• Nem Talált Eredményt

In conclusion, I have studied SiOx based resistive switching memories, whose active regions were conned into few nanometer wide graphene gaps. Since the formation of the switching region is electric eld driven, it can be anticipated that the intrinsic resistive switching in the SiOx layer also takes place within a similarly short length scale. The small dimensions of the switching region was conrmed by the low electroforming voltages. The devices still show fast switching, high endurance, high OFF/ON ratio and multilevel programming. The resistive switching capability of the SiOx memristive system has not been demonstrated yet in the sub-10nm size.

The time resolved measurement revealed that the device operation is governed by multiple physical time scales. The resistance transitions do not happen right after the bias voltage reaches the set or reset region. The device stays in the initial state for a certain period of time (τset, τreset) and after that the resistance changes abruptly. The timescale of the transitions between the two resistance states are below our experimental resolution (50ns). The modest variation in the set/reset voltage induces exponential change in the set/reset time, referring to voltage driven mechanisms.

Besides the above mentioned switching times, another fundamental time scale, the dead time was also identied. After switching OFF the device, it can not be set to ON state again as long as the dead time has not passed. The detailed study of dead time revealed that unlike the set and reset time, its length does not depend on the driving conditions. However, increasing the temperature by 50K the dead time decreased almost two order of magnitudes. These results suggest that instead of voltage driven mechanism, thermally assisted structural rearrangements may take place during the dead time. This phenomenon has fundamental technological impact since it combines the positive properties of unipolar and bipolar switches, using unipolar voltage pulses both resistance states can be achieved at zero bias.

Summary 7

The major conclusions of this Ph.D. work are summarized in the following thesis statements.

1. I developed a novel measurement setup for the controlled electrical thinning and breakdown of nanofabricated junctions. This included the development of a new high vacuum sample holder, the assembly of an optimized measurement setup and the development of a versatile measurement program. This measure-ment system enables us to reduce the active region of nanofabricated devices well below the resolution of present lithographic techniques. The specialty of this system is the pulsed breakdown technique, which allows us to expose the device to much shorter voltage intervals than in real-time feedback-controlled systems. Applying this setup I could establish a few nanometers wide gaps in nanofabricated Ag wires. I have extended this method on single-layer chemi-cal vapor deposited graphene nanostripes achieving nanogaps with measurable tunnel current with a yield over (≈ 98 %). The wafer scale growth of CVD graphene enabled the simultaneous fabrication of a large ensemble of devices on a single chip. The statistical analysis of hundreds of devices reveals typical gap sizes between 0.3nm and 2.2nm [13].

2. I studied the resistive switching phenomena of nanofabricated Ag-Ag2S-Ag memristors [2]. I have demonstrated that the resistive switching can be es-tablished using a simplied sample design lacking the conventionally employed inert electrode. In this design a simple lithographic step is sucient to fab-ricate the base structure, which is an asymmetrically shaped Ag nanowire.

I have established the ultrasmall resistive switching region by the controlled

electromigration of the Ag nanowires, and the in-situ sulfurization of the such created nanogaps. I have demonstrated that these devices exhibit the con-ventional switching characteristics of nanometer-scale Ag2S memristors, such that the direction of the switching is governed by the inhomogeneity of the local electric eld due to the geometrical asymmetry of the device. In simi-lar devices I have also demonstrated stable room temperature atomic switching phenomenon, indicating that the surrounding Ag2S matrix stabilizes the atomic switching process.

3. I analyzed the inuence of the environmental conditions on the electrical break-down of graphene nanostripes [3]. The systematic study of the breakbreak-down power as the function of pulse length and pressure revealed two fundamentally dierent breakdown processes. I have found, that in high vacuum a signi-cantly higher power was needed to achieve the breakdown than in atmospheric pressure air. Using a thermal model I rescaled the breakdown power to the maximal local temperature of the graphene stripe. Assuming thermally acti-vated processes I estimated the activation energies of the physical mechanisms involved in the breakdown. The signicantly dierent activation energies are consistent with oxidation in air and sublimation in high vacuum. Using two dierent substrates (SiO2 and Si3N4), I found that the oxygen content of the SiO2 substrate does not play role in the breakdown process.

4. I investigated the resistive switching phenomena of graphene-SiOx-graphene devices [4]. The intrinsic resistive switching in the SiOx layer was conned under a few nanometers wide graphene gap, resulting in a yet unexplored, sub-10nm size-scale switching region of SiOx. My detailed electrical charac-terizations revealed that these ultrasmall devices exhibit a signicantly smaller electroforming voltage than conventional SiOx switches, such that the further benecial properties of larger devices, like fast switching speed, excellent en-durance and data retention are maintained. I have performed detailed time resolved measurements to identify the physical timescales governing the device operation. I have demonstrated, that the switching is not a gradual transition:

the device keeps its initial state for a certain period of time after the voltage is applied, and nally an abrupt resistance change is observed, which is faster than the ≈ 50ns temporal resolution of the measurements. I demonstrated that a modest, linear decrease of the set/reset voltage induces an exponential slowdown of the set/reset operation. I have also identied another fundamen-tal time-scale, the dead time. I found, that after switching OFF the device, it cannot be set to the ON state again as long as the dead time has not passed,

even if the driving signal is sucient for a set transition. The detailed study of the dead time revealed that its length does not depend on the driving con-ditions, however it could be decreased signicantly by a modest increase of temperature, indicating a thermally activated rearrangement of the switching region.

Acknowledgments 8

Throughout the years of my PhD work I have received support from many people to whom I would like to express my gratitude. First of all, I am very grateful to my supervisor András Halbritter for giving me the opportunity to do my PhD in his group and for coordinating my work. The discussions and his ideas were always inspiring. A special thanks goes to Péter Makk for helping me with various problems and for the many discussions and advice since my BSc studies.

I also express my gratitude to Michel Calame for inviting me to his research group and for the fruitful collaboration and discussions. I acknowledge Cornelia Nef for her help during my stay in Basel and our cowork for developing the high yield graphene nanogap fabrication technique. I thank Maria El Abbassi for sharing our research experiences and for our work in respect of graphene breakdown mechanisms. I also thank them for fabricating and sending me the graphene samples.

I am also grateful to Miklós Csontos who gave a lot of advice and helped in the interpretation and discussion of the results. I thanks Mészáros Gábor for building me the multi-channel current amplier. Further I want to express my gratitude to the people with whom I worked together in our group, Ágnes Gubicza, Botond Sánta, András Magyarkuti and special thanks for Zoltán Balogh with whom I started my work together and we helped each other a lot.

I am very grateful to János Volk for providing me the possibility to use the nanofabrication facilities of MFA for the careful reading of my thesis. I also thank István Lukács for his invaluable help and advice in device fabrication.

I am also pleased to thank my friends and colleagues: Szabolcs Csonka, Zoltán Scherübl, Ádám Butykai, Dávid Szaller, Gerg® Fülöp and Bálint Fülöp. They all contributed to lively working days and many discussions about physics and other

topics.

I am also grateful to the support from the mechanical workshop. Béla Horváth, Sándor Bacsa and Krisztián Németh for manufacturing the sample holders and for the lots of ideas. Not to forget Edit Honti, Tímea Varga and Edina Beck from the secretary, who make all administrative matters run smoothly.

Finally, I thank my family for all the support they provided me over all the years of my studies.

Publications related to the thesis statements

[1] C. Nef, L. Pósa, P. Makk, W. Fu, A. Halbritter, C. Schönenberger, and M.

Calame, High-yield fabrication of nm-size gaps in monolayer CVD graphene;

Nanoscale, 6, 72497254 (2014)

[2] A. Gubicza, D. Manrique, L. Pósa, C. Lambert, G. Mihály, M. Csontos, and A.

Halbritter, Asymmetry-induced resistive switching in Ag-Ag2S-Ag memristors enabling a simplied atomic-scale memory design; Scientic Reports, 6, (2016) [3] M. El Abbassi1, L. Pósa1, P. Makk, C. Nef, K. Thodkar, A. Halbritter, and M. Calame, From electroburning to sublimation: substrate and environmental eects in the electrical breakdown process of monolayer graphene; Nanoscale, 9, 1731217317 (2017)

[4] L. Pósa, M. El Abbassi, P. Makk, B. Sánta, C. Nef, M. Csontos, M. Calame, and A. Halbritter, Multiple Physical Time Scales and Dead Time Rule in Few-Nanometers Sized GrapheneSiOx-Graphene Memristors; Nano Letters, 17, 67836789 (2017)

1

References

[5] L. Chua, Memristor-The missing circuit element; IEEE Transactions on Cir-cuit Theory, 18, 507519 (1971)

[6] A. Sawa, Resistive switching in transition metal oxides; Materials Today, 11, 28 36 (2008)

[7] L. O. Chua and S. M. Kang, Memristive devices and systems; Proceedings of the IEEE, 64, 209223 (1976)

[8] L. Chua, Resistance switching memories are memristors; Applied Physics A, 102, 765783 (2011)

[9] S. Vongehr and X. Meng, The Missing Memristor has Not been Found; Sci-entic Reports, 5, 11657 (2015)

[10] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found; Nature, 453, 80 (2008)

[11] T. W. Hickmott, Low-Frequency Negative Resistance in Thin Anodic Oxide Films; Journal of Applied Physics, 33, 26692682 (1962)

[12] J. G. Simmons and R. R. Verderber, New conduction and reversible mem-ory phenomena in thin insulating lms; Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 301, 77102 (1967)

[13] J. Gibbons and W. Beadle, Switching properties of thin NiO lms; Solid-State Electronics, 7, 785 790 (1964)

[14] T. Hickmott and W. Hiatt, Electrode eects and bistable switching of amor-phous Nb2O5 diodes; Solid-State Electronics, 13, 1033 1047 (1970)

[15] G Dearnaley, A. M. Stoneham, and D. V. Morgan, Electrical phenomena in amorphous oxide lms; Reports on Progress in Physics, 33, 1129 (1970) [16] W. W. Zhuang et al. Novel colossal magnetoresistive thin lm nonvolatile

re-sistance random access memory (RRAM). In: Digest. International Electron Devices Meeting, 2002, 193196

[17] I. G. Baek et al. Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: IEDM Tech-nical Digest. IEEE International Electron Devices Meeting, 2004. 2004, 587 590

[18] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, MetalOxide RRAM; Proceedings of the IEEE, 100, 19511970 (2012)

[19] J. Yao, L. Zhong, D. Natelson, and J. M. Tour, In situ imaging of the con-ducting lament in a silicon oxide resistive switch; Scientic Reports, 2, 242 (2012)

[20] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, Observation of conducting lament growth in nanoscale resistive memories; Nature Commu-nications, 3, 732 (2012)

[21] H. Mähne, H. Wylezich, S. Slesazeck, T. Mikolajick, J. Vesely, V. Klemm, and D. Rafaja. Room temperature fabricated NbOx/Nb2O5 memory switch-ing device with threshold switchswitch-ing eect. In: 2013 5th IEEE International Memory Workshop. 2013, 174177

[22] H. Wylezich, E. Reinhardt, S. Slesazeck, and T. Mikolajick, Integration of niobium oxide-based resistive switching cells with dierent select properties into nanostructured cross-bar arrays; Semiconductor Science and Technology, 30, 115014 (2015)

[23] H. Schroeder and D. S. Jeong, Resistive switching in a Pt/TiO2/Pt thin lm stack a candidate for a non-volatile ReRAM; Microelectronic Engineering, 84, 1982 1985 (2007)

[24] W. Rainer, D. Regina, S. Georgi, and S. Kristof, Redox-Based Resistive Switch-ing Memories Nanoionic Mechanisms, Prospects, and Challenges; Advanced Materials, 21, 26322663 (2009)

[25] P Mazumder, S.-M. Kang, and R. Waser, Memristors: Devices, Models, and Applications; Proceedings of The IEEE - PIEEE, 100, 19111919 (2012) [26] F. PAN, C. CHEN, Z. shun WANG, Y. chao YANG, J. YANG, and F.

ZENG, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges; Progress in Natural Science: Materials International, 20, 1 15 (2010)

[27] Y. V. Pershin and M. D. Ventra, Practical Approach to Programmable Analog Circuits With Memristors; IEEE Transactions on Circuits and Systems I, 57, 18571864 (2010)

[28] S. Shin, K. Kim, and S. M. Kang, Memristor Applications for Programmable Analog ICs; IEEE Transactions on Nanotechnology, 10, 266274 (2011) [29] A. Talukdar, A. Radwan, and K. Salama, Generalized model for

Memristor-based Wien family oscillators; Microelectronics Journal, 42, 1032 1038 (2011) [30] F. Merrikh-Bayat and S. Bagheri-Shouraki, Mixed analog-digital crossbar-based hardware implementation of sign-sign LMS adaptive lter; Analog In-tegrated Circuits and Signal Processing, 66, 4148 (2011)

[31] K. Witrisal, Memristor-based stored-reference receiver - the UWB solution?;

Electronics Letters, 45, 713714 (2009)

[32] B. Muthuswamy and P. P. Kokate, Memristor-Based Chaotic Circuits; IETE Technical Review, 26, 417429 (2009)

[33] T. Driscoll, Y. V. Pershin, D. N. Basov, and M. Di Ventra, Chaotic memristor;

Applied Physics A, 102, 885889 (2011)

[34] Z. hui Lin and H. xia Wang. Image encryption based on chaos with PWL memristor in Chua's circuit. In: 2009 International Conference on Commu-nications, Circuits and Systems. 2009, 964968

[35] J. J. Yang, D. B. Strukov, and D. R. Stewart, Memristive devices for comput-ing; Nature Nanotechnology, 8, 13 (2012)

[36] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S.

Williams, 'Memristive' switches enable 'stateful' logic operations via material implication; Nature, 464, 873 EP (2010)

[37] I. G. Baek et al. Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application. In: IEEE International Electron Devices Meeting. 2005, 750753

[38] D. B. Strukov and K. K. Likharev, CMOL FPGA: a recongurable architecture for hybrid digital circuits with two-terminal nanodevices; Nanotechnology, 16, 888 (2005)

[39] G. S. Snider and R. S. Williams, Nano/CMOS architectures using a eld-programmable nanowire interconnect; Nanotechnology, 18, 035204 (2007) [40] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S.

Shenoy, Overview of candidate device technologies for storage-class memory;

IBM Journal of Research and Development, 52, 449464 (2008)

[41] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, Phase Change Memory; Proceedings of the IEEE, 98, 22012227 (2010)

[42] B. J. Choi et al., Resistive switching mechanism of TiO2 thin lms grown by atomic-layer deposition; Journal of Applied Physics, 98, 033715 (2005) [43] M. N. Kozicki, M. Park, and M. Mitkova, Nanoscale memory elements based

on solid-state electrolytes; IEEE Transactions on Nanotechnology, 4, 331338 (2005)

[44] M. Kund, G. Beitel, C. U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K. Ufert, and G. Muller. Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm. In: IEEE International Electron Devices Meeting. 2005, 754757

[45] D Ielmini, Reliability issues and modeling of Flash and post-Flash memory;

Microelectronic Engineering - MICROELECTRON ENG, 86, 18701875 (2009) [46] D. Zhu, Y. Li, W. Shen, Z. Zhou, L. Liu, and X. Zhang, Resistive random

access memory and its applications in storage and nonvolatile logic; Journal of Semiconductors, 38, 071002 (2017)

[47] T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, and S. M. Sze, Resistance random access memory; Materials Today, 19, 254 264 (2016)

[48] Y. J. Song, G. Jeong, I. G. Baek, and J. Choi, What Lies Ahead for Resistance-Based Memory Technologies?; Computer, 46, 3036 (2013)

[49] H. Akinaga and H. Shima, Resistive Random Access Memory (ReRAM) Based on Metal Oxides; Proceedings of the IEEE, 98, 22372251 (2010)

[50] R. F. Freitas and W. W. Wilcke, Storage-class memory: The next storage system technology; IBM Journal of Research and Development, 52, 439447 (2008)

[51] S. Hamdioui et al. Memristor based computation-in-memory architecture for data-intensive applications. In: Design, Automation Test in Europe Confer-ence Exhibition (DATE). 2015, 17181725

[52] H. A. D. Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, and D. Fey. Mem-ristive devices for computing: Beyond CMOS and beyond von Neumann. In:

IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). 2017, 110

[53] H. Li, B. Gao, Z. Chen, Y. Zhao, P. Huang, H. Ye, L. Liu, X. Liu, and J.

Kang, A learnable parallel processing architecture towards unity of memory and computing; Scientic Reports, 5, 13330 (2015)

[54] M. S. Ebrahimi, G. Hills, M. M. Sabry, M. M. Shulaker, H. Wei, T. F. Wu, S. Mitra, and H. S. P. Wong. Monolithic 3D integration advances and chal-lenges: From technology to system levels. In: SOI-3D-Subthreshold Microelec-tronics Technology Unied Conference (S3S). 2014, 12

[55] H. S. P. Wong and S. Salahuddin, Memory leads the way to better computing;

Nature Nanotechnology, 10, 191 (2015)

[56] J. Joshua Yang et al., Engineering nonlinearity into memristors for passive crossbar applications; Applied Physics Letters, 100, 113501 (2012)

[57] Y.-C. Chen, Y.-F. Chang, and J. Lee, Selector-Less Graphite Memristor: In-trinsic Nonlinear Behavior with Gap Design Method for Array Applications;

ECS Transactions, 85, 1119 (2018)

[58] M. A. Zidan, J. P. Strachan, and W. D. Lu, The future of electronics based on memristive systems; Nature Electronics, 1, 2229 (2018)

[59] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nanoscale Memristor Device as Synapse in Neuromorphic Systems; Nano Let-ters, 10, 12971301 (2010)

[60] D. Kuzum, R. G. D. Jeyasingh, B. Lee, and H.-S. P. Wong, Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing; Nano Letters, 12, 21792186 (2012)

[61] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M.

Aono, Short-term plasticity and long-term potentiation mimicked in single inorganic synapses; Nature Materials, 10, 591 (2011)

[62] L. O. Chua and L. Yang, Cellular neural networks: theory; IEEE Transactions on Circuits and Systems, 35, 12571272 (1988)

[63] C. Schindler, S. C. P. Thermadam, R. Waser, and M. N. Kozicki, Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2; IEEE Transactions on Electron Devices, 54, 27622768 (2007)

[64] S. H. Jo and W. Lu, CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory; Nano Letters, 8, 392397 (2008)

[65] G. S. Tang, F. Zeng, C. Chen, H. Y. Liu, S. Gao, S. Z. Li, C. Song, G. Y. Wang, and F. Pan, Resistive switching with self-rectifying behavior in Cu/SiOx/Si structure fabricated by plasma-oxidation; Journal of Applied Physics, 113, 244502 (2013)

[66] G. Dearnaley, D. Morgan, and A. Stoneham, A model for lament growth and switching in amorphous oxide lms; Journal of Non-Crystalline Solids, 4, 593 612 (1970)

[67] M. Shatzkes, M. Av-Ron, and R. M. Anderson, On the nature of conduction and switching in SiO2; Journal of Applied Physics, 45, 20652077 (1974) [68] J. Yao, L. Zhong, D. Natelson, and J. M. Tour, Etching-dependent reproducible

memory switching in vertical SiO2 structures; Applied Physics Letters, 93, 253101 (2008)

[69] J. Yao, L. Zhong, Z. Zhang, T. He, Z. Jin, P. J. Wheeler, D. Natelson, and J. M.

Tour, Resistive Switching in Nanogap Systems on SiO2 Substrates; Small, 5, 29102915 (2009)

[70] J. Yao, L. Zhong, D. Natelson, and J. M. Tour, Intrinsic resistive switching and memory eects in silicon oxide; Applied Physics A, 102, 835839 (2011) [71] J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M.

Tour, Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene; Nature Communications, 3, 1101 (2012)

[72] J. Yao, Z. Sun, L. Zhong, D. Natelson, and J. M. Tour, Resistive Switches and Memories from Silicon Oxide; Nano Letters, 10, 41054110 (2010) [73] Y.-F. Chang, B. Fowler, Y.-C. Chen, F. Zhou, C.-H. Pan, T.-C. Chang, and

J. C. Lee, Demonstration of Synaptic Behaviors and Resistive Switching Char-acterizations by Proton Exchange Reactions in Silicon Oxide; Scientic Re-ports, 6, 21268 (2016)

[74] J. M. Besson, E. H. Mokhtari, J. Gonzalez, and G. Weill, Electrical properties of semimetallic silicon III and semiconductive silicon IV at ambient pressure;

Phys. Rev. Lett., 59, 473476 (1987)

[75] D. Ge, V. Domnich, and Y. Gogotsi, High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation;

Journal of Applied Physics, 93, 24182423 (2003)

[76] M. M. Khayyat, G. K. Banini, D. G. Hasko, and M. M. Chaudhri, Raman microscopy investigations of structural phase transformations in crystalline and amorphous silicon due to indentation with a Vickers diamond at room temperature and at 77 K; Journal of Physics D: Applied Physics, 36, 1300 (2003)

[77] B. W. Fowler, Y.-F. Chang, F. Zhou, Y. Wang, P.-Y. Chen, F. Xue, Y.-T.

Chen, B. Bringhurst, S. Pozder, and J. C. Lee, Electroforming and resistive switching in silicon dioxide resistive memory devices; RSC Adv., 5, 21215 21236 (2015)

[78] Y.-F. Chang, L. Ji, Y. Wang, P.-Y. Chen, F. Zhou, F. Xue, B. Fowler, E. T.

Yu, and J. C. Lee, Investigation of edge- and bulk-related resistive switching behaviors and backward-scan eects in SiOx-based resistive switching memory;

Applied Physics Letters, 103, 193508 (2013)

[79] T. Hasegawa, K. Terabe, T. Tsuruoka, and M. Aono, Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von-Neumann Computers; Advanced Materials, 24, 252267 (2011)

[80] A Geresdi, A Halbritter, E. Szilágyi, and G. Mihály, Probing of Ag-based Resistive Switching on the Nanoscale; MRS Proceedings, 1331, 17 (2011) [81] T Tamura, T Hasegawa, K Terabe, T Nakayama, T Sakamoto, H Sunamura,

H Kawaura, S Hosaka, and M Aono, Material dependence of switching speed of atomic switches made from silver sulde and from copper sulde; Journal of Physics: Conference Series, 61, 1157 (2007)

[82] M. Morales-Masis, H.-D. Wiemhöfer, and J. M. van Ruitenbeek, Towards a quantitative description of solid electrolyte conductance switches; Nanoscale, 2, 22752280 (2010)

[83] S. Menzel, S. Tappertzhofen, R. Waser, and I. Valov, Switching kinetics of electrochemical metallization memory cells; Phys. Chem. Chem. Phys., 15, 69456952 (2013)

[84] M. Kundu, T. Hasegawa, K. Terabe, and M. Aono, Eect of sulfurization con-ditions on structural and electrical properties of copper sulde lms; Journal of Applied Physics, 103, 073523 (2008)

[85] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, Observation of conducting lament growth in nanoscale resistive memories; Nature Commu-nications, 3, 732 (2012)

[86] T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, Electronic transport in Ta2O5 resistive switch; Applied Physics Letters, 91, 092110 (2007)

[87] K. Terabe, T. Hasegawa, C. Liang, and M. Aono, Control of local ion transport to create unique functional nanodevices based on ionic conductors; Science and Technology of Advanced Materials, 8, 536542 (2007)

[88] H. Lv et al., Atomic View of Filament Growth in Electrochemical Memristive Elements; Scientic Reports, 5, 13311 (2015)

[89] Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, Electrochemical dynamics of nanoscale metallic inclusions in dielectrics; Nature Communications, 5, 4232 (2014)

[90] P. Junod, H. Hediger, B. Kilchör, and J. Wullschleger, Metal-non-metal tran-sition in silver chalcogenides; The Philosophical Magazine: A Journal of The-oretical Experimental and Applied Physics, 36, 941958 (1977)

[91] A. J. Frueh, The Crystallography of Silver Sulde, Ag2S; Zeitschrift für Kristal-lographie, 110, 136144 (1958)

[92] I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, and R. Waser, Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces; Nature Materials, 11, 530 (2012)

[93] Z. Xu, Y. Bando, W. Wang, X. Bai, and D. Golberg, Real-Time In Situ HRTEM-Resolved Resistance Switching of Ag2S Nanoscale Ionic Conductor;

ACS Nano, 4, 25152522 (2010)

[94] H.-T. Kim, B.-G. Chae, D.-H. Youn, G. Kim, K.-Y. Kang, S.-J. Lee, K.

Kim, and Y.-S. Lim, Raman study of electric-eld-induced rst-order metal-insulator transition in VO2-based devices; Applied Physics Letters, 86, 242101 (2005)

[95] A. Gubicza, M. Csontos, A. Halbritter, and G. Mihály, Resistive switching in metallic Ag2S memristors due to a local overheating induced phase transition;

Nanoscale, 7, 1124811254 (2015)

[96] A. Geresdi, M. Csontos, A. Gubicza, A. Halbritter, and G. Mihály, A fast operation of nanometer-scale metallic memristors: highly transparent conduc-tance channels in Ag2S devices; Nanoscale, 6, 26132617 (2014)

[97] J. H. Schön, H. Meng, and Z. Bao, Field-Eect Modulation of the Conductance of Single Molecules; Science, 294, 21382140 (2001)

[98] I. Diez-Perez, J. Hihath, Y. Lee, L. Yu, L. Adamska, M. A. Kozhushner, I. I.

Oleynik, and N. Tao, Rectication and stability of a single molecular diode with controlled orientation; Nature Chemistry, 1, 635 (2009)

[99] X. Chen, Z. Guo, G.-M. Yang, J. Li, M.-Q. Li, J.-H. Liu, and X.-J. Huang, Electrical nanogap devices for biosensing; Materials Today, 13, 28 41 (2010) [100] Q. N. Minh, H. D. Tong, A. Kuijk, F. van de Bent, P. Beekman, and C. J. M.

van Rijn, Gas sensing performance at room temperature of nanogap interdig-itated electrodes for detection of acetone at low concentration; RSC Adv., 7, 5027950286 (2017)

[101] B. Xu and N. J. Tao, Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions; Science, 301, 12211223 (2003)

[102] R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M.

van Ruitenbeek, Measurement of the conductance of a hydrogen molecule;

Nature, 419, 906 (2002)

[103] A. Magyarkuti, O. Adak, A. Halbritter, and L. Venkataraman, Electronic and mechanical characteristics of stacked dimer molecular junctions; Nanoscale, 10, 33623368 (2018)

[104] Z. Balogh, D. Visontai, P. Makk, K. Gillemot, L. Oroszlány, L. Pósa, C. Lam-bert, and A. Halbritter, Precursor congurations and post-rupture evolution of AgCOAg single-molecule junctions; Nanoscale, 6, 1478414791 (2014) [105] T. Nagase, T. Kubota, and S. Mashiko, Fabrication of nano-gap electrodes for

measuring electrical properties of organic molecules using a focused ion beam;

Thin Solid Films, 438-439, 374 377 (2003)

[106] M. S. M. Saifullah, T Ondarçuhu, D. K. Koltsov, C Joachim, and M. E.

Welland, A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics; Nanotechnology, 13, 659 (2002)

[107] A Notargiacomo, V Foglietti, E Cianci, G Capellini, M Adami, P Faraci, F Evangelisti, and C Nicolini, Atomic force microscopy lithography as a nanode-vice development technique; Nanotechnology, 10, 458 (1999)

[108] A. F. Morpurgo, C. M. Marcus, and D. B. Robinson, Controlled fabrication of metallic electrodes with atomic separation; Applied Physics Letters, 74, 20842086 (1999)

[109] J. Moreland and J. W. Ekin, Electron tunneling experiments using Nb-Sn break junctions; Journal of Applied Physics, 58, 38883895 (1985)

[110] L. Qin, S. Park, L. Huang, and C. A. Mirkin, On-Wire Lithography; Science, 309, 113115 (2005)

[111] D. Pierce and P. Brusius, Electromigration: A review; Microelectronics Reli-ability, 37, 1053 1072 (1997)

[112] M. L. Trouwborst, S. J. van der Molen, and B. J. van Wees, The role of Joule heating in the formation of nanogaps by electromigration; Journal of Applied Physics, 99, 114316 (2006)

[113] R. Homann, D. Weissenberger, J. Hawecker, and D. Stöer, Conductance of gold nanojunctions thinned by electromigration; Applied Physics Letters, 93, 043118 (2008)

[114] Z. M. Wu, M. Steinacher, R. Huber, M. Calame, S. J. van der Molen, and C. Schönenberger, Feedback controlled electromigration in four-terminal nano-junctions; Applied Physics Letters, 91, 053118 (2007)

[115] S. J. Heerema and C. Dekker, Graphene nanodevices for DNA sequencing;

Nature Nanotechnology, 11, 127 (2016)

[116] F. Prins, A. Barreiro, J. W. Ruitenberg, J. S. Seldenthuis, N. Aliaga-Alcalde, L. M. K. Vandersypen, and H. S. J. van der Zant, Room-Temperature Gating of Molecular Junctions Using Few-Layer Graphene Nanogap Electrodes; Nano Letters, 11, 46074611 (2011)

[117] P. K. Yang, W. Y. Chang, P. Y. Teng, S. F. Jeng, S. J. Lin, P. W. Chiu, and J. H. He, Fully Transparent Resistive Memory Employing Graphene Electrodes for Eliminating Undesired Surface Eects; Proceedings of the IEEE, 101, 17321739 (2013)

[118] X. Guo et al., Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules; Science, 311, 356359 (2006)

[119] E. Burzurí, F. Prins, and H. S. J. van der Zant, Characterization of Nanometer-Spaced Few-Layer Graphene Electrodes; Graphene, 1, 2629 (2012)

[120] C. W. Marquardt, S. Grunder, A. Blaszczyk, S. Dehm, F. Hennrich, H. v.

Löhneysen, M. Mayor, and R. Krupke, Electroluminescence from a single

[121] P. Gehring, H. Sadeghi, S. Sangtarash, C. S. Lau, J. Liu, A. Ardavan, J. H.

Warner, C. J. Lambert, G. A. D. Briggs, and J. A. Mol, Quantum Interference in Graphene Nanoconstrictions; Nano Letters, 16, 42104216 (2016)

[122] Y. He, H. Dong, T. Li, C. Wang, W. Shao, Y. Zhang, L. Jiang, and W. Hu, Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography; Applied Physics Letters, 97, 133301 (2010) [123] L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, Atomic force

micro-scope local oxidation nanolithography of graphene; Applied Physics Letters, 93, 093107 (2008)

[124] L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Tailoring the atomic struc-ture of graphene nanoribbons by scanning tunnelling microscope lithography;

Nature Nanotechnology, 3, 397 (2008)

[125] M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B. W. H. Baugher, P. Jarillo-Herrero, and C. M. Marcus, Etching of Graphene Devices with a Helium Ion Beam; ACS Nano, 3, 26742676 (2009)

[126] J. G. Simmons, Electric Tunnel Eect between Dissimilar Electrodes Separated by a Thin Insulating Film; Journal of Applied Physics, 34, 25812590 (1963) [127] J. G. Simmons, Generalized Formula for the Electric Tunnel Eect between Similar Electrodes Separated by a Thin Insulating Film; Journal of Applied Physics, 34, 17931803 (1963)

[128] J. M. Beebe, B. Kim, J. W. Gadzuk, C. Daniel Frisbie, and J. G. Kushmerick, Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions; Phys. Rev. Lett., 97, 026801 (2006)

[129] J. M. Beebe, B. Kim, C. D. Frisbie, and J. G. Kushmerick, Measuring Relative Barrier Heights in Molecular Electronic Junctions with Transition Voltage Spectroscopy; ACS Nano, 2, 827832 (2008)

[130] F.-C. Chiu, A Review on Conduction Mechanisms in Dielectric Films; Ad-vances in Materials Science and Engineering, 2014, 18 (2014)

[131] J. Frenkel, On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors; Phys. Rev., 54, 647648 (1938)

[132] Y.-F. Chang, B. Fowler, Y.-C. Chen, Y.-T. Chen, Y. Wang, F. Xue, F.

Zhou, and J. C. Lee, Intrinsic SiOx-based unipolar resistive switching mem-ory. II. Thermal eects on charge transport and characterization of multilevel programing; Journal of Applied Physics, 116, 043709 (2014)

[133] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.

Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric Field Eect in Atomi-cally Thin Carbon Films; Science, 306, 666669 (2004)

[134] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.

Geim, The electronic properties of graphene; Rev. Mod. Phys., 81, 109162 (2009)

[135] P. R. Wallace, The Band Theory of Graphite; Phys. Rev., 71, 622634 (1947) [136] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in

two-dimensional graphene; Rev. Mod. Phys., 83, 407470 (2011)

[137] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2; Nature Nanotech-nology, 3, 206 (2008)

[138] W. N. O., Z. Hailong, L. Lei, L. Yuan, J. Shan, H. Yu, and D. Xiangfeng, Graphene: An Emerging Electronic Material; Advanced Materials, 24, 5782 5825 (2012)

[139] M. I. Katsnelson, Zitterbewegung, chirality, and minimal conductivity in graphene;

The European Physical Journal B - Condensed Matter and Complex Systems, 51, 157160 (2006)

[140] J. Cserti, Minimal longitudinal dc conductivity of perfect bilayer graphene;

Phys. Rev. B, 75, 033405 (2007)

[141] J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Charged-impurity scattering in graphene; Nature Physics, 4, 377 (2008) [142] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von

Klitz-ing, and A. Yacoby, Observation of electron-hole puddles in graphene using a scanning single-electron transistor; Nature Physics, 4, 144 (2007)

[143] A. Kumar, G. A. Csáthy, M. J. Manfra, L. N. Pfeier, and K. W. West, Nonconventional Odd-Denominator Fractional Quantum Hall States in the Second Landau Level; Phys. Rev. Lett., 105, 246808 (2010)

[144] C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watan-abe, T. Taniguchi, P. Kim, J. Hone, and K. L. Shepard, Multicomponent fractional quantum Hall eect in graphene; Nature Physics, 7, 693 (2011) [145] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler,

J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Room-Temperature Quantum Hall Eect in Graphene; Science, 315, 13791379 (2007)

[146] A. S. Mayorov et al., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature; Nano Letters, 11, 23962399 (2011)

[147] P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K. Richter, and C. Schö-nenberger, Ballistic interferences in suspended graphene; Nature Communi-cations, 4, 2342 (2013)

[148] J.-A. Yan, W. Y. Ruan, and M. Y. Chou, Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory; Phys. Rev. B, 77, 125401 (2008)

[149] T. Nihira and T. Iwata, Temperature dependence of lattice vibrations and analysis of the specic heat of graphite; Phys. Rev. B, 68, 134305 (2003) [150] E. Pop, V. Varshney, and A. K. Roy, Thermal properties of graphene:

Funda-mentals and applications; MRS Bulletin, 37, 12731281 (2012)

[151] J. Hone, M. Llaguno, M. Biercuk, A. Johnson, B. Batlogg, Z. Benes, and J.

Fischer, Thermal properties of carbon nanotubes and nanotube-based materi-als; Applied Physics A, 74, 339343 (2002)

[152] Q.-Y. Li, K. Xia, J. Zhang, Y. Zhang, Q. Li, K. Takahashi, and X. Zhang, Measurement of specic heat and thermal conductivity of supported and sus-pended graphene by a comprehensive Raman optothermal method; Nanoscale, 9, 1078410793 (2017)

[153] E. Pop, Energy dissipation and transport in nanoscale devices; Nano Research, 3, 147169 (2010)

[154] Z.-Y. Ong and E. Pop, Frequency and polarization dependence of thermal coupling between carbon nanotubes and SiO2; Journal of Applied Physics, 108, 103502 (2010)

[155] A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials; Nature Materials, 10, 569 (2011)

[156] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Ba-landin, and R. S. Ruo, Thermal conductivity of isotopically modied graphene;

Nature Materials, 11, 203 (2012)

[157] R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, Breakdown current density of graphene nanoribbons; Applied Physics Letters, 94, 243114 (2009) [158] J. H. Seol et al., Two-Dimensional Phonon Transport in Supported Graphene;

Science, 328, 213216 (2010)

[159] Z. Aksamija and I. Knezevic, Lattice thermal conductivity of graphene nanorib-bons: Anisotropy and edge roughness scattering; Applied Physics Letters, 98, 141919 (2011)

[160] J. Haskins, A. Knac, C. Sevik, H. Sevinçli, G. Cuniberti, and T. Ça§n, Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons; ACS Nano, 5, 37793787 (2011)

[161] M.-H. Bae, Z. Li, Z. Aksamija, P. N. Martin, F. Xiong, Z.-Y. Ong, I. Knezevic, and E. Pop, Ballistic to diusive crossover of heat ow in graphene ribbons;

Nature Communications, 4, 1734 (2013)

[162] A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, Transport Properties of Graphene in the High-Current Limit; Phys. Rev. Lett., 103, 076601 (2009)

[163] V. E. Dorgan, M.-H. Bae, and E. Pop, Mobility and saturation velocity in graphene on SiO2; Applied Physics Letters, 97, 082112 (2010)

[164] I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zero-bandgap, top-gated graphene eld-eect transistors;

Nature Nanotechnology, 3, 654 (2008)

[165] B. W. Scott and J. P. Leburton. High-eld carrier velocity and current satu-ration in graphene eld-eect transistors. In: 10th IEEE International Con-ference on Nanotechnology. 2010, 655658

[166] Z. Yao, C. L. Kane, and C. Dekker, High-Field Electrical Transport in Single-Wall Carbon Nanotubes; Phys. Rev. Lett., 84, 29412944 (2000)

[167] P. G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, Current Saturation and Electrical Breakdown in Multiwalled Carbon Nanotubes; Phys.

Rev. Lett., 86, 31283131 (2001)

[168] Z. Chen, W. Jang, W. Bao, C. N. Lau, and C. Dames, Thermal contact re-sistance between graphene and silicon dioxide; Applied Physics Letters, 95, 161910 (2009)

[169] Y. K. Koh, M.-H. Bae, D. G. Cahill, and E. Pop, Heat Conduction across Monolayer and Few-Layer Graphenes; Nano Letters, 10, 43634368 (2010) [170] K. F. Mak, C. H. Lui, and T. F. Heinz, Measurement of the thermal

con-ductance of the graphene/SiO2 interface; Applied Physics Letters, 97, 221904 (2010)

[171] W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller; Journal of Applied Physics, 97, 023706 (2005) [172] L. Pósa, Atomi méret¶ nanoszerkezetek létrehozása elektromigrációs

techniká-val; MSc thesis, BUTE, (2012)

[173] G. Mészáros, C. Li, I. Pobelov, and T. Wandlowski, Current measurements in a wide dynamic rangeapplications in electrochemical nanotechnology; Nan-otechnology, 18, 424004 (2007)

[174] D. R. Strachan, D. E. Smith, D. E. Johnston, T.-H. Park, M. J. Therien, D. A.

Bonnell, and A. T. Johnson, Controlled fabrication of nanogaps in ambient environment for molecular electronics; Applied Physics Letters, 86, 043109 (2005)

[175] C. S. Lau, J. A. Mol, J. H. Warner, and G. A. D. Briggs, Nanoscale control of graphene electrodes; Phys. Chem. Chem. Phys., 16, 2039820401 (2014) [176] N. Agrait, A. L. Yeyati, and J. M. van Ruitenbeek, Quantum properties of

atomic-sized conductors; Physics Reports, 377, 81 279 (2003)

[177] I. A. Blech, Electromigration in thin aluminum lms on titanium nitride;

Journal of Applied Physics, 47, 12031208 (1976)

[178] B. Sánta, Z. Balogh, g. Gubicza, L. Pósa, D. Krisztián, G. Mihály, M. Cson-tos, and A. Halbritter, Universal 1/f type current noise of Ag laments in redox-based memristive nanojunctions; Manuscript Submitted for Publication, (2019)

[179] A. Barreiro, H. S. J. van der Zant, and L. M. K. Vandersypen, Quantum Dots at Room Temperature Carved out from Few-Layer Graphene; Nano Letters, 12, 60966100 (2012)

[180] G. Esen and M. S. Fuhrer, Temperature control of electromigration to form gold nanogap junctions; Applied Physics Letters, 87, 263101 (2005)

[181] A. Gubicza, M. Csontos, A. Halbritter, and G. Mihály, Non-exponential re-sistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices; Nanoscale, 7, 43944399 (2015)

[182] Y. U. Sharvin, A possible method for studying Fermi surfaces; Sov. Phys.

JETP, 21, 655656 (1965)

[183] A. Geresdi, A. Halbritter, A. Gyenis, P. Makk, and G. Mihály, From stochastic single atomic switch to nanoscale resistive memory device; Nanoscale, 3, 1504 1507 (2011)

[184] A. Gubicza, Resistive switching phenomena in Ag2S based nanojunctions; PhD thesis, BUTE, (2016)

[185] F Lehmann, G Richter, T Borzenko, V Hock, G Schmidt, and L. Molenkamp, Fabrication of sub-10 nm AuPd structures using 30 keV electron beam lithog-raphy and lift-o; Microelectronic Engineering, 65, 327 333 (2003)

[186] A. Matikainen, T. Nuutinen, T. Itkonen, S. Heinilehto, J. Puustinen, J. Hiltunen, J. Lappalainen, P. Karioja, and P. Vahimaa, Atmospheric oxidation and car-bon contamination of silver and its eect on surface-enhanced Raman spec-troscopy (SERS); Scientic Reports, 6, 37192 (2016)

[187] C. Schirm, M. Matt, F. Pauly, J. C. Cuevas, P. Nielaba, and E. Scheer, A current-driven single-atom memory; Nature Nanotechnology, 8, 645 (2013) [188] V. B. Mohan, K. tak Lau, D. Hui, and D. Bhattacharyya, Graphene-based

ma-terials and their composites: A review on production, applications and product limitations; Composites Part B: Engineering, 142, 200 220 (2018)

[189] L. Na, L. Fang, W. Haoxi, L. Yinghui, Z. Chao, and C. Ji, One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite; Advanced Functional Materials, 18, 15181525 [190] N. Behabtu et al., Spontaneous high-concentration dispersions and liquid

crys-tals of graphene; Nature Nanotechnology, 5, 406 (2010)

[191] Y. Hernandez et al., High-yield production of graphene by liquid-phase exfoli-ation of graphite; Nature Nanotechnology, 3, 563 (2008)

[192] B. A. B., G. Vasilios, Z. Radek, S. T. A., and S. A. K., Liquid-Phase Exfolia-tion of Graphite Towards Solubilized Graphenes; Small, 5, 18411845 (2009) [193] S. Park and R. S. Ruo, Chemical methods for the production of graphenes;

Nature Nanotechnology, 4, 217 (2009)

[194] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, Improved Synthesis of Graphene Oxide; ACS Nano, 4, 48064814 (2010)

[195] O. C. Compton, B. Jain, D. A. Dikin, A. Abouimrane, K. Amine, and S. T.

Nguyen, Chemically Active Reduced Graphene Oxide with Tunable C/O Ra-tios; ACS Nano, 5, 43804391 (2011)

[196] E. Rollings, G.-H. Gweon, S. Zhou, B. Mun, J. McChesney, B. Hussain, A.

Fedorov, P. First, W. de Heer, and A. Lanzara, Synthesis and characterization of atomically thin graphite lms on a silicon carbide substrate; Journal of

[197] P. W. Sutter, J.-I. Flege, and E. A. Sutter, Epitaxial graphene on ruthenium;

Nature Materials, 7, 406 (2008)

[198] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons; Nature, 458, 872 (2009)

[199] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Narrow graphene nanoribbons from carbon nanotubes; Nature, 458, 877 (2009)

[200] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition; Nano Letters, 9, 3035 (2009)

[201] X. Li et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils; Science, 324, 13121314 (2009)

[202] M. S. A. Bhuyan, M. N. Uddin, M. M. Islam, F. A. Bipasha, and S. S. Hossain, Synthesis of graphene; International Nano Letters, 6, 6583 (2016)

[203] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene lms for stretchable transparent electrodes; Nature, 457, 706 (2009)

[204] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties;

Nano Letters, 9, 17521758 (2009)

[205] J. Coraux, A. T. N`Diaye, C. Busse, and T. Michely, Structural Coherency of Graphene on Ir(111); Nano Letters, 8, 565570 (2008)

[206] A. E. Karu and M. Beer, Pyrolytic Formation of Highly Crystalline Graphite Films; Journal of Applied Physics, 37, 21792181 (1966)

[207] B. Lang, A LEED study of the deposition of carbon on platinum crystal sur-faces; Surface Science, 53, 317 329 (1975)

[208] Y. Zhang, L. Zhang, and C. Zhou, Review of Chemical Vapor Deposition of Graphene and Related Applications; Accounts of Chemical Research, 46, 23292339 (2013)

[209] T. Kishan, E. A. Maria, L. Felix, O. Frédéric, S. Christian, J. Blaise, and C.

Michel, Comparative study of single and multi domain CVD graphene using large-area Raman mapping and electrical transport characterization; Physica Status Solidi (RRL) Rapid Research Letters, 10, 807811 (2016)

[210] C. Nef, Contacting strategies for molecular electronics; PhD thesis, (2014)

[211] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L.

Colombo, and R. S. Ruo, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes; Nano Letters, 9, 43594363 (2009)

[212] B. Eren, W. Fu, L. Marot, M. Calame, R. Steiner, and E. Meyer, Spectroscopic ellipsometry on Sin/SiO2/graphene tri-layer system exposed to downstream hydrogen plasma: Eects of hydrogenation and chemical sputtering; Applied Physics Letters, 106, 011904 (2015)

[213] S. Islam, Z. Li, V. E. Dorgan, M. H. Bae, and E. Pop, Role of Joule Heating on Current Saturation and Transient Behavior of Graphene Transistors; IEEE Electron Device Letters, 34, 166168 (2013)

[214] T. Lohmann, K. von Klitzing, and J. H. Smet, Four-Terminal Magneto-Transport in Graphene p-n Junctions Created by Spatially Selective Doping;

Nano Letters, 9, 19731979 (2009)

[215] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, Chemical Doping and electron-hole Conduction Asymmetry in Graphene Devices; Nano Letters, 9, 388392 (2009)

[216] W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Eect Transistors; Nano Let-ters, 3, 193198 (2003)

[217] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitz-ing, and J. H. Smet, Graphene on a Hydrophobic Substrate: Doping Reduc-tion and Hysteresis Suppression under Ambient CondiReduc-tions; Nano Letters, 10, 11491153 (2010)

[218] M. Radosavljevi¢, M. Freitag, K. V. Thadani, and A. T. Johnson, Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Eect Tran-sistors; Nano Letters, 2, 761764 (2002)

[219] J. P. Robinson, H. Schomerus, L. Oroszlány, and V. I. Fal'ko, Adsorbate-Limited Conductivity of Graphene; Phys. Rev. Lett., 101, 196803 (2008) [220] E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern,

Contact and edge eects in graphene devices; Nature Nanotechnology, 3, 486 (2008)

[221] B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon, Evidence of the role of contacts on the observed electron-hole asymmetry in graphene;

Phys. Rev. B, 78, 121402 (2008)

[222] J. Moser, A. Barreiro, and A. Bachtold, Current-induced cleaning of graphene;

Applied Physics Letters, 91, 163513 (2007)

[223] A. Barreiro, F. Börrnert, M. H. Rümmeli, B. Büchner, and L. M. K. Van-dersypen, Graphene at High Bias: Cracking, Layer by Layer Sublimation, and Fusing; Nano Letters, 12, 18731878 (2012)

[224] H. Wang, X. Zhang, and H. Takamatsu, Ultraclean suspended monolayer graphene achieved by in situ current annealing; Nanotechnology, 28, 045706 (2017)

[225] B. Standley, W. Bao, H. Zhang, J. Bruck, C. N. Lau, and M. Bockrath, Graphene-Based Atomic-Scale Switches; Nano Letters, 8, 33453349 (2008) [226] S. G. Sarwat, P. Gehring, G. Rodriguez Hernandez, J. H. Warner, G. A. D.

Briggs, J. A. Mol, and H. Bhaskaran, Scaling Limits of Graphene Nanoelec-trodes; Nano Letters, 17, 36883693 (2017)

[227] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, Raman spec-troscopy in graphene; Physics Reports, 473, 51 87 (2009)

[228] M. Dresselhaus, A. Jorio, and R.Saito, Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy; Annual Review of Condensed Matter Physics, 1, 89108 (2010)

[229] A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene; Nature Nanotechnology, 8, 235 (2013) [230] I. Calizo, F. Miao, W. Bao, C. N. Lau, and A. A. Balandin, Variable

tem-perature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices; Applied Physics Letters, 91, 071913 (2007)

[231] D. Abdula, T. Ozel, K. Kang, D. G. Cahill, and M. Shim, Environment-Induced Eects on the Temperature Dependence of Raman Spectra of Single-Layer Graphene; The Journal of Physical Chemistry C, 112, 2013120134 (2008)

[232] L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L.

Steigerwald, L. E. Brus, and G. W. Flynn, Graphene Oxidation: Thickness-Dependent Etching and Strong Chemical Doping; Nano Letters, 8, 19651970 (2008)

[233] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Atomic Structure of Graphene on SiO2; Nano Letters, 7, 16431648 (2007)

[234] P. Nemes-Incze, Z. Osváth, K. Kamarás, and L. Biró, Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy; Carbon, 46, 1435 1442 (2008)

[235] E. Pop, D. A. Mann, K. E. Goodson, and H. Dai, Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates;

Journal of Applied Physics, 101, 093710 (2007)

[236] A. D. Liao, J. Z. Wu, X. Wang, K. Tahy, D. Jena, H. Dai, and E. Pop, Thermally Limited Current Carrying Ability of Graphene Nanoribbons; Phys.

Rev. Lett., 106, 256801 (2011)

[237] K. A. Dean, T. P. Burgin, and B. R. Chalamala, Evaporation of carbon nan-otubes during electron eld emission; Applied Physics Letters, 79, 18731875 (2001)

[238] N. Y. Huang et al., Mechanism Responsible for Initiating Carbon Nanotube Vacuum Breakdown; Phys. Rev. Lett., 93, 075501 (2004)

[239] A. Liao, R. Alizadegan, Z.-Y. Ong, S. Dutta, F. Xiong, K. J. Hsia, and E. Pop, Thermal dissipation and variability in electrical breakdown of carbon nanotube devices; Phys. Rev. B, 82, 205406 (2010)

[240] C. G. Kang et al., Enhanced Current Drivability of CVD Graphene Intercon-nect in Oxygen-Decient Environment; IEEE Electron Device Letters, 32, 15911593 (2011)

[241] H. Zhang et al., Visualizing Electrical Breakdown and ON/OFF States in Electrically Switchable Suspended Graphene Break Junctions; Nano Letters, 12, 17721775 (2012)

[242] V. E. Dorgan, A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, High-Field Electrical and Thermal Transport in Suspended Graphene; Nano Letters, 13, 45814586 (2013)

[243] A. D. Liao, P. T. Araujo, R. Xu, and M. S. Dresselhaus, Carbon nanotube network-silicon oxide non-volatile switches; Nature Communications, 5, 5673 (2014)

[244] A. Candini, N. Richter, D. Convertino, C. Coletti, F. Balestro, W. Wernsdor-fer, M. Kläui, and M. Aronte, Electroburning of few-layer graphene akes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum;

Beilstein Journal Of Nanotechnology, 6, 711719 (2015)

[245] J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, and J. Li, In situ observa-tion of graphene sublimaobserva-tion and multi-layer edge reconstrucobserva-tions; Proceed-ings of the National Academy of Sciences, 106, 1010310108 (2009)

[246] J. O. Island, A Holovchenko, M Koole, P. F. A. Alkemade, M Menelaou, N Aliaga-Alcalde, E Burzurí, and H. S. J. van der Zant, Fabrication of hy-brid molecular devices using multi-layer graphene break junctions; Journal of Physics: Condensed Matter, 26, 474205 (2014)

[247] T. Li, Z. Tang, Z. Huang, and J. Yu, Thermal boundary resistance between the polycrystalline graphene and the amorphous SiO2 substrate; Chemical Physics Letters, 685, 349 353 (2017)

[248] J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, and J. Li, In situ observa-tion of graphene sublimaobserva-tion and multi-layer edge reconstrucobserva-tions; Proceed-ings of the National Academy of Sciences, 106, 1010310108 (2009)

[249] A. Santana, A. M. Popov, and E. Bichoutskaia, Stability and dynamics of vacancy in graphene akes: Edge eects; Chemical Physics Letters, 557, 80 87 (2013)

[250] T. Sun, S. Fabris, and S. Baroni, Surface Precursors and Reaction Mechanisms for the Thermal Reduction of Graphene Basal Surfaces Oxidized by Atomic Oxygen; The Journal of Physical Chemistry C, 115, 47304737 (2011) [251] Q. Xu, G. Scuri, C. Mathewson, P. Kim, C. Nuckolls, and D. Bouilly, Single

Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps; Nano Letters, 17, 53355341 (2017)

[252] Y. Wang, B. Fowler, Y.-T. Chen, F. Xue, F. Zhou, Y.-F. Chang, and J. C.

Lee, Eect of hydrogen/deuterium incorporation on electroforming voltage of SiOx resistive random access memory; Applied Physics Letters, 101, 183505 (2012)

[253] J. Yao, L. Zhong, D. Natelson, and J. M. Tour, Silicon Oxide: A Non-innocent Surface for Molecular Electronics and Nanoelectronics Studies; Journal of the American Chemical Society, 133, 941948 (2011)

[254] F. Xue, Y.-T Chen, Y. Wang, F. Zhou, Y.-F. Chang, B Fowler, and J. Lee, The Eect of Plasma Treatment on Reducing Electroforming Voltage of Silicon Oxide RRAM; ECS Transactions, 45, 245250 (2012)