• Nem Talált Eredményt

I developed a new method based on residence time distribution analysis using computational fluid dynamics and a compartmental model to study

New scientific results (theses)

1. I developed a new method based on residence time distribution analysis using computational fluid dynamics and a compartmental model to study

the hydrodynamic behavior of the equipment with complex geometry. The residence time distribution curve obtained by using the heuristic compartmental model is in good agreement with the curve obtained by the detailed CFD model.

a) A three-dimensional CFD simulator of a biomass gasification device is developed, which is suitable for studying residence time distribution of systems with multiple inlets.

b) Using a compartmental model which is based on ideal flow units I showed that the hydrodynamic behavior of the detailed CFD model can be reproduced. With the application of the compartmental model we got a tool for the calculation of the residence time analysis with significantly less computational cost.

Related publications: 6., 10., 18.

2. To evaluate the performance of continuous mixers, I defined a multi-aspect mixing measure and used it to develop an evaluation method. The advantage of the developed method is that in contrary to the traditional simulations based on the solution of the component balance equation, only the stationary velocity field has to be used for the calculations.

a) I developed metrics of mixing to define the mixedness. These metrics are applicable to qualify static and jet mixers.

b) I defined the concept of local coverage, which can be used to qualify the mixer by interpreting the local coverage to the whole outlet boundary.

c) I developed a calculation method that is suitable for determining the mixing performance of mixers based on the position data of the marked phase elements using the stationary velocity field obtained by the flow simulation.

Related publications: 1., 13.

127 3. Models using the immersed boundary method based on the direct numerical simulation modeling approach are developed for particle level modelling of two-phase flow including the phase interactions for different processes such as fluidization, adsorption and sedimentation.

a) A simulator of a two-phase system, including a fluidized particle is developed in which the gas-solid interaction is calculated by the immersed boundary method. The algorithm of the calculation is usable to calculate the moving of a solid particle considering the properties of the surrounding flow field.

b) I developed a particle level model to simulate the adsorption process on the surface of an adsorbent particle. I constructed a flow model of a two-phase system containing the adsorbent particle based on the immersed boundary method. The flow model is completed with a component balance for the component to be adsorbed and first-order kinetics describing the adsorption process. The developed method makes it possible to determine the degree of saturation of the adsorbed components on different surface elements of the particle.

c) I also developed a particle level model based on the immersed boundary method that can calculate the sedimentation of a solid particle in Newtonian fluid. The simulator is suitable to calculate the moving of the solid particle in still fluid based on the properties of the surrounding flow field.

Related publications: 3., 7., 8., 9., 11., 12., 14., 15., 16., 17., 19., 20.

128

Publikációk

Folyóiratcikkek:

1. Gyurik, L., Ulbert, Zs., Molnár, B., Varga, T., Chován, T., Egedy, A., 2020, CFD Based Nozzle Design for a Multijet Mixer, Chemical Engineering and Processing - Process Intensification Vol. 157 /DOI:

10.1016/j.cep.2020.108121/

2. Egedy, A., Gyurik, L., Ulbert, Zs., Rado A., 2020, CFD modeling and environmental assessment of a VOC removal silo, International Journal of Environmental Science and Technology /DOI: 10.1007/s13762-020-02833-7

3. Gyurik, L., Egedy, A., Ulbert, Zs., Cronin, K., Ring, D., 2019, Modelling the Motion of a Single Solid Bead in a Newtonian Fluid by Two-Phase CFD Methods, Chemical Engineering Transactions, Vol. 76., pp. 175-180. /DOI:

10.3303/CET1976030/

4. Egedy, A., Gyurik, L., Ulbert, Zs., Rado, A., 2019, CFD Modelling and Simulation of a VOC Removal Silo, Chemical Engineering Transactions, Vol. 76., pp. 163-168. /DOI: 10.3303/CET1976028/

5. Egedy, A., Gyurik, L., Varga T., Zou, J., Miskolczi, N., Yang, H, 2018, Kinetic-compartmental modelling of potassium-containing cellulose feedstock gasification, Frontiers of Chemical Science and Engineering, Vol. 12., pp. 708-717. /DOI: 10.1007/s11705-018-1767-y/

6. Gyurik, L., Egedy, A., Zou, J., Miskolczi, N., Ulbert, Zs., Yang, H., 2018, Hydrodynamic modelling of a two-stage biomass gasification reactor, Journal of the Energy Institute Vol. 92., pp. 403-412. /DOI:

10.1016/j.joei.2018.05.007/

7. Gyurik, L., Egedy, A., Ulbert, Zs., 2018, Simulation of Gas-Solid Flow in Quasi-Two-Dimensional Fluidized Bed by Immersed Boundary Method, Chemical Engineering Transactions, Vol. 70., pp. 805-810. /DOI:

10.3303/CET1870135/

Konferencia kiadványban megjelent publikációk:

8. Gyurik, L., Egedy, A., Varga, T., Ulbert, Zs., 2020, Two-phase Flow Modelling and Simulation of Gas Purification Column, Proceedings of the 30th European Symposium on Computer Aided Process Engineering (ESCAPE30) Part A, pp. 199-204. /ISBN: 978-0-12-823511-9/

9. Gyurik, L., Egedy, A., Ulbert, Zs., 2018, Modeling Solid-Liquid Settling System as a Two-Phase Flow Problem, COMSOL Conference 2018 Lausanne 6 p

10. Gyurik, L., Egedy, A., Zou, J., Miskolczi, N., Ulbert, Zs., Yang, H., 2017, Hydrodynamic Modelling of a Gasification Reactor, Műszaki Kémiai Napok 2017, pp. 11-16. /ISBN: 978-963-396-094-3/

129 Előadások, poszterek:

11. Gyurik, L., Egedy, A., Varga, T., Ulbert, Zs., 2020, Two-phase Flow Modelling and Simulation of Gas Purification Column, 30th European Symposium on Computer Aided Process Engineering – ESCAPE30 Virtual Symposium, 2020. 08. 30. – 09. 02.

12. Gyurik, L., Egedy, A., Ulbert, Zs., Cronin, K., Ring, D., 2019, Modelling the Motion of a Single Solid Bead in a Newtonian Fluid by Two-Phase CFD Methods, 22nd Conference on Process Integration for Energy Saving and Pollution Reduction - PRES'19, Agios Nikolaos, Görögország, 2019. 10.

20-23.

13. Gyurik, L., Egedy, A., Ulbert, Zs., Diszperzer többcélú optimalizálása numerikus áramlástani szimulációk segítségével, Műszaki Kémiai Napok 2019, Veszprém, 2019. 04. 16-18.

14. Gyurik, L., Egedy, A., Ulbert, Zs., 2018, Modeling Solid-Liquid Settling System as a Two-Phase Flow Problem, COMSOL Conference 2018, Lausanne, Svájc, 2018. 10. 22-24.

15. Gyurik, L., Egedy, A., Ulbert, Zs., 2018, Simulation of Gas-Solid Flow in Quasi-Two-Dimensional Fluidized Bed by Immersed Boundary Method, 21st Conference on Process Integration for Energy Saving and Pollution Reduction - PRES'18, Prága, Csehország, 2018. 08. 25-29.

16. Gyurik, L., Egedy, A., Ulbert, Zs., 2018, Immersed Boundary módszer alkalmazása gáz-szilárd kétfázisú rendszerek modellezésére és szimulációjára, Műszaki Kémiai Napok 2018 Veszprém, 2018. 04. 24-26.

17. Gyurik, L., Egedy, A., Ulbert, Zs., 2018, Immersed Boundary Method for Modelling of Multiphase Flow, Tavaszi Szél Nemzetközi Multidiszciplináris Konferencia 2018, Győr, 2018. 05. 04-06.

18. Gyurik, L., Egedy, A., Zou, J., Miskolczi, N., Ulbert, Zs., Yang, H., 2017, Hydrodynamic Modelling of a Gasification Reactor, Műszaki Kémiai Napok 2017, Veszprém, 2017. 04. 25-27.

19. Gyurik, L., Egedy, A., Ulbert, Zs., 2017, Modelling and Computer-aided Simulation of Gas-solid Two-phase Flows, Tavaszi Szél Nemzetközi Multidiszciplináris Konferencia 2017, Miskolc, 2017. 03. 31. – 04. 02.

20. Gyurik, L., Egedy, A., Ulbert, Zs., 2016, Gáz-szilárd kétfázisú áramlások modellezése és számítógépes szimulációja, XXII. Nemzetközi Vegyészkonferencia, Temesvár, Románia, 2016. 11. 03-06.

130 gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases, 3rd ed. Cambridge ; New York: Cambridge University Press, 1990.

[3] J. Ding és D. Gidaspow, „A bubbling fluidization model using kinetic theory of granular flow”, AIChE J., köt. 36, sz. 4, o. 523–538, ápr. 1990, doi:

10.1002/aic.690360404.

[4] A. Boemer, H. Qi, és U. Renz, „Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed”, International Journal of Multiphase Flow, köt. 23, sz. 5, o. 927–944, szept. 1997, doi: nearly horizontal pipes with the two-fluid model”, International Journal of Multiphase Flow, köt. 29, sz. 1, o. 69–95, jan. 2003, doi: 10.1016/S0301-9322(02)00127-1.

[7] B. Noetinger, „A two fluid model for sedimentation phenomena”, Physica A:

Statistical Mechanics and its Applications, köt. 157, sz. 3, o. 1139–1179, jún.

1989, doi: 10.1016/0378-4371(89)90037-X.

[8] W. Zhong, A. Yu, X. Liu, Z. Tong, és H. Zhang, „DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications”, Powder Technology, köt. 302, o. 108–152, nov. 2016, doi: 10.1016/j.powtec.2016.07.010.

[9] Yi. He, A. E. Bayly, és A. Hassanpour, „Coupling CFD-DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows”, Powder Technology, köt. 325, o. 620–631, febr. 2018, doi: assemblies”, Geotechnique, köt. 29, sz. 1, o. 47–65, 1979.

[12] S. Deb és D. Tafti, „Investigation of flat bottomed spouted bed with multiple jets using DEM–CFD framework”, Powder Technology, köt. 254, o. 387–

402, márc. 2014, doi: 10.1016/j.powtec.2014.01.045.

[13] J. Horabik és M. Molenda, „Parameters and contact models for DEM simulations of agricultural granular materials: A review”, Biosystems Engineering, köt. 147, o. 206–225, júl. 2016, doi:

10.1016/j.biosystemseng.2016.02.017.

131 [14] J. Shen, C. Wheeler, D. Ilic, és J. Chen, „Application of open source FEM and DEM simulations for dynamic belt deflection modelling”, Powder Technology, aug. 2019, doi: 10.1016/j.powtec.2019.08.068.

[15] E. Gallego, J. M. Fuentes, J. Wiącek, J. R. Villar, és F. Ayuga, „DEM analysis of the flow and friction of spherical particles in steel silos with corrugated walls”, Powder Technology, köt. 355, o. 425–437, okt. 2019, doi:

10.1016/j.powtec.2019.07.072.

[16] E. Yazdani és S. H. Hashemabadi, „The influence of cohesiveness on particulate bed segregation and mixing in rotating drum using DEM”, Physica A: Statistical Mechanics and its Applications, köt. 525, o. 788–797, júl. 2019, doi: 10.1016/j.physa.2019.03.127.

[17] H. Ma és Y. Zhao, „Modelling of the flow of ellipsoidal particles in a horizontal rotating drum based on DEM simulation”, Chemical Engineering Science, köt. 172, o. 636–651, nov. 2017, doi: 10.1016/j.ces.2017.07.017.

[18] J. Gyenis, Zs. Ulbert, J. Szépvölgyi, és Y. Tsuji, „Discrete particle simulation of flow regimes in bulk solids mixing and conveying”, Powder Technology, köt. 104, sz. 3, o. 248–257, okt. 1999, doi: 10.1016/S0032-5910(99)00102-3.

[19] Y. You és Y. Zhao, „Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: A comparative study”, Powder Technology, köt. 331, o. 179–191, máj. 2018, doi:

10.1016/j.powtec.2018.03.017.

[20] J. L. Steger és D. S. Chaussee, „Generation of Body-Fitted Coordinates Using Hyperbolic Partial Differential Equations”, SIAM Journal on Scientific and Statistical Computing, köt. 1, sz. 4, o. 431–437, dec. 1980, doi:

10.1137/0901031.

[21] A. G. Dixon, M. Nijemeisland, és E. H. Stitt, „Systematic mesh development for 3D CFD simulation of fixed beds: Contact points study”, Computers &

Chemical Engineering, köt. 48, o. 135–153, jan. 2013, doi:

10.1016/j.compchemeng.2012.08.011.

[22] S. Rebughini, A. Cuoci, és M. Maestri, „Handling contact points in reactive CFD simulations of heterogeneous catalytic fixed bed reactors”, Chemical Engineering Science, köt. 141, o. 240–249, febr. 2016, doi:

10.1016/j.ces.2015.11.013.

[23] C. S. Peskin, „Flow patterns around heart valves: A numerical method”, Journal of Computational Physics, köt. 10, sz. 2, o. 252–271, okt. 1972, doi:

10.1016/0021-9991(72)90065-4.

[24] R. Mittal és G. Iaccarino, „IMMERSED BOUNDARY METHODS”, Annual Review of Fluid Mechanics, köt. 37, sz. 1, o. 239–261, jan. 2005, doi:

10.1146/annurev.fluid.37.061903.175743.

[25] H.-J. Bungartz és M. Schäfer, Szerk., Fluid-structure interaction: modelling, simulation, optimisation. Berlin ; New York: Springer-Verlag, 2006.

[26] V. A. Epanechnikov, „Non-Parametric Estimation of a Multivariate Probability Density”, Theory of Probability & Its Applications, köt. 14, sz. 1, o. 153–158, jan. 1969, doi: 10.1137/1114019.

[27] R. P. Beyer és R. J. LeVeque, „Analysis of a One-Dimensional Model for the Immersed Boundary Method”, SIAM Journal on Numerical Analysis, köt. 29, sz. 2, o. 332–364, ápr. 1992, doi: 10.1137/0729022.

132 [28] J. Mohd-Yusof, „Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries”, Center for Turbulence Research, 1997.

[29] E. Fadlun, R. Verzicco, P. Orlandi, és J. Mohd-Yusof, „Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations”, Journal of Computational Physics, köt. 161, sz. 1, o. 35–60, jún. 2000, doi: 10.1006/jcph.2000.6484.

[30] A. L. F. Lima E Silva, A. Silveira-Neto, és J. J. R. Damasceno, „Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method”, Journal of Computational Physics, köt. 189, sz. 2, o. 351–370, aug. 2003, doi: 10.1016/S0021-9991(03)00214-6.

[31] M. Uhlmann, „An immersed boundary method with direct forcing for the simulation of particulate flows”, Journal of Computational Physics, köt. 209, sz. 2, o. 448–476, nov. 2005, doi: 10.1016/j.jcp.2005.03.017.

[32] J. Karátson, R. Horváth, és F. Izsák, Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal. 2013.

[33] P. W. McDonald, „The Computation of Transonic Flow Through Two-Dimensional Gas Turbine Cascades”, in ASME 1971 International Gas Turbine Conference and Products Show, Houston, Texas, USA, márc. 1971, o. V001T01A089, doi: 10.1115/71-GT-89.

[34] R. Maccormack, „The effect of viscosity in hypervelocity impact cratering”, ápr. 1969, doi: 10.2514/6.1969-354.

[35] P. Lax és B. Wendroff, „Systems of conservation laws”, Communications on Pure and Applied Mathematics, köt. 13, sz. 2, o. 217–237, máj. 1960, doi:

10.1002/cpa.3160130205.

[36] R. Courant, K. Friedrichs, és H. Lewy, „Über die partiellen Differenzengleichungen der mathematischen Physik”, Mathematische Annalen, köt. 100, sz. 1, o. 32–74, dec. 1928, doi: 10.1007/BF01448839.

[37] S. V. Patankar és D. B. Spalding, „A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, International Journal of Heat and Mass Transfer, köt. 15, sz. 10, o. 1787–1806, okt. 1972, doi: 10.1016/0017-9310(72)90054-3.

[38] S. V. Patankar, Numerical heat transfer and fluid flow. New York:

Hemisphere Publ. Co, 1980.

[39] J. P. Van Doormaal és G. D. Raithby, „ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS”, Numerical Heat Transfer, köt. 7, sz. 2, o. 147–163, ápr. 1984, doi:

10.1080/01495728408961817.

[40] R. I. Issa, „Solution of the implicitly discretised fluid flow equations by operator-splitting”, Journal of Computational Physics, köt. 62, sz. 1, o. 40–

65, jan. 1986, doi: 10.1016/0021-9991(86)90099-9.

[41] C. J. Greenshields, User Guide version 7. OpenFOAM Foundation Ltd., 2019.

[42] L. Thomas, „Elliptic problems in linear difference equations over a network”. Watson Science Computer Laboratory Report, Columbia University, NY, 1949.

[43] S. Osher és J. A. Sethian, „Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations”, Journal of

133 Computational Physics, köt. 79, sz. 1, o. 12–49, nov. 1988, doi:

10.1016/0021-9991(88)90002-2.

[44] A. Foley, „CFD Applied to Two-Phase Flow, an Italian Dressing Simulation”. 2013, [Online]. Elérhető: https://www.comsol.com/blogs/cfd-applied-to-two-phase-flow-an-italian-dressing-simulation/.

[45] „Rising Bubble”. [Online]. Elérhető: https://www.comsol.com/model/rising-bubble-177.

[48] Lajos T., „Az áramlástan alapjai”, o. 195, 1992.

[49] Y. V. Polezhaev és I. V. Chircov, A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering: AtoZ, köt. D. Begellhouse, 2006.

[50] B. E. Launder és D. B. Spalding, „The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, köt. 3, sz. 2, o. 269–289, márc. 1974, doi: 10.1016/0045-7825(74)90029-2.

[51] P. V. Danckwerts, „Continuous flow systems: distribution of residence times”, Chemical engineering science, köt. 2, sz. 1, o. 1–13, 1953.

[52] I. L. Gamba, S. Marquez Damian, D. A. Estenoz, N. Nigro, M. A. Storti, és D. Knoeppel, „Residence Time Distribution Determination of a Continuous Stirred Tank Reactor using Computational Fluid Dynamics and its Application on the Mathematical Modeling of Styrene Polymerization”, International Journal of Chemical Reactor Engineering, köt. 10, sz. 1, jan.

2012, doi: 10.1515/1542-6580.3057.

[53] J. T. Adeosun és A. Lawal, „Numerical and experimental studies of mixing characteristics in a T-junction microchannel using residence-time distribution”, Chemical Engineering Science, köt. 64, sz. 10, o. 2422–2432, máj. 2009, doi: 10.1016/j.ces.2009.02.013.

[54] O. Levenspiel, Chemical reaction engineering, 3rd ed. New York: Wiley, 1999.

[55] L. Gyurik, A. Egedy, J. Zou, N. Miskolczi, Z. Ulbert, és H. Yang,

„Hydrodynamic modelling of a two-stage biomass gasification reactor”, Journal of the Energy Institute, jún. 2018, doi: 10.1016/j.joei.2018.05.007.

[56] S. S. Alves, J. M. T. Vasconcelos, és J. Barata, „Alternative compartment models of mixing in tall tanks agitated by multi-Rushton turbines”, Chemical Engineering Research and Design, köt. 75, sz. 3, o. 334–338, 1997.

[57] P. Arora, A. F. A. Hoadley, S. M. Mahajani, és A. Ganesh, „Compartment operating conditions”, Energy Conversion and Management, köt. 82, o. 202–

211, jún. 2014, doi: 10.1016/j.enconman.2014.01.055.

134 [59] G. A. Sod, „A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, Journal of computational physics, köt. 27, sz. 1, o. 1–31, 1978.

[60] S. Godunov, „A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations”, Matematicheskii Sbornik, köt. 89, sz. 3, o. 271–306, 1959.

[61] A. Harten, „High resolution schemes for hyperbolic conservation laws”, Journal of Computational Physics, köt. 49, sz. 3, o. 357–393, márc. 1983, doi: 10.1016/0021-9991(83)90136-5.

[62] P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for Industrial and Applied Mathematics, 1973.

[63] K. W. Thompson, „Time-dependent boundary conditions for hyperbolic systems, II”, Journal of Computational Physics, köt. 89, sz. 2, o. 439–461, aug. 1990, doi: 10.1016/0021-9991(90)90152-Q.

[64] A. Egedy, „Diszperzerek vizsgálata korszerű folyamatmérnöki technikák alkalmazásával”. Szakdolgozat, Pannon Egyetem, 2014.

[65] Z. Liu, A. Quek, és R. Balasubramanian, „Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars”, Applied Energy, köt. 113, o. 1315–1322, jan. 2014, doi:

10.1016/j.apenergy.2013.08.087.

[66] A. Anca-Couce, „Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis”, Progress in Energy and Combustion Science, köt. 53, o. 41–79, márc. 2016, doi: 10.1016/j.pecs.2015.10.002.

[67] K. Matsumoto, K. Takeno, T. Ichinose, T. Ogi, és M. Nakanishi,

„Gasification reaction kinetics on biomass char obtained as a by-product of gasification in an entrained-flow gasifier with steam and oxygen at 900–

1000°C”, Fuel, köt. 88, sz. 3, o. 519–527, márc. 2009, doi:

10.1016/j.fuel.2008.09.022.

[68] I. Ahmed és A. K. Gupta, „Syngas yield during pyrolysis and steam gasification of paper”, Applied Energy, köt. 86, sz. 9, o. 1813–1821, szept.

2009, doi: 10.1016/j.apenergy.2009.01.025.

[69] Y. Wang, K. Yoshikawa, T. Namioka, és Y. Hashimoto, „Performance optimization of two-staged gasification system for woody biomass”, Fuel Processing Technology, köt. 88, sz. 3, o. 243–250, márc. 2007, doi:

10.1016/j.fuproc.2006.10.002.

[70] S. K. Sansaniwal, K. Pal, M. A. Rosen, és S. K. Tyagi, „Recent advances in the development of biomass gasification technology: A comprehensive review”, Renewable and Sustainable Energy Reviews, köt. 72, o. 363–384, máj. 2017, doi: 10.1016/j.rser.2017.01.038.

[71] A. Gómez-Barea és B. Leckner, „Modeling of biomass gasification in fluidized bed”, Progress in Energy and Combustion Science, köt. 36, sz. 4, o.

444–509, aug. 2010, doi: 10.1016/j.pecs.2009.12.002.

[72] A. Sharma, V. Pareek, és D. Zhang, „Biomass pyrolysis—A review of modelling, process parameters and catalytic studies”, Renewable and Sustainable Energy Reviews, köt. 50, o. 1081–1096, okt. 2015, doi:

10.1016/j.rser.2015.04.193.

135 [73] J. Zou, H. Yang, Z. Zeng, C. Wu, P. T. Williams, és H. Chen, „Hydrogen production from pyrolysis catalytic reforming of cellulose in the presence of K alkali metal”, International Journal of Hydrogen Energy, köt. 41, sz. 25, o. 10598–10607, júl. 2016, doi: 10.1016/j.ijhydene.2016.04.207.

[74] B. Birge, „PSOt-a particle swarm optimization toolbox for use with Matlab”, in Swarm Intelligence Symposium, 2003. SIS’03. Proceedings of the 2003 IEEE, 2003, o. 182–186, Elérés: jún. 22, 2017. [Online]. Elérhető:

http://ieeexplore.ieee.org/abstract/document/1202265/.

[75] M. Bauer és G. Eigenberger, „Multiscale modeling of hydrodynamics, mass transfer and reaction in bubble column reactors”, Chemical Engineering Science, köt. 56, sz. 3, o. 1067–1074, febr. 2001, doi: thermal runaway behavior based on esterification reaction”, Process Safety and Environmental Protection, köt. 120, o. 87–96, nov. 2018, doi: és S. López-Ramírez, „Optimization of reagents injection in a stirred batch reactor by numerical simulation”, Computers & Chemical Engineering, köt.

60, o. 307–314, jan. 2014, doi: 10.1016/j.compchemeng.2013.09.005.

[80] F. Xue, F. Luo, H. Cui, A. Moro, és L. Zhou, „Numerical analyses of transient flow characteristics within each nozzle hole of an asymmetric diesel injector”, International Journal of Heat and Mass Transfer, köt. 104, o. 18–27, jan. 2017, doi: 10.1016/j.ijheatmasstransfer.2016.08.027.

[81] D. Nguyen és mtsai., „Spray flow structure from twin-hole diesel injector nozzles”, Experimental Thermal and Fluid Science, köt. 86, o. 235–247, szept. 2017, doi: 10.1016/j.expthermflusci.2017.04.020.

[82] T. Zhang, B. Dong, X. Chen, Z. Qiu, R. Jiang, és W. Li, „Spray characteristics of pressure-swirl nozzles at different nozzle diameters”, Applied Thermal Engineering, köt. 121, o. 984–991, júl. 2017, doi:

10.1016/j.applthermaleng.2017.04.089.

[83] J.-P. Torré, D. F. Fletcher, T. Lasuye, és C. Xuereb, „An experimental and CFD study of liquid jet injection into a partially baffled mixing vessel: A contribution to process safety by improving the quenching of runaway reactions”, Chemical Engineering Science, köt. 63, sz. 4, o. 924–942, febr.

2008, doi: 10.1016/j.ces.2007.10.031.

[84] A. M. Sultan, C. P. Fonte, M. M. Dias, J. C. B. Lopes, és R. J. Santos,

„Experimental study of flow regime and mixing in T-jets mixers”, Chemical Engineering Science, köt. 73, o. 388–399, máj. 2012, doi:

10.1016/j.ces.2012.02.010.

136 [85] M. Zhou, D. Bai, Y. Zong, L. Zhao, és J. N. Thornock, „Numerical investigation of turbulent reactive mixing in a novel coaxial jet static mixer”, Chemical Engineering and Processing: Process Intensification, köt. 122, o.

190–203, dec. 2017, doi: 10.1016/j.cep.2017.09.017.

[86] M. P. Vasilev és R. Sh. Abiev, „Turbulent droplets dispersion in a pulsating flow type apparatus – New type of static disperser”, Chemical Engineering Journal, köt. 349, o. 646–661, okt. 2018, doi: 10.1016/j.cej.2018.05.104.

[87] K. Wang, C. Bai, Y. Wang, és M. Liu, „Flow dead zone analysis and structure optimization for the trefoil-baffle heat exchanger”, International Journal of Thermal Sciences, köt. 140, o. 127–134, jún. 2019, doi:

10.1016/j.ijthermalsci.2019.02.044.

[88] A. W. Patwardhan, „CFD modeling of jet mixed tanks”, Chemical Engineering Science, köt. 57, sz. 8, o. 1307–1318, ápr. 2002, doi:

10.1016/S0009-2509(02)00049-0.

[89] J. M. Gillian és D. J. Kirwan, „Identification and correlation of mixing times in opposed-jet mixers”, Chemical Engineering Communications, köt. 195, sz. 12, o. 1553–1574, aug. 2008, doi: 10.1080/00986440802115614.

[90] K. Krupa, M. I. Nunes, R. J. Santos, és J. R. Bourne, „Characterization of micromixing in T-jet mixers”, Chemical Engineering Science, köt. 111, o.

48–55, máj. 2014, doi: 10.1016/j.ces.2014.02.018.

[91] M. Rahimi és A. Parvareh, „Experimental and CFD investigation on mixing by a jet in a semi-industrial stirred tank”, Chemical Engineering Journal, köt. 115, sz. 1–2, o. 85–92, dec. 2005, doi: 10.1016/j.cej.2005.09.021.

[92] A. Egedy, T. Varga, és T. Chovan, „Particle tracing based validation for CFD models of stirred reactors”, Chemical Engineering Transactions, o.

1429–1434, máj. 2013, doi: 10.3303/CET1332239.

[93] M. Pasha, A. Hassanpour, H. Ahmadian, H. S. Tan, A. Bayly, és M. Ghadiri,

„A comparative analysis of particle tracking in a mixer by discrete element method and positron emission particle tracking”, Powder Technology, köt.

270, o. 569–574, jan. 2015, doi: 10.1016/j.powtec.2014.09.007.

[94] W. Huang, S. Moon, Y. Gao, J. Wang, D. Ozawa, és A. Matsumoto, „Hole number effect on spray dynamics of multi-hole diesel nozzles: An observation from three- to nine-hole nozzles”, Experimental Thermal and Fluid Science, köt. 102, o. 387–396, ápr. 2019, doi:

10.1016/j.expthermflusci.2018.12.022.

[95] V. C. Patkar és A. W. Patwardhan, „Effect of jet angle and orifice shape in gas–gas mixer using CFD”, Chemical Engineering Research and Design, köt. 89, sz. 7, o. 904–920, júl. 2011, doi: 10.1016/j.cherd.2010.10.023.

[96] D. J. Thomson, „Random walk models of turbulent dispersion”, Department of Mathematics and Statistics, Brunel University, köt. A Thesis submitted for the degree of Doctor of Philosophy, 1988.

[97] Z. Fonyó és G. Fábry, Vegyipari művelettani alapismeretek. Nemzeti Tankönyvkiadó.

[98] Y. M. John, R. Patel, és I. M. Mujtaba, „Modelling and simulation of an industrial riser in fluid catalytic cracking process”, Computers & Chemical Engineering, köt. 106, o. 730–743, nov. 2017, doi:

10.1016/j.compchemeng.2017.01.013.

137 [99] A. Afshar Ebrahimi és S. Foroutan Ghazvini, „Experimental attrition study of FCC catalysts through 2D/3D contour plots and response surface models”, Powder Technology, köt. 336, o. 80–84, aug. 2018, doi:

„Inductive heating of fluidized beds: Influence on fluidization behavior”, Powder Technology, köt. 286, o. 90–97, dec. 2015, doi:

10.1016/j.powtec.2015.08.003.

[102] V. V. Idakiev, P. V. Lazarova, A. Bück, E. Tsotsas, és L. Mörl, „Inductive heating of fluidized beds: Drying of particulate solids”, Powder Technology, köt. 306, o. 26–33, jan. 2017, doi: 10.1016/j.powtec.2016.11.011.

[103] V. V. Idakiev, C. Steinke, F. Sondej, A. Bück, E. Tsotsas, és L. Mörl,

„Inductive heating of fluidized beds: Spray coating process”, Powder Technology, köt. 328, o. 26–37, ápr. 2018, doi:

10.1016/j.powtec.2018.01.017.

[104] S. Kumagai, J. Lu, Y. Fukushima, H. Ohno, T. Kameda, és T. Yoshioka,

„Diagnosing chlorine industrial metabolism by evaluating the potential of chlorine recovery from polyvinyl chloride wastes—A case study in Japan”, Resources, Conservation and Recycling, köt. 133, o. 354–361, jún. 2018, doi: 10.1016/j.resconrec.2017.07.007.

[105] A. Veksha, A. Giannis, W. Oh, V. Chang, és G. Lisak, „Upgrading of non-condensable pyrolysis gas from mixed plastics through catalytic decomposition and dechlorination”, Fuel Processing Technology, köt. 170, o. 13–20, febr. 2018, doi: 10.1016/j.fuproc.2017.10.019.

[106] „https://en.wikipedia.org/wiki/Adsorption”. dec. 09, 2019, [Online].

Elérhető: https://en.wikipedia.org/wiki/Adsorption.

[107] R. B. Bird, W. E. Stewart, és E. N. Lightfoot, Transport phenomena, 2nd, Wiley international ed kiad. New York: J. Wiley, 2002.

[108] H. C. Yee, „A class of high resolution explicit and implicit shock-capturing methods”. NASA TM 101088, 1989.

[109] P. Van Santen, P. G. E. F. Augustinus, B. M. Janssen-Stelder, S. Quartel, és N. H. Tri, „Sedimentation in an estuarine mangrove system”, Journal of Asian Earth Sciences, köt. 29, sz. 4, o. 566–575, febr. 2007, doi:

10.1016/j.jseaes.2006.05.011.

[110] M. Ochowiak, M. Matuszak, S. Włodarczak, M. Ancukiewicz, és A.

Krupińska, „The modified swirl sedimentation tanks for water purification”, Journal of Environmental Management, köt. 189, o. 22–28, márc. 2017, doi:

10.1016/j.jenvman.2016.12.023.

[111] V. Gaur, J. Schalk, és S. G. Anema, „Sedimentation in UHT milk”, International Dairy Journal, köt. 78, o. 92–102, márc. 2018, doi:

10.1016/j.idairyj.2017.11.003.

[112] I. Pereira, A. Zielińska, N. R. Ferreira, A. M. Silva, és E. B. Souto,

[112] I. Pereira, A. Zielińska, N. R. Ferreira, A. M. Silva, és E. B. Souto,