• Nem Talált Eredményt

The results presented in this thesis are planned to be extended. The extension targets first of all the controller design and its improvement to cover a wider range of parameter uncertainty.

The applied assumptions in case of dynamic hybrid model should be revised in order to further increase the accuracy of this model. Moreover model parameter calibration/identification should be considered in order to increase the accuracy of the developed models. In particular, the following topics are planned for future research.

• Consideration of nonlinear model in case of magnetic relation. As the applied current increases the effect of the nonlinearity and the hysteresis of the magnetization curve increases as well, thus this phenomenon should be included into the detailed model description.

• In order to increase the accuracy of the models a detailed model parameter calibra-tion/identification should be executed using special test cases.

• Consideration of wider uncertainty range of the dead volume of the chamber (Vchd) and the stiffness of the clutch mechanism (∂Fl/∂xpst) in order the control system can fulfill the requirements during the whole lifetime of the clutch.

• Based on Fig. 4.1 it seems that the system has pitchfork bifurcation, since the system has three equilibrium point along a trajectory for

d

dxpstFl(xpst) + pchA2pst

Vchd +Apstxpst <0 and one for

d

dxpstFl(xpst) + pchA2pst

Vchd +Apstxpst >0.

In order to prove this conjecture an exhaustive bifurcation analysis is needed [96].

• Consideration of wider uncertainty range of SMV parameters. The production of the SMV has spread within a given tolerance limit and this causes parameter uncertainty.

The parameter change of the SMV has a large effect on the mass flow rate control, therefore some sort of feedback or long time adaptation should be considered.

Bibliography

[1] L. Palkovics, A. Fries, Intelligent electronic systems in commercial vehicles for enhanced traffic safety, Vehicle System Dynamics 35 (4-5) (2001) 227–289.

doi:10.1076/vesd.35.4.227.2044.

[2] G.-O. Kaasa, M. Takahashi, Adaptive Tracking Control of an Electro-Pneumatic Clutch Actuator, Modeling, Identification and Control 24 (4) (2003) 217–229.

doi:10.4173/mic.2003.4.3.

[3] L. X. Jun, Z. C. Rui, L. H. Bin, Electronic Pneumatic Clutch Control of the Heavy Truck based on Neural Network PID, in: Vehicular Electronics and Safety, 2006. ICVES 2006.

IEEE International Conference on, 2006, pp. 232–235. doi:10.1109/ICVES.2006.371589.

[4] H. Li, L. Chen, A Fuzzy Immune PSD Control Approach to Pneumatic Clutch of Heavy Trucks, in: Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on, Vol. 2, 2007, pp. 534–539. doi:10.1109/FSKD.2007.35.

[5] H. Sande, T. Johansen, G.-O. Kaasa, S. Snare, C. Bratli, Switched backstepping control of an electropneumatic clutch actuator using on/off valves, in: American Control Conference, 2007. ACC ’07, 2007, pp. 76–81. doi:10.1109/ACC.2007.4282614.

[6] H. Langjord, T. Johansen, J. Hespanha, Switched control of an electropneumatic clutch actuator using on/off valves, in: American Control Conference, 2008, 2008, pp. 1513–1518.

doi:10.1109/ACC.2008.4586706.

[7] H. Langjord, T. Johansen, C. Bratli, Dual-mode switched control of an electropneumatic clutch actuator with input restrictions, in: European Control Conference, 2009, 2009, pp.

2085–2090.

[8] H. Langjord, T. Johansen, Dual-Mode Switched Control of an Electropneumatic Clutch Actuator, Mechatronics, IEEE/ASME Transactions on 15 (6) (2010) 969–981.

doi:10.1109/TMECH.2009.2036172.

[9] A. Grancharova, T. Johansen, Explicit approximate model predictive control of con-strained nonlinear systems with quantized input, in: L. Magni, D. Raimondo, F. All-göwer (Eds.), Nonlinear Model Predictive Control, Vol. 384 of Lecture Notes in Control and Information Sciences, Springer Berlin Heidelberg, 2009, pp. 371–380.

doi:10.1007/978-3-642-01094-1_30.

[10] A. Grancharova, T. Johansen, Explicit Model Predictive Control of an Electropneumatic Clutch Actuator Using On-Off Valves and Pulse-width Modulation, in: European Control Conference, 2009, 2009, pp. 4278–4283.

[11] A. Grancharova, T. Johansen, Design and Comparison of Explicit Model Predictive Con-trollers for an Electropneumatic Clutch Actuator Using On/Off Valves, Mechatronics, IEEE/ASME Transactions on 16 (4) (2011) 665–673. doi:10.1109/TMECH.2010.2049365.

[12] H. Németh, Nonlinear Modeling and Control for a Mechatronic Protection Valve, Ph.D.

Theses, Budapest, Hungary, 2004.

[13] B. Förster, J. Lindner, K. Steinel, W. Stürmer, Kupplungssysteme für schwere Nutzfahrzeuge, ATZ - Automobiltechnische Zeitschrift 106 (10) (2004) 878–887.

doi:10.1007/BF03221661.

[14] B. Förster, K. Steinel, Kupplungsbetätigungssystem ConAct für Nutzfahrzeuge mit automa-tisierten Schaltgetrieben, ATZ - Automobiltechnische Zeitschrift 109 (2) (2007) 140–146.

doi:10.1007/BF03221866.

[15] K. Hangos, I. Cameron, Process modelling and model analysis / K.M. Hangos, I.T. Cameron, Academic Press, San Diego, 2001.

[16] R. Lakner, K. Hangos, I. Cameron, On minimal models of process systems, Chemical Engi-neering Science 60 (4) (2005) 1127 – 1142. doi:10.1016/j.ces.2004.09.074.

[17] P. J. Mosterman, G. Biswas, A comprehensive methodology for building hybrid models of physical systems, Artificial Intelligence 121 (1-2) (2000) 171 – 209.

doi:10.1016/S0004-3702(00)00032-1.

[18] C. Wen, Modeling problems of hybrid event dynamic systems, Simulation Practice and Theory 6 (4) (1998) 413 – 422. doi:10.1016/S0928-4869(97)00014-1.

[19] M. Doˇgruel, M. A. Adli, Hybrid state approach for modelling electrical and me-chanical systems, Mathematical and Computer Modelling 41 (6-7) (2005) 759 – 771.

doi:10.1016/j.mcm.2004.01.006.

[20] K. Hangos, I. Cameron, The formal representation of process system modelling assumptions and their implications, Computers & Chemical Engineering 21, Supplement (0) (1997) S823 – S828. doi:10.1016/S0098-1354(97)87604-1.

[21] K. Hangos, I. Cameron, A formal representation of assumptions in process modelling, Computers & Chemical Engineering 25 (2-3) (2001) 237 – 255.

doi:10.1016/S0098-1354(00)00649-9.

[22] K. Hangos, G. Szederkényi, Z. Tuza, The effect of model simplification assumptions on the differential index of lumped process models, Computers & Chemical Engineering 28 (1-2) (2004) 129 – 137. doi:10.1016/S0098-1354(03)00166-2.

[23] K. Hangos, Z. Tuza, Process model structure simplification, Computers & Chemical Engi-neering 23, Supplement (0) (1999) S343 – S346. doi:10.1016/S0098-1354(99)80084-2.

[24] H. Németh, P. Ailer, K. M. Hangos, Nonlinear modelling and model verification of a single protection valve, Periodica Polytechnica Ser. Transportation Eng. 30 (1-2) (2002) 69 – 96.

[25] R. D. Zucker, Fundamentals of gas dynamics, 2nd Edition, John Wiley & Sons Inc., New Jerse, 2002.

[26] D. F. Young, T. H. Okiishi, Fundamentals of fluid mechanics, 5th Edition, John Wiley &

Sons Inc., New Jerse, 2006.

[27] K. Fischer, K. Shenai, Dynamics of power MOSFET switching under unclamped inductive loading conditions, Electron Devices, IEEE Transactions on 43 (6) (1996) 1007 – 1015.

doi:10.1109/16.502137.

[28] L. A. Zadeh, C. A. Desoer, Linear system theory; The state space approach, McGraw-Hill New York, 1963.

[29] M. Branicky, V. Borkar, S. Mitter, A unified framework for hybrid control: model and optimal control theory, IEEE Transactions on Automatic Control 43 (1) (1998) 31–45.

doi:10.1109/9.654885.

[30] H. Németh, L. Palkovics, K. M. Hangos, System identification of an electro-pneumatic protection valve, Technical Report SCL-001/2003, Computer and Automation Research Institute, Budapest, Hungary.

[31] H. H. Woodson, J. R. Melcher, Electromechanical Dynamics: Part I, John Wiley & Sons Inc., 1968.

[32] A. Laub, M. Heath, C. Paige, R. Ward, Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms, IEEE Transactions on Automatic Control 32 (1987) 115–122. doi:10.1109/TAC.1987.1104549.

[33] B. Moore, Principal component analysis in linear systems: Controllability, observabil-ity, and model reduction, IEEE Transactions on Automatic Control 26 (1981) 17–32.

doi:10.1109/TAC.1981.1102568.

[34] J. Hahn, T. F. Edgar, An improved method for nonlinear model reduction using balancing of empirical gramians, Computers & Chemical Engineering 26 (10) (2002) 1379 – 1397.

doi:10.1016/S0098-1354(02)00120-5.

[35] J. Hahn, T. F. Edgar, W. Marquardt, Controllability and observability covariance matrices for the analysis and order reduction of stable nonlinear systems, Journal of Process Control 13 (2) (2003) 115 – 127. doi:10.1016/S0959-1524(02)00024-0.

[36] R. Lakner, I. Cameron, K. Hangos, An assumption-driven case-specific model editor, Com-puters & Chemical Engineering 23 (Supplement 1) (1999) S695 – S698, european Sympo-sium on Computer Aided Process Engineering, Proceedings of the European SympoSympo-sium.

doi:10.1016/S0098-1354(99)80170-7.

[37] A. Leitold, K. M. Hangos, Z. Tuza, Structure simplification of dynamic process models, Journal of Process Control 12 (1) (2002) 69 – 83. doi:10.1016/S0959-1524(00)00062-7.

[38] H. Németh, L. Palkovics, K. M. Hangos, Unified model simplification procedure applied to a single protection valve, Control Engineering Practice 13 (3) (2005) 315 – 326, aerospace IFAC 2002. doi:10.1016/j.conengprac.2004.03.013.

[39] Y. Hong, H.-W. Park, J.-W. Lee, D.-P. Hong, Simulation of clutch actuation system for commercial vehicle, International Journal of Precision Engineering and Manufacturing 11 (6) (2010) 839–843. doi:10.1007/s12541-010-0101-5.

[40] A. Isidori, Nonlinear Control Systems, 3rd Edition, Springer-Verlag New York, Inc., Secau-cus, NJ, USA, 1995.

[41] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Interdisciplinary Applied Mathematics, Springer New York, 1999. doi:10.1007/978-1-4757-3108-8.

[42] H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall, 2002.

[43] J.-J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall, 1991.

[44] D. Cheng, Analysis of linear systems, Addison-Wesley series in electrical engineering, Addison-Wesley Pub. Co., 1959.

[45] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, John Wiley & Sons, 2005.

[46] K. Hangos, J. Bokor, G. Szederkényi, Analysis and Control of Nonlinear Process Systems, Advanced Textbooks in Control and Signal Processing, Springer London, 2004.

[47] A. M. LYAPUNOV, The general problem of the stability of motion, International Journal of Control 55 (3) (1992) 531–534. doi:10.1080/00207179208934253.

[48] E. Barbashin, N. Krasovskii, On the stability of motion in the large, Dokl. Akad. Nauk.

S.S.S.R. 86 (3) (1952) 453–456.

[49] N. N. Krasovskii, Problems of the theory of stability of motion, English translation: Stanford University Press, Stanford, CA, 1963., 1959.

[50] J. LaSalle, Some extensions of Liapunov’s second method, IRE Transactions on Circuit Theory 86 (3) (1960) 520–527.

[51] V. Chellaboina, A. Leonessa, M. Haddad, Generalized lyapunov and invariant set theorems for nonlinear dynamical systems, in: American Control Conference, 1999. Proceedings of the 1999, Vol. 5, 1999, pp. 3028–3032. doi:10.1109/ACC.1999.782317.

[52] A. Hurwitz, Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt, Mathematische Annalen 46 (2) (1895) 273–284.

doi:10.1007/BF01446812.

[53] I. S. Gradshteyn, I. M. Ryzhik, Analysis of linear systems §15.715 in Tables of Integrals, Series, and Products, 6th ed., Academic Press, 2000.

[54] F. Alonge, F. D’Ippolito, Design and sensitivity analysis of a reduced-order rotor flux optimal observer for induction motor control, Control Engineering Practice 15 (12) (2007) 1508 – 1519. doi:10.1016/j.conengprac.2007.02.011.

[55] I. Hiskens, Stability of hybrid system limit cycles: application to the compass gait biped robot, in: Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, Vol. 1, 2001, pp. 774–779 vol.1. doi:10.1109/.2001.980200.

[56] I. Hiskens, Trajectory approximation near the stability boundary, in: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, 30 2010-June 2, pp. 533–

536. doi:10.1109/ISCAS.2010.5537559.

[57] B. D. O. Anderson, J. B. Moore, Optimal Control: Linear Quadratic Methods, Courier Corporation, 2007.

[58] H. Kwakernaak, R. Sivan, Linear Optimal Control Systems, John Wiley & Sons, Inc., New York, NY, USA, 1972.

[59] D. Hrovat, Survey of advanced suspension developments and related optimal control appli-cations, Automatica 33 (10) (1997) 1781 – 1817. doi:10.1016/S0005-1098(97)00101-5.

[60] Y. Li, X. Liu, G. Xing, Discrete-time LQ optimal control of satellite formations in ellip-tical orbits based on feedback linearization, Acta Astronautica 83 (0) (2013) 125 – 131.

doi:10.1016/j.actaastro.2012.10.027.

[61] R. Zhang, R. Lu, Q. Jin, Multivariable design of improved linear quadratic regulation control for MIMO industrial processes, ISA Transactions Available online 18 April 2015 (2015) – doi:10.1016/j.isatra.2015.03.010.

[62] A. Liu, Y. Liang, S. Gao, J. Gao, Modified linear quadratic optimal control method and application in linear brushless direct current motor, in: Electrical Machines and Systems, 2007. ICEMS. International Conference on, 2007, pp. 1829–1834.

[63] H. Wang, H. Zhang, X. Wang, Linear quadratic optimal control for continuous-time stochas-tic systems with single input-delay, in: Control and Decision Conference (CCDC), 2012 24th Chinese, 2012, pp. 2821–2828. doi:10.1109/CCDC.2012.6244450.

[64] K. Zhou, J. C. Doyle, K. Glover, Robust and Optimal Control, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[65] O. Sename, P. Gáspár, J. Bokor, Robust Control and Linear Parameter Varying approaches:

Application to Vehicle Dynamics, Spinger, 2013. doi:10.1007/978-3-642-36110-4.

[66] J. J. Martinez, O. Sename, A. Voda, Modeling and robust control of Blu-ray disc servo-mechanisms, Mechatronics 19 (5) (2009) 715 – 725.

doi:10.1016/j.mechatronics.2009.02.006.

[67] A. Zin, O. Sename, P. Gáspár, L. Dugard, J. Bokor, Robust LPV-H control for active suspensions with performance adaptation in view of global chassis control, Vehicle System Dynamics 46 (10) (2008) 889–912. doi:10.1080/00423110701684587.

[68] C. Poussot-Vassal, O. Sename, L. Dugard, P. Gáspár, Z. Szabó, J. Bokor, A new semi-active suspension control strategy through LPV technique, Control Engineering Practice 16 (12) (2008) 1519 – 1534. doi:10.1016/j.conengprac.2008.05.002.

[69] M. Jung, K. Glover, U. Christen, Comparison of uncertainty parameterisations for H

robust control of turbocharged diesel engines, Control Engineering Practice 13 (1) (2005) 15 – 25. doi:10.1016/j.conengprac.2003.12.018.

[70] G. Lee, K. You, T. Kang, K. J. Yoon, J. O. Lee, J. K. Park, Modeling and design of H-Infinity controller for piezoelectric actuator LIPCA, Journal of Bionic Engineering 7 (2) (2010) 168 – 174. doi:10.1016/S1672-6529(09)60198-0.

[71] V. I. Utkin, J. Guldner, J. Shi, Sliding mode control in electromechanical systems, The Taylor & Francis systems and control book series, Taylor & Francis, London, Philadelphia, PA, 1999.

[72] C. Edwards, S. K. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor &

Francis systems and control book series, Taylor & Francis, London, 1998.

[73] A. Girin, F. Plestan, X. Brim, A. Glumineau, A 3rd order sliding mode controller based on integral sliding mode for an electropneumatic system, in: Decision and Control, 2006 45th IEEE Conference on, 2006, pp. 1617–1622. doi:10.1109/CDC.2006.376778.

[74] A. Girin, F. Plestan, X. Brun, A. Glumineau, High-order sliding-mode controllers of an elec-tropneumatic actuator: Application to an aeronautic benchmark, Control Systems Technol-ogy, IEEE Transactions on 17 (3) (2009) 633–645. doi:10.1109/TCST.2008.2002950.

[75] A. Paul, J. Mishra, M. Radke, Reduced order sliding mode control for pneumatic actuator, Control Systems Technology, IEEE Transactions on 2 (3) (1994) 271–276.

doi:10.1109/87.317984.

[76] S. Das, B. Bandyopadyay, A. Paul, P. Trivedi, Position control of pneumatic actuator using sliding mode control in conjunction with robust exact differentiator, in: Control, Automa-tion, Robotics and Embedded Systems (CARE), 2013 International Conference on, 2013, pp. 1–6. doi:10.1109/CARE.2013.6733689.

[77] E. Barth, J. Zhang, M. Goldfarb, Sliding mode approach to PWM-controlled pneumatic systems, in: American Control Conference, 2002. Proceedings of the 2002, Vol. 3, 2002, pp.

2362–2367 vol.3. doi:10.1109/ACC.2002.1023995.

[78] S. Laghrouche, M. Smaoui, F. Plestan, Robust control of electropneumatic actuator by 3rd-order sliding mode, in: Decision and Control, 2004. CDC. 43rd IEEE Conference on, Vol. 4, 2004, pp. 4375–4380. doi:10.1109/CDC.2004.1429439.

[79] T. Nguyen, J. Leavitt, F. Jabbari, J. Bobrow, Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves, Mechatronics, IEEE/ASME Transactions on 12 (2) (2007) 216–219. doi:10.1109/TMECH.2007.892821.

[80] J. L. Musgrave, Linear quadratic servo control of a reusable rocket engine, Journal of Guid-ance, Control, and Dynamics 15 (5) (1992) 1149–1154. doi:10.2514/3.20962.

[81] S. Weerasooriya, D. Phan, Discrete-time LQG/LTR design and modeling of a disk drive actuator tracking servo system, Industrial Electronics, IEEE Transactions on 42 (3) (1995) 240–247. doi:10.1109/41.382134.

[82] B. Szimandl, H. Németh, Optimal position control of an electro-pneumatic clutch system, in:

Proceedings of the 11th International Symposium on Advanced Vehicle Control (AVEC’12), Seoul, Korea, 2012, pp. 1 – 6.

[83] P. Gáspár, I. Szászi, Robust servo control design using identified models, in: 3rd IFAC symposium on robust control design. ROCOND 2000. Prague, 2000., IFAC, Prague, 2000, p. 6.

[84] M. V. Kothare, P. J. Campo, M. Morari, C. N. Nett, A unified framework for the study of anti-windup designs, Automatica 30 (12) (1994) 1869 – 1883.

doi:10.1016/0005-1098(94)90048-5.

[85] B. Szimandl, H. Németh, Robust servo control design for an electro-pneumatic clutch system using the H method, in: Mechatronic and Embedded Systems and Appli-cations (MESA), 2014 IEEE/ASME 10th International Conference on, 2014, pp. 1–6.

doi:10.1109/MESA.2014.6935526.

[86] B. Szimandl, H. Németh, Sliding Mode Position Control of an Electro-Pneumatic Clutch System, in: System, Structure and Control, Vol. 5, Part 1, Grenoble, France, 2013, pp.

707–712. doi:10.3182/20130204-3-FR-2033.00019.

[87] B. Szimandl, H. Németh, Pneumatikus mágnesszelepek I/O linearizálása, A Jövő Járműve - Járműipari Innováció 5 (3,4) (2013) 14 – 22.

[88] B. Szimandl, H. Németh, Dynamic hybrid model of an electro-pneumatic clutch system, Mechatronics 23 (1) (2013) 21 – 36. doi:10.1016/j.mechatronics.2012.10.006.

[89] P. Bauer, J. Bokor, Development and hardware-in-the-loop testing of an Extended Kalman Filter for attitude estimation, in: Computational Intelligence and Informatics (CINTI), 2010 11th International Symposium on, 2010, pp. 57–62. doi:10.1109/CINTI.2010.5672274.

[90] B. Szimandl, H. Németh, Observer based closed loop control of electro-pneumatic gearbox actuator, in: FISITA, 2010, 2010, pp. 1–10.

[91] T. Szabo, M. Buchholz, K. Dietmayer, A feedback linearization based observer for an electropneumatic clutch actuated by on/off solenoid valves, in: Control Ap-plications (CCA), 2010 IEEE International Conference on, 2010, pp. 1445–1450.

doi:10.1109/CCA.2010.5611125.

[92] P. Seiler, B. Vanek, J. Bokor, G. Balas, Robust H filter design using frequency gridding, in: American Control Conference (ACC), 2011, 2011, pp. 1801–1806.

doi:10.1109/ACC.2011.5990748.

[93] F. Esfandiari, H. K. Khalil, Output feedback stabilization of fully linearizable systems, In-ternational Journal of Control 56 (5) (1992) 1007–1037. doi:10.1080/00207179208934355.

[94] A. Saberi, P. Sannuti, Observer design for loop transfer recovery and for uncertain dynamical systems, Automatic Control, IEEE Transactions on 35 (8) (1990) 878–897.

doi:10.1109/9.58497.

[95] B. Szimandl, H. Németh, Observer development for an electro-pneumatic clutch actuator, A Jövő Járműve - Járműipari Innováció 5 (1,2) (2014) 5 – 10.

[96] Y. Kuznetsov, Elements of applied bifurcation theory, Vol. 112, Springer Verlag, 2004.

doi:10.1007/978-1-4757-3978-7.

Appendix A

Figures and Tables

Figure A.1: Friction disc, clutch mechanism and concentric clutch actuator from ZF SACHS

Figure A.2: Engine, gearbox and clutch system

Figure A.3: Clutch systems applied with forked lever- (left) and concentric type (right) EPC actuators

Table A.1: List of parameters

Parameter name 1Symbol Value Unit 2Confidence

Adiabatic exponent κ 1.4 K

Permeability of vacuum µ0 ·107 V s/Am K

Specific gas constant R 287.14 J/kgK K

Drain to source on resistance rDS(on),xx 0.071 PK

Effective breakdown voltage UBR,xx 71 V PK

Inlet diameter ofsxSMV dsx 0.0015 m PK

Inlet diameter ofbxSMV dbx 0.0035 m PK

Armature diameter ofsxSMV darm,sx 0.010 m PK

Armature diameter ofbxSMV darm,bx 0.012 m PK

Stiffness ofsxSMV spring ssx 489 N/m PK

Stiffness ofbxSMV spring sbx 567 N/m PK

Pretension of sxSMV spring xsx,0 0.0102 m PK

Pretension of bxSMV spring xbx,0 0.0063 m PK

Mass ofsxSMV armature msx 0.012 kg PK

Mass ofbxSMV armature mbx 0.016 kg PK

Solenoid turns ofsxSMVs Nsx 600 PK

Solenoid turns ofbxSMVs Nbx 910 PK

Electric resistance of sxSMVs Rsx 11.3 PK

Electric resistance of bxSMVs Rbx 9.1 PK

Contraction coefficient of SMVs αxx 0.6 UK

Magnetic loop resistance of SMVs Rxx 12000000 A/V s UK

Stroke limiting stiffness of SMVs cxx 107 N/m UK

Damping coefficient of SMVs kxx 30 N s/m UK

Stiffness of helper spring chsp 1·104 N/m PK

Pretension stroke of helper spring xhsp0 0.06 m PK

Area of piston Apst 0.0227 m2 PK

Dead volume of chamber Vchd 5.5982·104 m3 PK

Lumped mass mpst 9.3922 kg PK

Heat transfer coefficient of chamber kht 8.25 W/m2K UK

Heat transfer area of chamber Aht 0.0689 m2 UK

Friction coefficient of piston µpst 0.1391 UK

Damping coefficient of piston kpst 2251.3825 N s/m UK Stroke limiting stiffness of piston cpst 108 N/m UK

1In case of power stage / valve model parameterssxcorresponds to the small-,bxcorresponds to the big- and xxcorresponds all power stage / valve.

2K: known, PK: partially known, UK: unknown

Appendix B

Model transformations