• Nem Talált Eredményt

Adsorption

5.10 Conclusions

The success of biorefineries will be a strong function of how the industry manages its costs on a large scale.

The separation and purification processes in the biorefinery currently account for much of the product and operating cost. It is critical that technical innovations in these processes are developed and implemented for the broader sustainable green industries to be a success.

This chapter has presented the role of adsorption technology as a candidate for solving some of these challenges. The state of this technology was described by presenting the underpinning science of adsorp-tion and its applicaadsorp-tion in developing engineering soluadsorp-tions. This was then illustrated with a detailed case study of the recovery of 1-butanol from an acetone-butanol-ethanol (ABE) fermentation broth using temperature-swing adsorption (TSA) technology. Academic innovation and advances in adsorption are ongoing but the challenge for adsorption in biorefineries still remains to make the process commercially viable. This challenge will be addressed by future research efforts and some of the potential options have been highlighted in the chapter. This chapter should allow readers to make a more knowledgeable decision on the applicability of adsorption in their specific bioseparation problems.

Acknowledgement

I would like to thank Dr. Jose Bravo, the chief scientist, Royal Dutch Shell, for his guidance and reviewing my work. I would like to thank Dr. Girish Rao, for his help in compiling this chapter. I am most grateful to my ever respectful well wisher Prof. P.V. Krishnan who taught me real character and how to use our intelligence for everyone’s real welfare. Finally I would like to thank my wife, Malliga, for her support throughout this project.

References

1. A. Dabrowski, Adsorption-from theory to practice,Adv. Colloid Interface Sci., 93, 135–224 (2001).

2. D.W. Breck, W.G. Eversole, R.M. Milton, T.B. Read, and T.L. Thomas, Crystalline zeolites. I. The properties of a new synthetic zeolite Type A,J. Am. Chem. Soc., 78, 5963–5971 (1956).

3. R.T. Yang,Adsorbents: Fundamentals and Applications, John Wiley & Sons, Inc., New York, 2003.

4. D.M. Ruthven,Principles of Adsorption & Adsorption Processes, John Wiley & Sons, Inc., New York, 1984.

5. T.J. Levario, M. Dai, W. Yuan, B.D. Vogt, and D.R. Nielsen, Rapid adsorption of alcohol biofuels by high surface area mesoporous carbons,Microporous Mesoporous Matter, 148, 107–114 (2012).

6. D.R. Nielsen, G.S. Amarasiriwardena and K.L.J. Prather, Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR),Bioresour. Technol., 101, 2762–2769 (2010).

7. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum,J. Am. Chem. Soc., 40, 1361–1403 (1918).

8. V. Saravanan, D.A. Waijers, M. Ziari and M.A. Noordermeer, Recovery of 1-butanol from aqueous solutions using zeolite ZSM5 with a high Si/Al ratio; suitability of a column process for industrial applications,Biochem.

Eng. J., 49, 33–39 (2010).

9. C. Efe, L.A.M. van der Wielen, and A.J.J. Straathof, High silica zeolites as an alternative to weak base adsorbents in succinic acid recovery,Ind. Eng. Chem. Res., 49, 1837–1843 (2010).

10. T.C. Bowen and L.M. Vane, Ethanol, acetic acid, and water adsorption from binary and ternary liquid mixtures on high-silica zeolites,Langmuir, 22, 3721–3727 (2006).

11. S. Brunauer, P.H. Emmett and E. Teller, Adsorption of gases in multimolecular layers,J. Am. Chem. Soc., 60, 309–319 (1938).

12. F. Gritti and G. Guiochon, New thermodynamically consistent competitive adsorption isotherm in RPLC.J. Col-loid Interface Sci., 264, 43–59 (2003).

13. A.L. Myers and J.M. Prausnitz, Thermodynamics of mixed-gas adsorption,AIChE J., 11, 121–127 (1965).

14. C.J. Radke and J.M. Prausnitz, Thermodynamics of multisolute adsorption from dilute liquid solutions,AIChE J., 18, 761–768 (1972).

15. S. Brunauer, L.S. Deming, W.E. Deming and E.J. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 62, 1723–1732 (1940).

16. K.S.W. Sing, Reporting physisorption data for gas/solid system,Pure and Appl. Chem., 54, 2201–2218 (1982).

17. D.M. Razmus, and C.K. Hall, Prediction of gas adsorption in 5a zeolites using Monte Carlo simulation.AIChE J., 37, 769–779 (1991).

18. J.P. Olivier, Modeling physical adsorption on porous and nonporous solids using density functional theory, J. Porous Mater., 2, 9–17 (1995).

19. P.I. Ravikovitch, S.C.O. Domhnaill, A.V. Neimark, F. Schuth, and K.K. Unger, Capillary hysteresis in nanopores: theoretical and experimental studies of nitrogen adsorption on MCM-41,Langmuir, 11, 4765–4772 (1995).

20. M.D. Donohue and G.L. Aranovich, Adsorption hysteresis in porous solids, J. Colloid Interface Sci., 205, 121–130 (1998).

21. S. Sircar, R. Mohr, C. Ristic, and M.B. Rao, Isosteric Heat of Adsorption: Theory and Experiment,J. Phys.

Chem. B, 103, 6539–6546 (1999).

22. R. K. Iler,The Chemistry of Silica. John Wiley & Sons, Inc., New York, 1979.

23. D.W. Breck,Zeolite Molecular Sieves, John Wiley & Sons, Inc., New York, New York, 1974.

24. R. Szostak,Molecular Sieves, 2nd edn., Blackie Academic & Professional, New York, NY, 1998.

25. Mario L. Occelli and Harry E. Robson,Zeolite Synthesis, ACS symposium series, American Chemical Society, 1989.

26. M.E. Davis, R.F. Lobo, Zeolite and molecular sieve synthesis,Chem. Mater., 4, 756–768 (1992).

27. R. Chal, C. G´erardin, M. Bulut, and S. van Donk, Overview and industrial assessment of synthesis strategies towards zeolites with mesopores,Chem. Cat. Chem., 3, 67–81 (2011).

28. X. Li, L. Candela, Y. Han, and A.P. Kahn, Inventors; ARCO Chemical Technology, L.P., Assignee. Purification of tertiary butyl alcohol. US Patent 6770790, 2004 Aug 03.

29. R.L. Albright, Porous polymers as an anchor for catalysis,React. Poly., 4, 155–174 (1986).

30. L. Rehmann, B. Sun, and A.J. Daugulis, Polymer selection for biphenyl degradation in a soli-liquid two-phase partitioning bioreactor,Biotechnol. Progr., 23, 814–819 (2007).

31. H. Chang, X.G. Yuan, and H.T.A.W. Zeng, Experimental investigation and modeling of adsorption of water and ethanol on cornmeal in an ethanol–water binary vapor system,Chem. Eng. Technol., 29, 454–461 (2006).

32. S.K. Rakshit, P. Ghosh, and V.S. Bisaria, Ethanol separation by selective adsorption of water, Bioprocess Biosyst. Eng., 8, 279–282 (1993).

33. M.R. Ladisch and K. Dyck, Dehydration of ethanol: new approach gives positive energy balance,Science, 205, 898–900 (1979).

34. J.P. Crawshaw and J.H. Hills, Sorption of ethanol and water by starchy materials, Ind. Eng. Chem. Res., 29, 307–309 (1990).

35. H.P.C.E. Kuipers, M.S. Rigutto, and H.A. Stil, Inventors; Shell Internationale Research Maatschappij B.V., Assignee. Process for producing alcohol. WIPO Patent Application WO/2010/012660. 2010 Feb 04.

36. K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, and O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186–10191 (2006).

37. C.L. Cavalcante JR, Industrial adsorption separation processes: fundamentals, modelling and applications,Lat.

Am. Appl. Res., 30, 357–364 (2000).

38. R.W. Neuzil, Inventor; UOP Inc, Assignee. Process for separating para-xylene. US Patent 3997620, 1976 Dec. 14.

39. J. Johnson, Sorbex: Continuing innovation in liquid phase adsorption, inAdsorption: Science and Technology, A.E. Rodrigues, M.D. LeVan, and D. E. Tondeur (eds.), NATO ASI Series, Kluwer Academic Publishers, Netherlands, 1989.

40. C.W. Chi and W.P. Cummings, Adsorptive separation processes: gases, inKirk Othmer Encyclopedia of Chem-ical Technology, 3rd edn., Vol. I. Wiley Interscience, New York, 1978.

41. D. Basmadjian,The Little Adsorption Book, CRC Press, Boca Raton, FL, 1997.

42. C.W. Skarstorm, Inventor; Exxon Research Engineering Co, Assignee. Method and apparatus for fractionating gaseous mixtures by adsorption. US Patent 2944627, 1960 Dec. 07.

43. C.W. Skarstorm, Heatless fractionation of gases over solid sorbents, in Recent Developments in Separation Science, (N.N.Li, ed), Vol. 2. CRC Press, Cleveland, 1972.

44. P.G.DE. Montgareuil and D. Daniel, Inventors; Air, Liquide, Assignee. Process for separating a binary gaseous mixture by adsorption. US Patent 3155468, 1964 Nov. 03.

45. M. Simo, S. Sivashanmugam, C.J. Brown and V. Hlavacek, Adsorption/desorption of water and ethanol on 3A zeolite in near-adiabatic fixed bed,Ind. Eng. Chem. Res., 48, 9247–9260 (2009).

46. J.S. Jeong, B.U. Jang, Y.R. Kim, B.W. Chung, and G.W. Choi, Production of dehydrated fuel ethanol by pressure swing adsorption process in the pilot plant,Korean J. Chem. Eng., 26, 1308–1312 (2009).

47. A.K. Frolkova and V.M. Raeva, Bioethanol dehydration: state of the art,Theor. Found. Chem. Eng., 44, 545–556 (2010).

48. C. Boonfung and P. Rattanaphanee, Pressure swing adsorption with cassava adsorbent for dehydration of ethanol vapor,Int. J. Chem. Biol. Eng., 3, 206–209 (2010).

49. A.M. Ribeiro, J.C. Santos, and A.E. Rodrigues, Pressure swing adsorption for CO2 capture in Fischer–Tropsch fuels production from biomass,Adsorption., DOI 10.1007/s10450-010-9280-9288 (2010).

50. G. Klein, Column design for sorption processes,in Mass Transfer and Kinetics of Ion Exchange, L. Liberti and F.G. Helfferich (eds.), 226–227, Martinus Nijhoff, Boston, 1982.

51. T.J. Tranter, R.S. Herbst and T.A. Todd, Determination of a solid phase mass transfer coefficient for modeling an adsorption bed system using ammonium molybdophosphate –polyacrylonitrile (AMP-PAN) as a sorbent for the removal of 137Cs from acidic nuclear waste solutions,Adsorption., 8, 291–299 (2002).

52. S.F. Chung and C.Y. Wen, Longitudinal dispersion of liquid flowing through fixed and fluidized beds,AIChE. J., 14, 857–866 (1968).

53. S.D. Conte, C. de Boor,Elementary Numerical Analysis, McGraw-Hill, New York, 1972.

54. E. Ximenesa, Y. Kima, N. Mosiera, B. Diend, and M. Ladisch, Deactivation of cellulases by phenols,Enzyme Microb. Technol., 48, 54–60 (2011).

55. J.P. Delgenes, R. Moletta, and J.M. Navarro, Effects of lignocellulose degradation products on ethanol fermen-tations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae,Enzyme Microb. Technol., 19, 220–225 (1996).

56. G.D. Gupta and A.M.D.K. Agarwal, Inhalation toxicity of furfural vapors: An assessment of biochemical response in rat lungs,J. Appl. Toxicol., 11, 343–347 (1991).

57. S. Larsson, A. Reimann, N.O. Nilvebrant, and L.J. J¨onsson, Comparison of different methods for the detoxifi-cation of lignocellulose hydrolyzates of spruce,Appl. Biochem. Biotechnol.,77, 91–103 (1999).

58. J.H.T. Luong, Kinetics of ethanol inhibition in alcohol fermentation,Biotechnol. Bioeng., 27, 280–285 (1985).

59. D.T. Jones and D.R. Woods, Acetone-butanol fermentation revisited,Microbiol. Rev., 50, 484–524 (1986).

60. H.B. Klinke, A.B. Thomsen, and B.K. Ahring, Inhibition of ethanol producing yeast and bacteria by degradation products produced during pretreatment of biomass,Appl. Microbiol. Biotechnol., 66, 10–26 (2004).

61. E. Palmqvist and B. Hahn-H¨agerdal, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition,Biores. Technol., 74, 25–33 (2000).

62. D. Nabarlatz, X. Farriol, and D. Montane, Kinetic modeling of the autohydrolysis of lignocellulosic biomass for the production of hemicellulose-derived oligosaccharides,Ind. Eng. Chem., 43, 4124–4131 (2004).

63. E.M. Lohmeirer-Vogel, C.R. Sopher, and H. Lee, Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts,J. Ind. Microbiol. Biotechnol., 20, 75–81 (1998).

64. R.E. Berson, J.S. Young, S.N. Kamer, and T.R. Hanley, Detoxification of actual pretreated corn stover hydrolysate using activated carbon powder,Appl. Biochem. Biotechnol., 121–124, 923–934 (2005).

65. H. Ren, H.Z. Huang, and J. Zheng, Inventors; Novozymes A/S and Cofco LTD, Assignee. Detoxifying and recylcing of washing solution used in pretreatment of lignocellulose-containing materials. US Patent Application 20090056889, 2009 Mar. 05.

66. S.R. Wickramasinghe and D.L. Grzenia. Adsorptive membranes and resins for acetic acid removal from biomass hydrolyzates,Desalination, 234, 144–151 (2008).

67. P.A. Belter, E.L. Cussler and W.S. Hu,Bioseparations Downstream Processing for Biotechnology, John Wiley

& Sons, Inc., New York, 1988.

68. W.S.W. Ho and K.K. Sirkar,Membrane handbook, Van Nostrand Reinhold, New York, 1992.

69. W.K. Wang,Membrane separations in biotechnology, Marcel Dekker Inc, New York, 2001.

70. J.M. Lee, R.A. Venditti, H. Jameel, and W.R. Kenealy, Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacteriumThermoanaerobacterium saccha-rolyticum,Biomass and Bioenergy, 35, 626–636 (2010).

71. G.B.M. Carvalho, S.I. Mussatto, E.J. Candido, and J.B. Almeida e Silva, Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes,J. Chem. Technol.

Biotechnol., 81, 152–157 (2006).

72. R. Ranjan, S. Thust, C.E. Gounaris, M. Woo, C.A. Floudas, M.V. Keitz, K.J. Valentas, J. Wei, and M. Tsapatsis, Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery,Microporous Mesoporous Mater., 122, 143–148 (2009).

73. Y. Roman-Leshkov, J.N. Chheda, and J.A. Dumesic, Phase modifiers promote efficient production of hydrox-ymethylfurfural from fructose,Science, 312, 1933–1937 (2006).

74. J. Chheda, Y. Roman-Leshkov, and J. Dumesic, Production of 5-hydroxymethylfurfural and furfural by dehy-dration of biomass-derived mono- and poly-saccharides,Green Chem., 9, 342–350 (2007).

75. C.E. Gounaris, C.A. Floudas, and J. Wei, Rational design of shape selective separation and catalysis—I: Concepts and analysis,Chem. Eng. Sci., 61, 7933–7948 (2006).

76. I.S. Maddox, The acetone-1-butanol-ethanol fermentation: recent progress in technology, Biotechnol. Genet.

Eng. Rev., 7, 189–220 (1989).

77. W.J. Groot, R.G.J.M. van der Lans and K.Ch.A.M. Luyben, Technologies for 1-butanol recovery integrated with fermentations,Process Biochem., 27, 61–75 (1992).

78. N. Qureshi, I.S. Maddox, and A. Friedl, Technologies for 1-butanol recovery integrated with fermentations, Biotechnol. Prog., 8, 382–390 (1992).

79. L.M. Vane, A review of pervaporation for product recovery from biomass fermentation processes, Biofuels, Bioprod. Biorefin., 2, 553–588 (2008).

80. T.C. Ezeji, N. Qureshi and H.P. Blaschek, Production of acetone 1-butanol (AB) from liquefied corn storch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping,J. Ind.

Microbiol. Biotechnol., 34, 771–777 (2007).

81. K. Schugerl, Integrated processing for biotechnology products,Biotechnol. Adv., 18, 581–599 (2000).

82. A.G. Fadeev and M.M. Meagher, Opportunities for ionic liquids in recovery of biofuels, Chem. Comm., 3, 295–296 (2001).

83. A. Oudshoorn, L.A.M. van der Wielen, and A.J.J. Straathof, assessment of options for selective 1-butanol recovery from aqueous solution,Ind. Eng. Chem. Res., 48, 7325–7336 (2009).

84. N. Qureshi, S. Hughes, I.S. Maddox, and M.A. Cotta, Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption,Bioprocess Biosyst. Eng., 27, 215–222 (2005).

85. P. Shao and A. Kumar, Separation of 1-butanol/2,3-butanediol using ZSM-5 zeolite-filled polydimethylsiloxane membranes,J. Membr. Sci., 339, 143–150 (2009).

86. N.B. Milestone and D.M. Bibby, Concentration of alcohols by adsorption on silicalite, J. Chem. Technol.

Biotechnol., 31, 732–736 (1981).

87. C. Falamaki, M. Sohrabi, G. Talebi, The kinetics and equilibrium of ethanol adsorption from aqueous phase using calcined (Na-1,6-hexanediol)-ZSM-5,Chem. Eng. Technol., 24, 501–506 (2001).

88. M.T. Holtzapple and R.F. Brown, Conceptual design for a process to recover volatile solutes from aqueous solutions using silicalite,Sep. Technol., 4, 213–229 (1994).

89. D.R. Nielsen and K.L.J. Prather, In situ product recovery of n-butanol using polymeric resins, Biotechnol.

Bioeng., 102, 811–821 (2009).

90. F.A. Carey and R.J. Sundberg,Advanced Organic Chemistry, Kluwer Academic/Plenum Publishers, New York, 2000.

91. N. Fontanals, R.M. Marce, and F. Borrull, New hydrophilic materials for solid-phase extraction,Trac-Trend.

Anal. Chem., 24, 394–406 (2005).

92. H.-J. Huang, S. Ramaswamy, U.W. Tschirner, and B.V. Ramarao, A review of separation technologies in current and future biorefineries,Sep. Purif. Technol., 62, 1–21 (2008).

93. S. Kumar, N. Singh, and R. Prasad, Anhydrous ethanol: A renewable source of energy,Renewable Sustainable Energy Rev., 14, 1830–1844 (2010).

94. A.A. Hassaballah and J.H. Hills, Drying of ethanol vapors by adsorption on corn meal,Biotechnol. Bioeng., 35, 598–608 (1990).

95. Y. Wang, C. Gong, J. Sun, H. Gao, S. Zheng, and S. Xu, Separation of ethanol/water azeotrope using compound starch-based adsorbents,Bioresour. Technol., 101, 6170–6176 (2010).

96. X. Hu and W. Xie, Fixed-Bed adsorption and fluidized-bed regeneration for breaking the azeotrope of ethanol and water,Sep. Sci. Technol., 36, 125–136 (2001).

97. S. Al-Asheh, F. Ganat, and N. Al-Lagtah, Separation of ethanol–water mixtures using molecular sieves and biobased adsorbents,Chem. Eng. Res. Des., 82, 855–864 (2004).

98. K.E. Beery and M.R. Ladisch, Adsorption of water from liquid-phase ethanol–water mixtures at room temper-ature using starch-based adsorbents,Ind. Eng. Chem. Res., 40, 2112–2115 (2001).

99. M. Kondo, M. Komori, H. Kita, and K. Okamoto, Tubular type pervaporation module with zeolite NaA mem-brane,J. Membr. Sci., 133, 133–141 (1997).

100. J.P. Crawshaw and J.H. Hills, Sorption of ethanol and water by starchy materials,Ind. Eng. Chem. Res., 29, 307–309 (1990).

101. M.J. Carmo and J.C. Gubulin, Ethanol–water adsorption on commercial 3A zeolites: kinetic and thermodynamic data,Braz. J. Chem. Eng., 14, 1–10 (1997).

102. M.R. Ladisch and G.T. Tsao, Inventors; Purdue Research Foundation, Assignee. Vapor phase dehydration of aqueous alcohol mixtures. US Patent 4345973, 1982 Aug. 08.

103. H. Chang, X-G. Yuan, H. Tian, and A-W. Zeng, Experimental study on the adsorption of water and ethanol by cornmeal for ethanol dehydration,Ind. Eng. Chem. Res., 45, 3916–3921 (2006).

104. S.K. Rakshit, P. Ghosh and V.S. Bisaria, Ethanol separation by selective adsorption of water,Bioprocess Biosyst.

Eng., 8, 279–282 (1993).

105. T.J. Benson and C.E. George, Cellulose based adsorbent materials for the dehydration of ethanol using thermal swing adsorption,Chem. Mater. Sci., 11, 697–701 (2005).

106. J.A. Quintero and C.A. Cardona, Ethanol dehydration by adsorption with starchy and cellulosic materials,Ind.

Eng. Chem. Res., 48, 6783–6788 (2009).

107. Y. Wang, C. Gong, J. Sun, H. Gao, S. Zheng, and S. Xu, Separation of ethanol/water azeotrope using compound starch-based adsorbents,Bioresour. Technol., 101, 6170–6176 (2010).

108. K.E. Beery and M.R. Ladisch, Chemistry and properties of starch based desiccants,Enzyme Microb. Technol., 28, 573–581 (2001).

109. B. Bertram, C. Abrams and B.S. Cooke, Inventors; The Dallas Group of America, Inc., Assignee. Purification of biodiesel with adsorbent materials. US Patent 7635398 B2, 2009 Dec. 22.

110. D.L. Manuale, V.M. Mazzieri, G. Torres, C.R. Vera, and J.C. Yori, Non-catalytic biodiesel process with adsorption-based refining,Fuel, doi:10.1016/j.fuel.2010.10.047 (2010).

111. V.M. Mazzieri, C.R. Vera and J.C. Yori, Adsorptive properties of silica gel for biodiesel refining,Energy Fuels, 22, 4281–4284 (2008).

112. J.C. Yori, S.A. D’Ippolito, C.L. Pieck, and C.R. Vera, Deglycerolization of biodiesel streams by adsorption over silica beds,Energy Fuels, 21, 347–353 (2007).

113. S. Sircar, Basic research needs for design of adsorptive gas separation processes, Ind. Eng. Chem. Res., 45, 5435–5448 (2006).

114. L. Valenzano, B. Civalleri, S. Chavan, G. T. Palomino, C.O. Are´an and S. Bordiga, Computational and exper-imental studies on the adsorption of CO, N2, and CO2 on Mg-MOF-74,J. Phys. Chem. C, 114, 11185–1119 (2010).

6