• Nem Talált Eredményt

Gautheret ( 2 5 9 ) observed that strains of normal carrot tissue capable of culture in the absence of added IAA gradually altered in their response to this auxin. The proliferation of freshly isolated explants was stimulated by additions of IAA at appropriate concentrations. However, after a period of culture in the presence of IAA, the tissue no longer responded in this way. Later, Gautheret ( 2 6 1 ) found that tissues of Scorzonera when first isolated had an absolute requirement for auxin if they were to grow in culture. However, after numerous transfers in a culture medium containing auxin, there arose sectors in the cultures which possessed the ability to grow continuously and rapidly in an auxin-free medium. Their growth was not further enhanced by adding auxin to the culture medium. These modified tissues differed from the normal tissues, not only in their insensitivity to IAA but in being translucent, friable, and incapable of initiating roots. Various other investigators

( 3 1 9 , 3 6 5 , 4 9 8 ) have reported, in work with various other callus tissues, a similar change in response to auxin. Gautheret referred to this phe-nomenon first as "accoutumance a l'auxine" ( 2 5 8 , 2 6 1 ) and later as

"anergie a Tauxine" ( 2 6 6 ) . American and British authors have generally used the term habituation.

Kulescha ( 3 9 8 ) has shown that such habituated tissues contain a higher content of free auxin than normal tissues although the auxin composition of such tissues has not been satisfactorily described in

chemical terms nor has it been established whether the higher auxin content is a consequence of an enhanced rate of auxin biosynthesis.

Furthermore, there is evidence that stable changes affecting other aspects of metabolism can occur in cultured tissues and that the phenomenon of habituation should not be conceived of as restricted to auxin metabolism.

Thus, Gautheret (264, 266) cites the case of a willow (Salix caprea) tissue which was at first cultured successfully only by using a complex medium but which became able to grow actively without several of the growth factors initially important for its proliferation; in particular, the tissue lost its need for an external supply of pantothenic acid. Similarly, the virus tumor tissue of Rumex acetosa has recently been reported

(535) no longer to need thiamine. Normal tissue of Catharanthus roseus (Vinca rosea) has a requirement for some seven growth factors. How­

ever, Braun (101) has now reported that from a large number of frag­

ments of such tissue transferred to White's basal medium in which the content of each inorganic salt was raised sixfold, a tissue fragment has been obtained capable of continued growth in such a medium. This tissue was incapable of culture on unmodified White's basal medium.

It could, however, be grown on this medium modified by raising the concentration of only a single salt, potassium iodide. Similarly, it could be cultured in the presence of the normal inorganic salt mixture pro­

vided the basic medium was supplemented by either 1 : 3 diiodotyrosine, kinetin, or cytidylic acid. The modified tissue no longer required for growth an external supply of auxin, rat/o-inositol, or a source of reduced nitrogen, such as glutamine or asparagine. This modified tissue during serial propagation in White's medium containing the enhanced content of inorganic salts has now yielded a further sector which no longer re­

quires either additional iodide or any growth factor. It grows well on unmodified White's basal medium like fully transformed crown gall tumor tissue of Catharanthus roseus.

Habituated tissues show more or less developed tumor-forming prop­

erties as evidenced by grafting into plants of the species from which they are derived (103, 140, 319). In tobacco the tumor-forming property of habituated tissue has been particularly well demonstrated; it was more malignant than the crown gall tissue (426). The rather weak tumor-forming properties of certain other habituated tissues may reflect the degree of habituation involved, for both Morel (498) and Gautheret (264) have emphasized that there are degrees of habituation, and Braun (101) clearly obtained both partially and fully habituated tissues of Catharanthus roseus.

Gautheret (266) has postulated that habituation is a form of enzymatic adaptation since its reproducibility, particularly in certain tissues, seems

to preclude somatic mutation or selection of cells with a special geno­

type. Evidence that enzymatic adaptation occurs in cultured organs has already been discussed (page 2 3 ) . Gautheret agrees with Braun in ex­

cluding mutation as the cause of the altered state and suggests that habituation may be reversible under appropriate conditions yet to be discovered. Since fully habituated tissue can be regarded as a form of tumor tissue, it follows that transformation to the tumorous state does not necessarily involve the intervention of an external agent (bacterial product or virus). From this it can be suggested that such tumor-inducing agents act indirectly to create a physiological state which can also be induced by the accumulation or depletion of natural cell con­

stituents.

R E F E R E N C E S

1. Abbott, A. J. The growth and development of excised roots in relation to trace element deficiencies. Ph.D. thesis, University of Bristol, 1963.

2. Aberg, B. Auxin relations in roots. Ann. Rev. Plant Physiol 8, 153-180 (1957).

3. Abraham, Α., and Thomas, K. J. A note on the in vitro culture of excised coco­

nut embryos. Indian Coconut J. 15, 84-88 (1962).

4. Adamson, D. Expansion and division in auxin-treated plant cells. Can. /. Botany 40, 719^-740 (1962).

4a. Addicott, F. T., Lyon, J. L., Ohkuma, K., Thiessen, W. E., Cams, H. R., Smith, Ο. E., Cornforth, J. W., Milborrow, Β. V., Ryback, G., and Wareing, P. F.

Abscisic acid: A new name for abscisin II (Dormin). Science 159, 1493 (1968).

5. Allfrey, V. G., Mirsky, A. E., and Stern, H. The chemistry of the cell nucleus.

Advan. Enzymol. 16, 411-500 (1955).

6. Allsopp, A. Experimental and analytical studies of Pteridophytes. XVII. The effect of various physiologically active substances on the development of Mar-silea in sterile culture. Ann. Botany (London) [N.S.] 1 6 , 1 6 5-183 ( 1 9 5 2 ) . 7. Almestrand, A. Studies on the growth of isolated roots of barley and oats.

Physiol. Phntarum 2, 372-387 (1949).

8. Anacker, W. F., and Stoy, V. Proteinchromatographie an Calciumphosphat. I Reinigung von Nitrat-reduktase aus Weizenblattern. Biochem. Z. 3 3 0 , 141-159

(1958).

9. Arber, A. "The Mind and the Eye." Cambridge Univ. Press, London and New York, 1954.

10. Archibald, J. F. Culture in vitro of cambial tissues of cacao. Nature 173, 3 5 1 -352 (1954).

11. Arisz, W. H. Active uptake, vacuole secretion, and plasmatic transport of chloride ions in leaves of Vallisneria spiralis. Acta. Botan. Neerl. 1 , No. 4, 5 0 6 -515 (1953).

12. Armenise, V., and Tulesca, M. R. Istogenesi e caratteri anatomici dei tessuti ricavati da framenti di germoglio di SoL·num tuberosum. L coltivati in vitro.

Nuova giorn. botan. ital. [N.S.] 6 8 , 43-58 ( 1 9 6 1 ) .

13. Arnon, D. I. Ammonium and nitrate nitrogen nutrition of barley at different seasons in relation to hydrogen-ion concentration, manganese, copper and oxy­

gen supply. Soil Set. 4 4 , 91-113 (1937).

14. Arya, Η. C , Hildebrandt, A. C , and Riker, A. J. Growth in tissue culture of singlecell clones from Grapestem and Phylloxeragall. Plant Physiol. 3 7 , 3 8 7 -392 (1962).

15. Asboe-Hansen, G. "Connective Tissue in Health and Disease." Munksgaard, Copenhagen, 1954.

16. Audus, L. J. "Plant Growth Substances," 2nd ed. Leonard Hill, London, 1959.

17. Avers, C. J. An analysis of differences in growth rate of trichoblasts and hair­

less cells in the root epidermis of Phleum pratense. Am. J. Botany 4 4 , 686-690 (1957).

18. Avers, C. J. Histochemical localization of enzyme activity in the root epidermis of Phleum pratense. Am. J. Botany 4 5 , 609-613 (1958).

19. Avers, C. J., and Grimm, R. B. Comparative enzyme differentiation in grass roots. I. Acid phosphatase. Am. J. Botany 4 6 , 190-193 (1959).

20. Avers, C. J., and Grimm, R. B. Comparative enzyme differentiation in grass roots. II. Peroxidase. / . Exptl. Botany 1 0 , 341-344 (1959).

21. Bachelard, Ε. P,, and Stowe, Β. B. Growth in vitro of roots of Acer rubrum, L and Eucalyptus camaldulensis, Debn. Physiol. Plantarum 1 6 , 20^-30 (1963).

22. Baldev, B. In vitro studies of floral induction in stem apices of Cuscuta reflexa Roxb-a short-day plant. Ann. Botany (London) [N.S.] 2 6 , 173-180 (1962).

23. Ball, E . Development in sterile culture of stem tips and subjacent regions of Tropaeolum majus, L and of Lupinus albus, L. Am. J. Botany 3 3 , 301-318 (1946).

24. Ball, E . Differentiation in a callus culture of Sequoia sempervirens. Growth 1 4 , 295-325 (1950).

25. Ball, E . Hydrolysis of sucrose by autoclaving media, a neglected aspect in the technique of culture of plant tissues. Bull. Torrey Botan. Club 8 0 , 409-411 (1953).

26. Ball, E . Studies of the nutrition of the callus culture of Sequoia sempervirens.

Annee biol. [3] 31, 80-105 (1955).

27. Ball, E . Sterile culture of the shoot apex of Lupinus albus. Growth 2 4 , 91-110 (1960).

28. Ball, E . Cell divisions in living shoot apices. Phytomorphology 1 0 , 377-396 (1960).

29. Bardinskaya, M. S. Plant lignification and some questions of cell growth. Dokl.

Akad. Nauk SSSR 136, 1486-1489 (1961) (translated).

30. Barker, W. G. Proliferative capacity of the medullary sheath region in the stem of Tilia americana. Am. J. Botany 4 0 , 773-778 (1953).

31. Barnes, R. L., and Naylor, A. W. Culture of pine root callus and the use of Pinus clausa callus in preliminary metabolic studies. Botany Gaz. 1 2 0 , 63-66

(1958).

32. Barnoud, F. Influence de la coniferine et de la syringine sur les processus de lignification dans les cultures de tissu cambial de deux essences ligneuses.

Compt. rend. 2 4 3 , 1545-1547 (1956).

33. Barnoud, F. Recherches sur le tissu cambial d'arbres cultive in vitro. These Sc., Universite de Grenoble, 1952.

34. Barnoud, F. Lignins and cell wall polysaacharides in plant tissues cultured in vitro. Proc. Intern. Conf. Plant Tissue Cult., Penn. State Univ., 1963 pp.

157-170. McCutchan Publ. Corp., Berkeley, California, 1965.

35. Barrios, S., Raggio, N., and Raggio, M. Effect of temperature on infection of isolated bean roots by Rhizobia. Plant Physiol. 3 8 , 171-174 (1963).

36. Bausa Alcalde, M. Sobre el cultivo in vitro de raices aisladas de Androcymbium gramineum (Cav.) McBride. Farmacognosia (Madrid) 21, 71-96 (1961).

37. Beardsley, R. E. Phage production by crown gall bacteria and the formation of plant tumors. Am. Naturalist 89, 175-176 (1955).

38. Beardsley, R. E. Lysogenicity in Agrobacterium tumefaciens. J. Bacteriol. 80, 180-187 (1960).

39. Beauchesne, G., and Goutarel, R. Activite de certaines purines substitutes sur le developpement des cultures de tissus de moelle de Tabac en presence d'acide indolylacetique. Physiol Plantarum 16, 630^635 (1963).

40. Bennet-Clark, Τ. Α., Younis, A. F., and Esnault, R. Geotropic behaviour of roots. /. Exptl. Botany 10, 69-86 (1959).

41. Bergmann, L. Der Einfluss von Gibberellin auf das Wachstum von Gewebekul-turen des Callus von Daucus carota. Planta 51, 70-73 (1958).

42. Bergmann, L. Der Einfluss von kinetin auf die ligninbildung und Differenzie-rung und Gewebekulturen von Nicotiana tabacum. Planta 62, 221-254 (1964).

43. Bergmann, L. The effect of kinetin in the metabolism of plant tissue cultures.

Proc. Intern. Conf. Plant Tissue Cult., Penn. State Univ., 196S pp. 171-182.

McCutchan Publ. Corp., Berkeley, California, 1965.

44. Bergmann, L. Wachstum griiner Suspensionskulturen von Nicotiana tabacum Var., Samsun mit CO. als Kohlenstoffquelle. Planta 74, 243-249 (1967).

45. Bernheim, F. The aldehyde oxidase of the potato. Biochem. J. 22, 334-352 (1928).

46. Bhide, S. V., and Brachet, J. Study of the uptake of ribonuclease by onion root tip cells. Exptl Cell Res. 21, 303-315 (1960).

47. Bieber, J., and Wartenberg, H. Untersuchungen der Sekundartumoreu bein Pflanzenkrebs an Helianthus annuus. Ber. deut. botan. Ges 70, 205-216 (1957).

48. Biesele, J. J., and Goldhaber, P. A study of cytoplasmic lipid granularity in tissue culture cells. Cancer Res. 15, 767-773 (1955).

49. Bitancourt, A. A. Mechanismo genetico da tumorisagao nos vegetais. Programa da 2a. semana de Genetica p. 7. Puacicoba, Brazil 8-12 Fevereiro, 1949.

50. Bitancourt, A. A. La nature des auxines des tumeurs vegetales. Annee biol. [3]

58, 361-370 (1954).

51. Bitancourt, A. A. Recherches physiologiques sur les auxines. Rev. gen. botan.

62, 498-591 (1955).

52. Black, L. M. Some viruses transmitted by agallian leafhoppers. Proc. Am. Phil.

Soc. 8 8 , 132-144 (1944).

53. Black, L. M. A virus tumor disease of plants. Am. J. Botany 32, 408-415 (1945).

54. Black, L. M. Virus tumors in plants. Growth 10, Suppl., 79-84 (1947).

55. Black, L. M. Viruses and other pathogenic agents in plant tissue cultures.

/. Natl Cancer Inst. 19, 663-685 ( 1 9 5 7 ) .

56. Black, L. M. Physiology of virus-induced tumors in plants. In "Handbuch der Pflanzenphysiologie" (W. Ruhland, ed.), Vol. 15, Part 2, pp. 236-266. Springer, Berlin, 1965.

57. Black, L. M., and Lee, C. L. Interaction of growth-regulating chemicals and tumefacient virus on plant cells. Virology 3, 146-159 (1957).

58. Blakely, L. M., and Steward, F. C. Growth and organized development of cul­

tured cells. VII. Cellular variation. Am. J. Botany 51, 809-820 (1964).

58a. Blakely, L. M., and Steward, F. C. Growth induction in cultures of Happlo-pappus gracilis. I. The behavior of cultured cells. Am. J. Botany 48, 351-358

(1961).

59. Blakeslee, Α. F., and Satina, S. New hybrids from incompatible crosses in Datura through culture of excised embryos on malt media. Science 99, 331-334 (1944).

60. Boll, W. G. Experiments on the application of the technique of excised root culture to the problem of hybrid vigour. Ph.D. thesis, University of Manchester, 1951.

61. Boll, W. G. Studies on the growth of excised roots. V. Growth of excised roots of two inbred lines of tomato and their reciprocal crosses in media supple­

mented with various growth factors. New Phytologist 5 3 , 406-429 (1954).

62. Boll, W. G. Investigations into the function of pyridoxin as a growth factor for excised tomato roots. Plant Physiol 2 9 , 325-331 (1954).

63. Boll, W. G. The role of vitamin Be and the biosynthesis of choline in the ex­

cised tomato root. Arch. Biochem. Biophys. 5 3 , 20-28 (1954).

64. Boll, W. G. Evidence of negative feedback in the control of ethanolamine bio­

synthesis in excised tomato roots. Can. J. Botany 37, 1071-1083 (1959).

65. Boll, W. G., and Street, Η. E. Studies on the growth of excised roots. I. The stimulatory effect of molybdenum and copper on the growth of excised tomato roots. New Phytologist 50, 52-75 (1951).

66. Bonner, D. M., Haagen-Smit, A. J., and Went, F. W. Leaf growth hormones.

I. A bioassay and source for leaf growth factors. Botan. Gaz. 1 0 1 , 128-144 (1939).

67. Bonner, J. Thiamine (Vitamin B i ) and the growth of roots: The relation of chemical structure to physiological activity. Am. J. Botany 2 5 , 543-549 (1938).

68. Bonner, J. On the growth factor requirements of isolated roots. Am. J. Botany 27, 692-701 (1940).

69. Bonner, J. Culture of isolated roots of Acacia Melanoxylon. Bull. Torrey Botan.

Club 6 9 , 130-132 (1942).

70. Bonner, J. Transport of thiamine in the tomato plant. Am. J. Botany 2 9 , 136-142 (1942).

71. Bonner, J. Further experiments on the nutrition of isolated tomato roots.

Bull. Torrey Botan. Club 7 0 , 184-189 ( 1 9 4 3 ) .

72. Bonner, J., and Axtmann, G. The growth of plant embryos in vitro. Prelim­

inary experiments on the role of accessory substances. Proc. Natl. Acad. Sci.

U.S. 2 3 , 453-457 (1937).

73. Bonner, J., and Bonner, H. The Β vitamins as plant hormones. Vitamins Hor­

mones 6, 225-275 (1948).

74. Bonner, J., and Devirian, P. S. Growth factor requirements of four species of isolated roots. Am. J. Botany 2 6 , 661-665 (1939).

75. Bonner, J., and Koepfli, J. B. The inhibition of root growth by auxins. Am. J.

Botany 2 6 , 557-565 (1939).

76. Bonnett, Η. T., and Torrey, J. G. Comparative anatomy of the development of endogenous buds and roots from Convolvulus roots cultured in vitro. Am. J.

Botany 5 0 , 613 (1963).

77. Booth, Α., Moorby, J., Davis, C. R., Jones, H., and Wareing, P. F. Effects of indolyl-3-acetic acid on the movement of nutrients within plants. Nature 1 9 4 , 204-205 (1962).

78. Borner, H. Liberation of organic substances from higher plants and their role in the soil sickness problem. Botan. Rev. 2 6 , 393-424 (1960).

79. Bottomley, W., Keffc-rd, N. P., Zwar, J. Α., and Goldacre, P. L. Kinin activity from plant extracts. I. Biological assay and sources of activity. Australian J.

Biol Set. 16, 395-406 (1963).

80. Bouriquet, R. Recherches sur Tactivite de quelques facteurs de croissance a Tegard des tissus vegetaux cultives in vitro. Rev. cytol. biol vegetales 2 1 , 93-326 (1960).

81. Bouriquet, R. Action de l'indole sur les phenomenes de proliferation et de rhizogenese. Rev. gen. botan. 67, 243-250 (1960).

82. Bouriquet, R. Action de la cynurenine sur le developpement des tissus vege­

taux cultives in vitro. Compt. rend. 253, 2750-2752 (1961).

83. Bouriquet, R. Action de Tacide anthranilique sur la proliferation des tissus vegetaux cultives in vitro. Compt. rend. 254, 543-545 (1962).

84. Bouriquet, R. Action de quelques derives substitues de l'indole sur la prolifera­

tion des tissus vegetaux cultives in vitro. Bull. soc. botan. Nord France 16, 61-67 (1963).

85. Bouriquet, R., and Mentzer, C. Recherches sur Taction comparee de l'acide α-naphtylvivylacetique et de l'acide α-naphtalene-acetique sur les cultures de tissus de Topinambour et de Carotte. Compt. rend. 232, 1574-1576 (1951).

86. Bouriquet, R., and Pacheco, H. Action du chlorhydrate de N-methyl-N-phenyl-glycocolle sur les cultures de tissus de Topinambour et de Carotte. Compt.

rend. 234, 234-237 (1952).

87. Bove, J., Bove, C , and Raveux, R. Extraction, separation et determination de certains composes hydrosolubles (glucides solubles, acides carboxyliques non-volatils de C2ACe et acides amines solubles) dans les plantules et diverses cul­

tures de tissus de Citrus limonum. Rev. gen. botan. 64, 572-592 (1957).

88. Boysen-Jensen, P. "Growth Hormones in Plants" (transl. revised by G. S.

Avery, Jr. and P. K. Burkholder) McGraw-Hill, New York, 1936.

89. Brachet, J. "Biochemical Cytology." Academic Press, New York, 1957.

90. Bradley, Μ. V., and Crane, J. C. Gibberellin-stimulated cambial activity in stems of apricot spur shoots. Science 126, 972-973 (1957).

91. Brakke, Μ. K., and Nickell, L. G. Secretion of α-amylase by Rumex virus tumors in vitro. Properties and assay. Arch. Biochem. Biophys. 32, 28-^11 (1951).

92. Brakke, Μ. K., and Nickell, L. G. Lack of effect of peanut growth-regulators on the action of alpha amylase secreted by virus tumor tissue. Botan. Gaz. 113, 482-484 (1952).

93. Brakke, Μ. K., and Nickell, L. G. Secretion of an enzyme from intact cells of a higher plant tumor. Annee biol [3] 31, 215^226 (1955).

94. Braun, A. C. Recent advances in the physiology of tumor formation in the crown gall disease of plants. Growth 11, 325-337 (1947).

95. Braun, A. C. The physiology of plant tumors. Ann. Rev. Plant Physiol. 5, 133-162 (1954).

96. Braun, A. C. The activation of two growth-substance systems accompanying the conversion of normal to tumor cells in crown gall. Cancer Res. 16, 53-56

(1956).

97. Braun, A. C. A physiological study on the nature of autonomous growth in neoplastic plant cells. Symp. Soc. Exptl. Biol 11, 132-142 (1957).

98. Braun, A. C. Tissue culture as a tool for studying the development of autonomy in neoplastic plant cells. / . Natl. Cancer Inst. 19, 753-759 (1957).

99. Braun, A. C. A physiological basis for autonomous growth of the crown-gall tumor cell. Proc. Natl. Acad. Set. U.S. 44, 344-349 (1958).

100. Braun, Α. C. Tumor inception and development in the crown-gall disease.

Ann. Rev. Plant Physiol 13, 533-558 (1962).

101. Braun, A. C , via Street, Η. E. The nutrition and metabolism of plant tissue and organ cultures. In "Cells and Tissues in Culture" (Ε. N. Willmer, ed.), Vol. 3, pp. 533-629. Academic Press, New York, 1966.

102. Braun, A. C , and Mandle, R. J. Studies on the inactivation of the tumor-inducing principle in crown gall. Growth 12, 255-269 (1948).

103. Braun, A. C , and Morel, G. A comparison of normal, habituated and crown-gall tumor tissue implants in the European Grape. Am. J. Botany 37, 499-501

(1950).

104. Braun, A. C , and White, P. R. Bacteriological sterility of tissues derived from secondary crown-gall tumors. Phytopathology 33, 85-100 (1943).

105. Braun, A. C , and Wood, Η. N. On the activation of certain essential biosyn-thetic systems in cells of Vinca rosea L. Proc. Natl. Acad. Set. U.S. 48, 1776-1782 (1962).

106. Brenchley, W. E. The essential nature of certain minor elements for plant nutrition. II. Botan. Rev. 13, 169-193 (1947).

107. Brian, P. W., Grove, J. F., and MacMillan, J. The gibberellins. Progr. Chem.

Org. Nat. Prod. 18, 350-433 (1960).

108. Brink, R. Α., Cooper, D. C , and Ausherman, L. E. A new hybrid between Hordeum juhatum and Secale cerale reared from an artificially cultivated embryo. /. Heredity 35, 67-75 (1944).

109. Brody, S., and Ballis, M. Ribonuclease and deoxyribonuclease activities during normal and neoplastic growth. Nature 182, 940-941 (1958).

110. Brown, Η. T., and Morris, G. H. Researches on the germination of some of the Gramineae. / . Chem. Soc. 57, 458-528 (1890).

111. Brown, R. The regulation of growth and differentiation in the root. Proc. 4th Intern. Congr. Biochem., Vienna, 1958 Vol. 6, pp. 77-94. Pergamon Press, Oxford, 1959.

112. Brown, R. Cellular differentiation in the root. Symp. Soc. Exptl Biol 17, 1-17 (1963).

113. Brown, R., and Broadbent, D. The development of cells in the growing zones of the root. /. Exptl. Botany 1, 249-263 (1950).

114. Brown, R., and Possingham, J. V. Iron deficiency and the growth of pea roots.

Proc. Roy. Soc. B147, 145-166 (1957).

115. Brown, R., and Rickless, P. A new method for the study of cell division and cell extension with some preliminary observations on the effect of temperature and of nutrients. Proc. Roy. Soc. B136, 110-125 (1949).

116. Brown, R., and Robinson, E. Cellular differentiation and the development of enzyme proteins in plants. In "Biological Specificity and Growth" (E. G.

Butler, ed.), pp. 93-118. Princeton Univ. Press, Princeton, New Jersey, 1955.

117. Brown, R., and Wightman, F. The influence of mature tissue in the division of the meristem of the root. /. Exptl Botany 3, 253-263 (1952).

118. Bruce, Μ. I., Zwar, J. Α., and Kefford, N. P. Chemical structure and plant kinin activity—the activity of urea and thiourea derivatives. Life Set. 4, 4 6 1 -466 (1965).

119. Bryan, W. H., and Newcomb, Ε. H. Stimulation of pectin methylesterase activity of cultured tobacco pith by indoleacetic acid. Physiol Plantarum 7, 290-297 (1954).

120. Bunting, A. H., and Horrocks, J. An improvement in the Raggio technique

for obtaining nodules on excised roots of Phaseolus vulgaris, L in culture.

Ann. Botany (London) [N.S.] 28, 229-238 (1964).

121. Burkholder, P. R., and Nickell, L. G. Atypical growth in plants. I. Cultivation of virus tumors of Rumex on nutrient agar. Botan. Gaz. 110, 426-437 (1949).

122. Burkholder, P. R., and Snow, A. G., Jr. Thiamine in some common American trees. Bull. Torrey Botan. Club 69, 421-428 ( 1 9 4 2 ) .

123. Burnett, D., Audus, L. J., and Zinsmeister, H. D. Growth substances in the roots of Vicia faba. II. Phytochemistry 4, 891-904 (1965).

124. Burstrom, H. The influence of heteroauxins on cell growth and root develop­

ment. Lanthruks-Hogskol. Ann. 10, 209-240 (1942).

125. Burstrom, H. Observations on the influence of galactose on wheat roots.

Physiol. Plantarum 1, 209-215 (1948).

126. Burstrom, H. Studies on growth and metabolism of roots. IX. The influence of auxin and coumarin derivates in the cell wall. Physiol. Plantarum 7, 548-559

(1954).

127. Burstrom, H. Zur Wukungsweise chemischer Regulatoren des Wurzelwach-stums. Botan. Notiser 108, 400-416 (1955).

128. Burstrom, H. Root surface development, sucrose inversion and free space.

Physiol. Plantarum 10, 741-751 (1957).

129. Butcher, D. N. The presence of gibberellins in excised tomato roots. / . Exptl.

Botany 14, 272-280 (1963).

130. Butcher, D. N., and Street, Η. E. The effects of gibberellins on the growth of excised tomato roots. /. Exptl. Botany 11, 206-216 (1960).

131. Butcher, D. N., and Street, Η. E. Excised root culture. Botan. Rev. 30, 5 1 3 -586 (1964).

132. Butenko, R. G. Application of a method for cultivation of isolated terminal buds to study the process of growth and organogenesis of plants. Fiziol.

Rastenil, Akad. Nauk SSSR 7, 715-723 (1960); Plant Physiol. (USSR) (Eng­

lish Transl.) 7, 590-595 (1961).

133. Buvat, R. Phenomenes de dedifferenciation dans les tumeurs corticales pro­

duces chez la tomate. Compt. rend. 216, 127-129 (1943).

134. Buvat, R. Recherches sur la dedifferenciation des cellules vegetales. II. Cul­

134. Buvat, R. Recherches sur la dedifferenciation des cellules vegetales. II. Cul­