. Microwave imaging reflectometry for density fluctua-tion measurement on KSTAR.Nuclear Fusion, 54(2):023012, 2014.

[49] R. J. Fonck, P. A. Duperrex, and S. F. Paul. Plasma fluctuation measurements in toka-maks using beam-plasma interactions. Review of Scientific Instruments, 61(11):3487–

3495, 1990.

[50] C. D. Boley, R. K. Janev, and D. E. Post. Enhancement of the neutral-beam stopping cross section in fusion plasmas due to multistep collision processes. Phys. Rev. Lett., 52:534–537, Feb 1984.

[51] R.K. Janev, C.D. Boley, and D.E. Post. Penetration of energetic neutral beams into fusion plasmas.Nuclear Fusion, 29(12):2125, 1989.

[52] D. Guszejnov, G. I. Pokol, I. Pusztai, D. Refy, S. Zoletnik, M. Lampert, and Y. U. Nam.

Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas. Review of Scientific Instruments, 83(11):113501, 2012.

[53] K Kadota, K Tsuchida, Y Kawasumi, and J Fujita. Plasma diagnostics by neutral beam probing. Plasma Physics, 20(10):1011, 1978.

[54] G. Anda, A. Bencze, M. Berta, D. Dunai, P. Hacek, J. Krbec, D. Réfy, T. Krizsanóczi, S. Bató, T. Ilkei, I. G. Kiss, G. Veres, and S. Zoletnik. Lithium beam diagnostic system on the COMPASS tokamak. Fusion Engineering and Design, 108:1–6, 10 2016.

[55] G. Anda, D. Dunai, M. Lampert, T. Krizsanóczi, J. Németh, S. Bató, Y. U. Nam, G. H.

Hu, and S. Zoletnik. Development of a high current 60 kev neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments.Review of Scientific Instruments, 89(1):013503, 2018.

[56] G Anda. Atomnyalab diagnosztika fejlesztese fuzios plazmafizikai meresekhez. Budapesti Muszaki Egyetem, 2010.

[57] J Schweinzer, E Wolfrum, F Aumayr, M Pockl, H Winter, R P Schorn, E Hintz, and A Unterreiter. Reconstruction of plasma edge density profiles from li i (2s-2p) emission profiles. Plasma Physics and Controlled Fusion, 34(7):1173, 1992.

[58] R Fischer, E Wolfrum, J Schweinzer, and the ASDEX Upgrade Team. Probabilistic Lithium beam data analysis.Plasma Physics and Controlled Fusion, 50(8):085009, 2008.

[59] G. McKee, R. Ashley, R. Durst, R. Fonck, M. Jakubowski, K. Tritz, K. Burrell, C. Green-field, and J. Robinson. The beam emission spectroscopy diagnostic on the DIII-D toka-mak.Review of Scientific Instruments, 70(1):913–916, 1999.

[60] Jong-Gu Kwak, Y.K. Oh, H.L. Yang, K.R. Park, Y.S. Kim, W.C. Kim, J.Y. Kim, S.G.

Lee, H.K. Na, M. Kwon, G.S. Lee, H.S. Ahn, J.-W. Ahn, Y.S. Bae, J.G. Bak, E.N. Bang, C.S. Chang, D.H. Chang, Z.Y. Chen, K.W. Cho, M.H. Cho, M. Choi, W. Choe, J.H.

Choi, Y. Chu, K.S. Chung, P. Diamond, L. Delpech, H.J. Do, N. Eidietis, A.C. Eng-land, R. Ellis, T. Evans, G. Choe, L. Grisham, Y. Gorelov, H.S. Hahn, S.H. Hahn, W.S. Han, T. Hatae, D. Hillis, T. Hoang, J.S. Hong, S.H. Hong, S.R. Hong, J. Hosea, D. Humphreys, Y.S. Hwang, A. Hyatt, K. Ida, Y.K. In, S. Ide, Y.B. Jang, Y.M. Jeon, J.I.

Jeong, N.Y. Jeong, S.H. Jeong, J.K. Jin, M. Joung, J. Ju, K. Kawahata, C.H. Kim, Hee-Su Kim, H.S. Kim, H.J. Kim, H.K. Kim, H.T. Kim, J.H. Kim, J. Kim, J.C. Kim, Jong-Hee-Su

BIBLIOGRAPHY 89 Kim, Jung-Su Kim, J.H. Kim, Kyung-Min Kim, K.J. Kim, K.P. Kim, M.K. Kim, S.T. Kim, S.W. Kim, Y.J. Kim, Y.K. Kim, Y.O. Kim, J.S. Ko, W.H. Ko, Y. Kogi, E. Kolemen, J.D.

Kong, S.W. Kwak, J.M. Kwon, O.J. Kwon, D.G. Lee, D.R. Lee, D.S. Lee, H.J. Lee, J. Lee, J.H. Lee, K.D. Lee, K.S. Lee, S.H. Lee, S.I. Lee, S.M. Lee, T.G. Lee, W. Lee, W.L. Lee, D.S. Lim, X. Litaudon, J. Lohr, D. Mueller, K.M. Moon, D.H. Na, Y.S. Na, Y.U. Nam, W. Namkung, K. Narihara, S.T. Oh, D.G. Oh, T. Ono, B.H. Park, D.S. Park, G.Y. Park, H. Park, H.T. Park, J.K. Park, J.S. Park, M.K. Park, S.H. Park, S. Park, Y.M. Park, Y.S.

Park, R. Parker, D.R. Rhee, S.A. Sabbagh, K. Sakamoto, S. Shiraiwa, D.C. Seo, S.H. Seo, J.C. Seol, Y.J. Shi, S.H. Son, N.H. Song, T. Suzuki, L. Terzolo, M. Walker, G. Wallace, K. Watanabe, S.J. Wang, H.J. Woo, I.S. Woo, M. Yagi, Y.W. Yu, I. Yamada, Y. Yonekawa, C.M. Yoo, K.I. You, J.W. Yoo, G.S. Yun, M.G. Yu, S.W. Yoon, W. Xiao, S. Zoletnik, and the KSTAR Team. An overview of KSTAR results. Nuclear Fusion, 53(10):104005, 2013.

[61] G. S. Yun, W. Lee, M. J. Choi, J. B. Kim, H. K. Park, C. W. Domier, B. Tobias, T. Liang, X. Kong, N. C. Luhmann Jr., and A. J. H. Donné. Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations.

Review of Scientific Instruments, 81(10):10D930, 2010.

[62] M. Kwon, J. G. Bak, S. H. Jeong, Y. S. Jung, B. C. Kim, H. G. Lee, S. G. Lee, H. K. Na, H. L. Yang, and S. J. Yoo. Advanced Diagnostics for Magnetic and Inertial Fusion, chapter Diagnostics for the KSTAR: Korea Super-Conducting Tokamak Advanced Research, pages 399–402. Springer US, Boston, MA, 2002.

[63] Julius S Bendat and Allan G Piersol. Analysis and measurement. John Wiley & Sons, 2000.

[64] P H Diamond, S-I Itoh, K Itoh, and T S Hahm. Zonal flows in plasma—a review.

Plasma Physics and Controlled Fusion, 47(5):R35, 2005.

[65] Dale Grover. Digital Signal Processing and the Microcontroller. Prentice Hall PTR, 1998.

[66] K. M. M. Prabhu. Window Functions and Their Applications in Signal Processing. CRC Press, 2017.

[67] T. Munsat and S. J. Zweben. Derivation of time-dependent two-dimensional ve-locity field maps for plasma turbulence studies. Review of Scientific Instruments, 77(10):103501, 2006.

[68] H. L. Pecseli and J. Trulsen. A statistical analysis of numerically simulated plasma turbulence. Physics of Fluids B: Plasma Physics, 1(8):1616–1636, 1989.

[69] D. H. J. Goodall. High speed cine film studies of plasma behaviour and plasma surface interactions in tokamaks. Journal of Nuclear Materials, 111-112(Supplement C):11 – 22, 1982.

[70] S. J. Zweben. Search for coherent structure within tokamak plasma turbulence. The Physics of Fluids, 28(3):974–982, 1985.

[71] D. A. D’Ippolito, J. R. Myra, and S. J. Zweben. Convective transport by inter-mittent blob-filaments: Comparison of theory and experiment. Physics of Plasmas, 18(6):060501, 2011.

[72] J R Myra, D A Russell, and D A D’Ippolito. Transport of perpendicular edge momen-tum by drift-interchange turbulence and blobs. Physics of Plasmas, 15(3):32304, 2008.

[73] S.J. Zweben and R.W. Gould. Scaling of edge-plasma turbulence in the Caltech toka-mak.Nuclear Fusion, 23(12):1625, 1983.

[74] G. S. Xu, V. Naulin, W. Fundamenski, C. Hidalgo, J.A. Alonso, C. Silva, B. Gonçalves, A.H. Nielsen, J. Juul Rasmussen, S.I. Krasheninnikov, B.N. Wan, M. Stamp, and JET EFDA Contributors. Blob/hole formation and zonal-flow generation in the edge plasma of the JET tokamak.Nuclear Fusion, 49(9):092002, 2009.

[75] G Fuchert, G Birkenmeier, D Carralero, T Lunt, P Manz, H W Müller, B Nold, M Ramisch, V Rohde, and U Stroth. Blob properties in L- and H-mode from gas-puff imaging in ASDEX upgrade. Plasma Physics and Controlled Fusion, 56(12):125001, 2014.

[76] S J Zweben, J A Boedo, O Grulke, C Hidalgo, B LaBombard, R J Maqueda, P Scarin, and J L Terry. Edge turbulence measurements in toroidal fusion devices. Plasma Physics and Controlled Fusion, 49(7):S1, 2007.

[77] M. Endler. Turbulent SOL transport in stellarators and tokamaks. Journal of Nuclear Materials, 266-269(Supplement C):84 – 90, 1999.

[78] J. A. Boedo, D. Rudakov, R. Moyer, S. Krasheninnikov, D. Whyte, G. McKee, G. Tynan, M. Schaffer, P. Stangeby, P. West, S. Allen, T. Evans, R. Fonck, E. Hollmann, A. Leonard, A. Mahdavi, G. Porter, M. Tillack, and G. Antar. Transport by intermittent convection in the boundary of the DIII-D tokamak. Physics of Plasmas, 8(11):4826–4833, 2001.

[79] Y H Xu, S Jachmich, R R Weynants, and the TEXTOR team. On the properties of turbulence intermittency in the boundary of the TEXTOR tokamak. Plasma Physics and Controlled Fusion, 47(10):1841, 2005.

[80] J Cheng, L W Yan, W Y Hong, K J Zhao, T Lan, J Qian, A D Liu, H L Zhao, Yi Liu, Q W Yang, J Q Dong, X R Duan, and Y Liu. Statistical characterization of blob tur-bulence across the separatrix in HL-2A tokamak. Plasma Physics and Controlled Fusion, 52(5):055003, 2010.

[81] G. Y. Antar, G. Counsell, and J.-W. Ahn. On the scaling of avaloids and turbulence with the average density approaching the density limit. Physics of Plasmas, 12(8):082503, 2005.

[82] O. Grulke, T. Klinger, M. Endler, A. Piel, and W7-AS Team. Analysis of large-scale fluc-tuation structures in the scrape-off layer of the Wendelstein 7-AS stellarator.Physics of Plasmas, 8(12):5171–5180, 2001.

[83] D L Rudakov, J A Boedo, R A Moyer, S Krasheninnikov, A W Leonard, M A Mahdavi, G R McKee, G D Porter, P C Stangeby, J G Watkins, W P West, D G Whyte, and G Antar.

Fluctuation-driven transport in the DIII-D boundary. Plasma Physics and Controlled Fusion, 44(6):717, 2002.

[84] B Nold, G D Conway, T Happel, H W Müller, M Ramisch, V Rohde, U Stroth, and the ASDEX Upgrade Team. Generation of blobs and holes in the edge of the ASDEX upgrade tokamak.Plasma Physics and Controlled Fusion, 52(6):065005, 2010.

[85] J. A. Boedo, D. L. Rudakov, R. A. Moyer, G. R. McKee, R. J. Colchin, M. J. Schaf-fer, P. G. Stangeby, W. P. West, S. L. Allen, T. E. Evans, R. J. Fonck, E. M. Hollmann, S. Krasheninnikov, A. W. Leonard, W. Nevins, M. A. Mahdavi, G. D. Porter, G. R. Ty-nan, D. G. Whyte, and X. Xu. Transport by intermittency in the boundary of the DIII-D tokamak. Physics of Plasmas, 10(5):1670–1677, 2003.

BIBLIOGRAPHY 91 [86] G. Birkenmeier, P. Manz, D. Carralero, F.M. Laggner, G. Fuchert, K. Krieger, H. Maier, F. Reimold, K. Schmid, R. Dux, T. Pütterich, M. Willensdorfer, E. Wolfrum, and The ASDEX Upgrade Team. Filament transport, warm ions and erosion in ASDEX up-grade l-modes. Nuclear Fusion, 55(3):033018, 2015.

[87] M. Endler, H. Niedermeyer, L. Giannone, E. Kolzhauer, A. Rudyj, G. Theimer, and N. Tsois. Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX. Nuclear Fusion, 35(11):1307, 1995.

[88] S.J. Zweben, R.J. Maqueda, D.P. Stotler, A. Keesee, J. Boedo, C.E. Bush, S.M. Kaye, B. LeBlanc, J.L. Lowrance, V.J. Mastrocola, R. Maingi, N. Nishino, G. Renda, D.W.

Swain, J.B. Wilgen, and the NSTX Team. High-speed imaging of edge turbulence in nstx. Nuclear Fusion, 44(1):134, 2004.

[89] J.R. Myra, W.M. Davis, D.A. D’Ippolito, B. LaBombard, D.A. Russell, J.L. Terry, and S.J. Zweben. Edge sheared flows and the dynamics of blob-filaments. Nuclear Fusion, 53(7):073013, 2013.

[90] S. J. Zweben, J. L. Terry, D. P. Stotler, and R. J. Maqueda. Invited review article: Gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion devices. Re-view of Scientific Instruments, 88(4):041101, 2017.

[91] G Birkenmeier, F M Laggner, M Willensdorfer, T Kobayashi, P Manz, E Wolfrum, D Carralero, R Fischer, B Sieglin, G Fuchert, and U Stroth. Magnetic field dependence of the blob dynamics in the edge of ASDEX upgrade L-mode plasmas. Plasma Physics and Controlled Fusion, 56(7):075019, 2014.

[92] N. P. Basse, S. Zoletnik, P. K. Michelsen, and W7-AS Team. Study of intermittent small-scale turbulence in Wendelstein 7-AS plasmas during controlled confinement transitions. Physics of Plasmas, 12(1):012507, 2005.

[93] K. Tanaka, C. Michael, A.L. Sanin, L.N. Vyacheslavov, K. Kawahata, S. Murakami, A. Wakasa, S. Okajima, H. Yamada, M. Shoji, J. Miyazawa, S. Morita, T. Tokuzawa, T. Akiyama, M. Goto, K. Ida, M. Yoshinuma, I. Yamada, M. Yokoyama, S. Masuzaki, T. Morisaki, R. Sakamoto, H. Funaba, S. Inagaki, M. Kobayashi, A. Komori, and LHD experimental group. Experimental study of particle transport and density fluctuations in LHD. Nuclear Fusion, 46(1):110, 2006.

[94] M. Podestà, A. Fasoli, B. Labit, I. Furno, P. Ricci, F. M. Poli, A. Diallo, S. H. Müller, and C. Theiler. Cross-field transport by instabilities and blobs in a magnetized toroidal plasma. Phys. Rev. Lett., 101:045001, Jul 2008.

[95] T. Huld, A. H. Nielsen, H. L. Pecseli, and J. Juul Rasmussen. Coherent structures in two-dimensional plasma turbulence. Physics of Fluids B: Plasma Physics, 3(7):1609–

1625, 1991.

[96] H. Tanaka, N. Ohno, N. Asakura, Y. Tsuji, H. Kawashima, S. Takamura, Y. Uesugi, and the JT-60U Team. Statistical analysis of fluctuation characteristics at high- and low-field sides in L-mode SOL plasmas of JT-60U. Nuclear Fusion, 49(6):065017, 2009.

[97] Marie Farge, Kai Schneider, and Pascal Devynck. Extraction of coherent bursts from turbulent edge plasma in magnetic fusion devices using orthogonal wavelets. Physics of Plasmas, 13(4):042304, 2006.

[98] Th. Pierre, A. Escarguel, D. Guyomarc’h, R. Barni, and C. Riccardi. Radial convection of plasma structures in a turbulent rotating magnetized-plasma column. Phys. Rev.

Lett., 92:065004, Feb 2004.

[99] G. Q. Yu and S. I. Krasheninnikov. Dynamics of blobs in scrape-off-layer/shadow regions of tokamaks and linear devices.Physics of Plasmas, 10(11):4413–4418, 2003.

[100] A. Y. Aydemir. Convective transport in the scrape-off layer of tokamaks. Physics of Plasmas, 12(6):062503, 2005.

[101] O. E. Garcia, N. H. Bian, and W. Fundamenski. Radial interchange motions of plasma filaments. Physics of Plasmas, 13(8):082309, 2006.

[102] N. Bian, S. Benkadda, J.-V. Paulsen, and O. E. Garcia. Blobs and front propagation in the scrape-off layer of magnetic confinement devices.Physics of Plasmas, 10(3):671–676, 2003.

[103] D. A. D’Ippolito and J. R. Myra. Blob stability and transport in the scrape-off-layer.

Physics of Plasmas, 10(10):4029–4039, 2003.

[104] M. Agostini, S. J. Zweben, R. Cavazzana, P. Scarin, G. Serianni, R. J. Maqueda, and D. P. Stotler. Study of statistical properties of edge turbulence in the National Spher-ical Torus Experiment with the gas puff imaging diagnostic. Physics of Plasmas, 14(10):102305, 2007.

[105] W. Fundamenski, O.E. Garcia, V. Naulin, R.A. Pitts, A.H. Nielsen, J. Juul Rasmussen, J. Horacek, J.P. Graves, and JET EFDA contributors. Dissipative processes in inter-change driven scrape-off layer turbulence. Nuclear Fusion, 47(5):417, 2007.

[106] O E Garcia, J Horacek, R A Pitts, A H Nielsen, W Fundamenski, J P Graves, V Naulin, and J Juul Rasmussen. Interchange turbulence in the TCV scrape-off layer. Plasma Physics and Controlled Fusion, 48(1):L1, 2006.

[107] J M Dewhurst, B Hnat, N Ohno, R O Dendy, S Masuzaki, T Morisaki, and A Komori.

Statistical properties of edge plasma turbulence in the large helical device. Plasma Physics and Controlled Fusion, 50(9):095013, 2008.

[108] T. A. Carter. Intermittent turbulence and turbulent structures in a linear magnetized plasma. Physics of Plasmas, 13(1):010701, 2006.

[109] O.E. Garcia, J. Horacek, R.A. Pitts, A.H. Nielsen, W. Fundamenski, V. Naulin, and J. Juul Rasmussen. Fluctuations and transport in the TCV scrape-off layer. Nuclear Fusion, 47(7):667, 2007.

[110] J. R. Myra, D. A. D’Ippolito, D. P. Stotler, S. J. Zweben, B. P. LeBlanc, J. E. Menard, R. J. Maqueda, and J. Boedo. Blob birth and transport in the tokamak edge plasma:

Analysis of imaging data. Physics of Plasmas, 13(9):092509, 2006.

[111] N Yan, A H Nielsen, G S Xu, V Naulin, J J Rasmussen, J Madsen, H Q Wang, S C Liu, W Zhang, L Wang, and B N Wan. Statistical characterization of turbulence in the boundary plasma of EAST.Plasma Physics and Controlled Fusion, 55(11):115007, 2013.

[112] Dávid Guszejnov, Nóra Lazányi, Attila Bencze, and Sándor Zoletnik. On the effect of intermittency of turbulence on the parabolic relation between skewness and kurtosis in magnetized plasmas. Physics of Plasmas, 20(11):112305, 2013.

BIBLIOGRAPHY 93 [113] K.L. Bell, H.B. Gilbody, J.G. Hughes, A. E. Kingston, and F.J. Smith. Recommended cross sections and rates for electron impact ionisation of light atoms and ions: Hydro-gen to oxyHydro-gen. Journal of Physical and Chemical Reference Data, 12(4):891, 1983.

[114] R.K. Janev and J.W. Gallagher. Evaluated theoretical cross-section data for charge ex-change of multiply charged ions with atoms. iii. nonhydrogenic target atoms. Journal of Physical and Chemical Reference Data, 13(4):1199, 1984.

[115] D. Dunai, S. Zoletnik, J. Sárközi, and A. R. Field. Avalanche photodiode based detector for beam emission spectroscopy. Review of Scientific Instruments, 81(10):103503, 2010.

[116] Young chul Ghim(Kim), A. R. Field, S. Zoletnik, and D. Dunai. Calculation of spatial response of 2d beam emission spectroscopy diagnostic on MAST. Review of Scientific Instruments, 81(10):10D713, 2010.

[117] S Zoletnik, L Bardoczi, A Kraemer-Flecken, Y Xu, I Shesterikov, S Soldatov, G Anda, D Dunai, G Petravich, and the TEXTOR Team. Methods for the detection of zonal flows using one-point and two-point turbulence measurements. Plasma Physics and Controlled Fusion, 54(6):065007, 2012.

[118] Optical and illumination design software.

[119] P. H. Lissberger and W. L. Wilcock. Tproperties of all-dielectric interference filters.

ii. filters in parallel beams of light incident obliquely and in convergent beams. The Journal of the Optical Society of America, 49:126–128, 1959.

[120] A. R. Field, D. Dunai, R. Gaffka, Y.-c. Ghim, I. Kiss, B. Meszaros, T. Krizsanoczi, S. Shibaev, and S. Zoletnik. Beam emission spectroscopy turbulence imaging system for the mast spherical tokamak. Review of Scientific Instruments, 83(1):–, 2012.

[121] W W Heidbrink, K H Burrell, Y Luo, N A Pablant, and E Ruskov. Hydrogenic fast-ion diagnostic using Balmer-alpha light. Plasma Physics and Controlled Fusion, 46(12):1855, 2004.

[122] M. Willensdorfer, E. Wolfrum, R. Fischer, J. Schweinzer, M. Sertoli, B. Sieglin, G. Veres, F. Aumayr, and the ASDEX Upgrade Team. Improved chopping of a lithium beam for plasma edge diagnostic at ASDEX upgrade. Review of Scientific Instruments, 83(2), 2012.

[123] R Fischer, E Wolfrum, J Schweinzer, and the ASDEX Upgrade Team. Probabilistic lithium beam data analysis. Plasma Physics and Controlled Fusion, 50(8):085009, 2008.

[124] V.A. Vershkov, D.A. Shelukhin, S.V. Soldatov, A.O. Urazbaev, S.A. Grashin, L.G.

Eliseev, A.V. Melnikov, and the T-10 team. Summary of experimental core turbulence characteristics in ohmic and electron cyclotron resonance heated discharges in T-10 tokamak plasmas. Nuclear Fusion, 45(10):S203, 2005.

[125] A. Kraemer-Flecken, V. Dreval, S. Soldatov, A. Rogister, V. Vershkov, and the TEXTOR-team. Turbulence studies with means of reflectometry at TEXTOR. Nuclear Fusion, 44(11):1143, 2004.

[126] H. Arnichand, R. Sabot, S. Hacquin, A. Krämer-Flecken, X. Garbet, J. Citrin, C. Bour-delle, G. Hornung, J. Bernardo, C. Bottereau, F. Clairet, G. Falchetto, and J.C. Gi-acalone. Quasi-coherent modes and electron-driven turbulence. Nuclear Fusion, 54(12):123017, 2014.